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stability of an equilibrium component.
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1. Introduction

Non-cooperative games are basic economic models. The main concept to analyze them is Nash

equilibrium, which recommends to each player a (typically randomized) strategy that is optimal

for that player if the other players follow their recommendations. In order to give such a rec-

ommendation, a Nash equilibrium must be found by some method (including any adjustment

process). For larger games this requires computer algorithms. We consider bimatrix games, which

are two-player games in strategic form. The algorithm by Lemke and Howson (1964) finds one

equilibrium of a bimatrix game. Finding all equilibria is feasible only for small games because of

the exponential number of mixed strategies that typically need to be checked for the equilibrium

property (Avis et al. 2010).

Kannan and Theobald (2010) introduced a hierarchy of bimatrix games based on the matrix

rank of the sum of the two payoff matrices. Games of rank 0 are zero-sum games, which can

be solved by linear programming. This paper comprehensively studies games of rank 1. Rank-1

games are economically more interesting than zero-sum games, by allowing a “multiplicative”

interaction in addition to an arbitrary zero-sum component (discussed further in Section 10). We

will show that, like general bimatrix games, they can have exponentially many disjoint equilibria.

On the other hand, as our main results show, they are computationally tractable: One equilibrium of

a rank-1 game can be found fast (in polynomial time), and finding all equilibria takes comparable

time to finding a single equilibrium of a general bimatrix game. Large rank-1 games are therefore

attractive as detailed models of interaction, on a similar scale to, but more general than, zero-sum

games. Rank-1 bimatrix games and their computational analysis should therefore become a new

tool in economic modeling.

The computational complexity (required running time) of computing a Nash equilibrium of a

game has received substantial interest in the last two decades. A computational problem is con-

sidered tractable if it can be solved in polynomial time. Savani and von Stengel (2006) showed

that the algorithm by Lemke and Howson (1964) may have exponential running time. (Their

examples require carefully constructed matrices, comparable to linear programs where the sim-

plex algorithm, which otherwise works well in practice, has exponential running time, see Klee

and Minty 1972.) The path-following Lemke–Howson algorithm implies that finding an equilib-

rium of a bimatrix game belongs to the complexity class PPAD defined by Papadimitriou (1994).

PPAD describes certain computational problems where the existence of a solution is known, and

the problem is to find one explicit solution. (In contrast, the better known complexity class NP

applies to decision problems, which are problems that have a “yes” or “no” answer.) Other prob-

lems in PPAD include the computation of an approximate Brouwer fixed point, related problems
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in economics such as market equilibria (Vazirani and Yannakakis 2011), and the computation of

an approximate Nash equilibrium of a game with many players. (In games with three or more

players, unlike in two-player games, the mixed strategy probabilities in a Nash equilibrium may

be irrational numbers. A suitable concept for such games is approximate Nash equilibrium, and

finding an exact Nash equilibrium is an even harder computational problem, see Etessami and

Yannakakis 2010.) A celebrated result is that all problems in PPAD can be reduced to finding a

Nash equilibrium in a bimatrix game, which makes this problem “PPAD-complete” (Chen and

Deng 2006, Chen et al. 2009, Daskalakis et al. 2009). No polynomial-time algorithm for finding a

Nash equilibrium of a general bimatrix game is known.

Kannan and Theobald (2010) describe an algorithm to find ε-approximate Nash equilibria in

games of fixed rank, with running time that is polynomial in 1/ε and the input length, but expo-

nential in the rank. In the present paper, we prove that an exact Nash equilibrium of a rank-1

game can be found in polynomial time. However, we also show that a rank-1 game may have

exponentially many equilibria. Moreover, games of higher fixed rank r are PPAD-hard and thus

as computationally difficult as general bimatrix games; this has been shown by Mehta (2018) for

r ≥ 3 and is claimed to hold for r = 2 (Chen and Paparas 2019). In the context of the “rank”

hierarchy, rank-1 games are therefore the most complex type of games that are expected to be

computationally tractable.

Section 2 states the notation and preliminary results used in this paper, and compares our

approach with the work of Theobald (2009). In Section 3, we show that the set of equilibria of a

game of rank r is the intersection of a hyperplane with a set of equilibria of parameterized games

of rank r− 1. When r = 1, these are parameterized zero-sum games whose equilibria are the solu-

tions to a parameterized linear program (LP). In order to deal with possibly degenerate games

which are awkward to handle with pivoting methods, we recall relevant results from Adler and

Monteiro (1992) in Section 4. The intersection with the hyperplane gives rise to a polynomial-

time binary search for one equilibrium of a rank-1 game, explained in Section 5. In Section 6, we

describe completely the set of all Nash equilibria of a rank-1 game, and outline a corresponding

equilibrium enumeration method.

Section 7 describes an example (which may be useful to consult in between) that illustrates our

main results, and a second example that shows that binary search fails in general for games of

rank 2 or higher. A construction of rank-1 games with exponentially many equilibria is shown in

Section 8. In Section 9, we describe a variant of the structure theorem of Kohlberg and Mertens

(1986), which is important for the concept of strategic stability of an equilibrium component.

We introduce a new homeomorphism between the space of bimatrix games and its equilibrium

correspondence. This homeomorphism preserves the sum of the payoff matrices, and hence the
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rank of the games. In the concluding Section 10, we present a tentative example of an economic

model based on rank-1 games, and note some open questions.

A preliminary version of our work was published in STOC 2011 (Adsul et al. 2011), and the

result of Section 8 in von Stengel (2012). The mathematical development in the present paper is

almost entirely new in all parts.

2. Bimatrix games and best responses

In this section we state our notation for bimatrix games and recall the “complementarity” charac-

terization of Nash equilibria in terms of suitable polyhedra. We also briefly compare our approach

with Theobald (2009).

We use the following notation. The transpose of a matrix C is written C⊤. All vectors are column

vectors, so if x ∈Rm then x is an m× 1 matrix and x⊤ is the corresponding row vector in R1×m. In

matrix products, scalars are treated like 1× 1 matrices. Let 0 and 1 be vectors with all components

equal to 0 and 1, respectively, their dimension depending on the context. Inequalities like x ≥ 0

hold for all components. The components of a vector x ∈Rm are x1, . . . , xm.

For c ∈ Rk and γ ∈ R, a hyperplane is of the form {z ∈ Rk | c⊤z = γ}, and a halfspace of the

form {z ∈ Rk | c⊤z ≤ γ}. A polyhedron is an intersection of finitely many halfspaces, and called

a polytope if it is bounded. A face of a polyhedron P is of the form P ∩ {z ∈ Rk | c⊤z = γ} where

P ⊆ {z ∈ Rk | c⊤z ≤ γ}. It can be shown that any face of P can be obtained by turning some of

the inequalities that define P into equalities (Schrijver 1986, Section 8.3). If a face of P consists of a

single point, it is called a vertex of P. If S⊆ X× Y for sets S, X, Y, then {x ∈ X | (x, y) ∈ S for some

y ∈Y } is called the projection of S on X, also written as {x | (x, y) ∈ S }.

A bimatrix game is a pair (A, B) of m× n matrices with rows as pure strategies of player 1 and

columns as pure strategies of player 2. The players simultaneously choose their pure strategies,

with the corresponding entry of A as payoff to player 1 and of B to player 2. The sets X and Y of

mixed (that is, randomized) strategies of player 1 and player 2 are given by

X = {x ∈Rm | x≥ 0, 1
⊤x = 1}, Y = {y ∈Rn | y≥ 0, 1

⊤y = 1}. (1)

For the mixed strategy pair (x, y) ∈ X × Y, the expected payoffs to the two players are x⊤Ay

and x⊤By, respectively. A best response x of player 1 against y maximizes his expected payoff

x⊤Ay, and a best response y of player 2 against x maximizes her expected payoff x⊤By. A Nash

equilibrium (NE) is a pair of mutual best responses.

Consider mixed strategies x ∈ X and y ∈ Y. If x is a best response to y, then its expected payoff

x⊤Ay is clearly at least the payoff (Ay)i for any pure strategy i of player 1. Moreover, x is a best

response to y if and only if any pure strategy i in the support of x (that is, where xi > 0) is a
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pure best response to y (Nash 1951). The following lemma, due to Mangasarian (1964), states this

“best-response condition” in terms of suitable polyhedra.

LEMMA 1. Let (A, B) be an m× n bimatrix game. Consider the polyhedra

P = {(x, v) ∈ X×R | B⊤x ≤ 1v },

Q = {(y, u) ∈Y×R | Ay ≤ 1u }.
(2)

Let (x, y) ∈ X×Y. Then x is a best response to y if and only if (y, u) ∈Q and for all rows i

xi = 0 or (Ay)i = u (1≤ i≤m), (3)

and y is a best response to x if and only if (x, v) ∈ P and for all columns j

yj = 0 or (B⊤x)j = v (1≤ j≤ n). (4)

If both conditions hold, then u and v are the unique payoffs to player 1 and 2 in the Nash equilibrium (x, y).

A bimatrix game is degenerate if there is a mixed strategy that has more pure best responses than

the size of its support (von Stengel 2002). A degenerate game may have infinite sets of equilibria.

They can be described by suitable faces of of P and Q, as explained further in Section 6. Our

analysis applies to general games that may be degenerate.

The object of study of our paper are bimatrix games of fixed rank, introduced by Kannan and

Theobald (2010). They generalize zero-sum games, which are games of rank zero.

DEFINITION 2. The rank of a bimatrix game (A, B) is the matrix rank of A + B.

For comparison of our approach with Theobald (2009), we consider a quadratic program, due

to Mangasarian and Stone (1964), that captures the NE of (A, B).

LEMMA 3. The strategy pair (x, y) is a Nash equilibrium of (A, B) if and only if it is a solution to

maximize
x,y,u,v

x⊤(A + B)y− u− v subject to (x, v) ∈ P, (y, u) ∈Q. (5)

The optimum value of (5) is zero, with u = x⊤Ay and v = x⊤By.

Proof. Consider any solution to (5). Then v is at least the best-response payoff of player 2

against x because (x, v) ∈ P, and u is at least the best-response payoff of player 1 against y because

(y, u) ∈Q. Hence, x⊤(A+ B)y− u− v≤ 0. Furthermore, (3) and (4) imply that x⊤(A+ B)y− u− v

is zero if and only if (x, y) is a NE, in which case u = x⊤Ay and v = x⊤By. �
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The quadratic program (5) shows the importance of the rank of the matrix A + B. For zero-sum

games, the rank of A + B is zero and (5) is a linear program, a well-known fact (Dantzig 1963).

For a rank-1 game (A, B) with A + B = ab⊤, the bilinear term x⊤(A + B)y in the objective function

becomes the product (x⊤a)(b⊤y) of two linear terms. The resulting optimization problem is called

a linear multiplicative program. Solving a general linear multiplicative program is NP-hard (Matsui

1996).

Consider a rank-1 game (A, B) where A + B = ab⊤. Similar to parametric simplex methods for

solving linear multiplicative programs (Konno et al. 1991), Theobald (2009) describes an algorithm

to enumerate all equilibria of (A, B). For a real parameter ξ, he considers the parameterized LP

maximize
x,y,u,v

x⊤aξ − u− v subject to (x, v) ∈ P, (y, u) ∈Q, b⊤y = ξ . (6)

In any solution to (6), x⊤aξ = x⊤ab⊤y = x⊤(A + B)y. Hence, by Lemma 3, any optimal solution to

(6) is an equilibrium of (A, B) if and only its optimum is zero. Moreover, b⊤y = ξ implies that ξ

is a convex combination of the components b1, . . . , bn of b, so that one can restrict ξ to the interval

[min{b1, . . . , bn}, max{b1, . . . , bn}]. By partitioning this interval into segments where (6) uses the

same basic variables, Theobald (2009) obtains an enumeration of all NE of (A, B).

Our approach is somewhat similar, with a parameter λ and the equality x⊤a = λ. However,

we consider a different LP which is parameterized by λ and involves only the payoff matrix A

and the vector b used in A + B = ab⊤. That LP, given in (19) below, has x as primal and y as

dual variables, whereas in (6) both x and y are primal with less closely related constraints. We

consider the hyperplane defined by x⊤a = λ separately from the parameterized LP. The intersection

of the hyperplane with the solutions to the parameterized LP defines the equilibria of the rank-1

game. This structural insight can be used both for finding an exact NE in polynomial time by

binary search (see Section 5) and for enumerating all equilibria (see Section 6). As a topic for

further research, it may be interesting if this approach can be extended to more general linear

multiplicative programs.

3. Rank reduction

The central result of this short section is Theorem 7. It states that the set of Nash equilibria of a

game of rank r is the intersection of a set N of equilibria of parameterized games of rank r − 1

with a suitable hyperplane. In subsequent sections, we show how to exploit this property algo-

rithmically when r = 1.

The following lemma states the well-known fact that the equilibria of a bimatrix game are

unchanged when subtracting a separate constant bj from each column j of the row player’s payoff

matrix. Call two games strategically equivalent if they have the same Nash equilibria.
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LEMMA 4. If b ∈Rn, then the m× n game (A, B) is strategically equivalent to the game (A− 1b⊤, B).

Proof. This holds by Lemma 1, because the equilibrium payoff u to player 1 in the game (A, B)

changes to u − b⊤y in (A − 1b⊤, B): Clearly, Ay ≤ 1u is equivalent to (A − 1b⊤)y ≤ 1(u − b⊤y),

and (Ay)i = u is equivalent to ((A− 1b⊤)y)i = u− b⊤y. �

LEMMA 5. An m× n bimatrix game of positive rank r can be written as (A, C + ab⊤) for suitable a ∈Rm,

b ∈Rn, and a game (A, C) of rank r− 1.

Proof. An m × n matrix is of rank at most r if and only if it can be written as the sum of r

rank-1 matrices, that is, as a1b⊤1 + · · · + arb
⊤
r for suitable aq ∈ Rm and bq ∈ Rn for 1 ≤ q ≤ r. This

is easily seen by writing the jth column of the matrix as ∑
r
q=1 aqbqj and letting b⊤q = (bq1, . . . , bqn)

(see also Wardlaw (2005)). Suppose (A, B) is of rank r, with A + B = ∑
r
q=1 aqb⊤q and therefore B =

−A + ∑
r
q=1 aqb⊤q . Let C =−A + ∑

r−1
q=1 aqb⊤q and a = ar, b = br, so that B = C + ab⊤; obviously, A + C

is of rank r− 1. �

The following is a simple but central lemma.

LEMMA 6. Let A, C ∈Rm×n, x ∈ X, y ∈Y, a ∈Rm, b ∈Rn, λ ∈R. The following are equivalent:

(a) (x, y) is an equilibrium of (A, C + ab⊤),

(b) (x, y) is an equilibrium of (A, C + 1λb⊤) and x⊤a = λ,

(c) (x, y) is an equilibrium of (A− 1λb⊤, C + 1λb⊤) and x⊤a = λ.

Proof. The equivalence of (a) and (b) holds because the players get in both games the same

expected payoffs for their pure strategies: this is immediate for player 1, and if x⊤a = λ, then the

column payoffs are given by

x⊤(C + ab⊤) = x⊤C + λb⊤ = x⊤C + x⊤1λb⊤ = x⊤(C + 1λb⊤). (7)

The games in (b) and (c) are strategically equivalent by Lemma 4. �

Consider a game (A, B) of positive rank r where B = C + ab⊤ so that (A, C) is a game of rank

r − 1 according to Lemma 5. Then the game (A− 1λb⊤, C + 1λb⊤) in Lemma 6(c) has the same

sum A + C of its payoff matrices and hence also rank r− 1, for any choice of the parameter λ. Let

N be the set of Nash equilibria together with λ of these parameterized games,

N = {(λ, x, y) ∈R× X×Y | (x, y) is a NE of (A− 1λb⊤, C + 1λb⊤)} (8)

where by Lemma 6(b)

N = {(λ, x, y) ∈R× X×Y | (x, y) is a NE of (A, C + 1λb⊤)}. (9)

These considerations imply the following main result of this section.
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THEOREM 7. Given a bimatrix game (A, C + ab⊤), its set of Nash equilibria is exactly the projection on

X×Y of the intersection of N and the hyperplane H defined by

H = {(λ, x, y) ∈R×Rm ×Rn | x⊤a = λ} . (10)

Theorem 7 asserts that for any rank-r game of the form (A, C + ab⊤), every Nash equilibrium

of the game is captured by the set N in (8) of games of rank r− 1 which are parameterized by λ,

intersected with the hyperplane H in (10). Can this rank reduction be leveraged to get an efficient

algorithm to find a Nash equilibrium for a game of arbitrary constant rank? As will be discussed

in Section 7, this does not work in general. However, it does work for rank-1 games.

4. Parameterized linear programs

Our aim is to describe the equilibria of rank-1 games (A,−A + ab⊤) using the rank reduction of

the previous section. For this, we consider the set N in (9) for C =−A,

N = {(λ, x, y) ∈R×Rm ×Rn | (x, y) is a NE of (A,−A + 1λb⊤)} , (11)

where by (8)

N = {(λ, x, y) ∈R×Rm ×Rn | (x, y) is a NE of (A− 1λb⊤,−A + 1λb⊤)} , (12)

which is the set of equilibria of zero-sum games parameterized by λ. These correspond to the

solutions of a parameterized linear program (LP). In this section, we review the structure of such

parameterized LPs with a particular view towards nongeneric cases and polynomial-time algo-

rithms as studied by Adler and Monteiro (1992). In essence, such parameterized LPs have finitely

many special values of the parameter λ called breakpoints. These separate the set N into a con-

nected sequence of polyhedral segments (which generically are line segments). They are described

in Theorem 16 in the next section, where we will present a polynomial-time algorithm for finding

one equilibrium of a rank-1 game. In the subsequent section we present another algorithm for

finding all equilibria.

We assume familiarity with notions of linear programming such as LP duality and comple-

mentary slackness; see, for example, Schrijver (1986). The following well-known lemma (Dantzig

1963, p. 286) states that the equilibria of a zero-sum game are the primal and dual solutions to an

LP.

LEMMA 8. Consider an m× n zero-sum game (M,−M). In any equilibrium (x, y) of this game, y is a

minmax strategy of player 2, which is a solution to the LP with variables y in Rn and u in R:

maximize
y,u

u subject to My + 1u≤ 0, y ∈Y, (13)

and x is a maxmin strategy of player 1, which is a solution to the dual LP to (13). For the optimal value

of u in (13), the maxmin payoff to player 1 and minmax cost to player 2 and hence value of the game is−u.
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Proof. The dual LP to (13) has variables x ∈Rm and v ∈R and states

minimize
x,v

v subject to x⊤M + v1
⊤ ≥ 0

⊤, x ∈ X. (14)

Both LPs are feasible (with sufficiently small u and large v). Let (y, u) be an optimal solution to

(13) and (x, v) to (14). Then u = v by LP duality, and (13) and (14) state My ≤ 1(−u), that is,

player 2 pays no more than −u for any row, and x⊤M≥ (−v)1⊤, that is, player 1 gets at least −v

in every column, where −u =−v which is therefore the value of the game.

With the dual constraints written as x⊤(−M) ≤ v1
⊤, the complementary slackness conditions

between the primal and the dual are exactly the Nash equilibrium conditions (3) and (4) of

Lemma 1 (except for the changed sign of u so that we do not have to write x ∈ X in (14) as

−1
⊤x =−1 and x≥ 0). Hence, (x, y) is a Nash equilibrium. �

Applied to M = A− 1λb⊤ in (12), the LP (13) in Lemma 8 says:

maximize
y,u

u subject to (A− 1λb⊤)y + 1u≤ 0 , y ∈Y. (15)

In (15), the matrix A is parameterized. The substitution u = λb⊤y + t gives the equivalent LP

where only the objective function is parameterized:

maximize
y,t

λb⊤y + t subject to Ay + 1t≤ 0, y ∈Y. (16)

This is a standard parameterized linear programming problem. We stay close to the notation of

Adler and Monteiro (1992) who consider a primal LP with minimization subject to equality con-

straints, variables x, and a parameterized right hand side, of which (16) is the dual, a maximiza-

tion problem subject to inequalities, with variables y, and a parameterized objective function. We

write (16) as

Dλ : maximize
y,t

λb⊤y + t subject to (y, t) ∈ D (17)

with the fixed polyhedron

D = { (y, t) ∈Rn ×R | Ay + 1t≤ 0

1
⊤y = 1

y ≥ 0 } .

(18)

The LP Dλ is the dual of the following LP Pλ with a parameterized right hand side, where we use

slack variables s ∈Rn to express the inequality A⊤x + 1v ≥ bλ as an equality, in line with Adler

and Monteiro (1992):

Pλ : minimize
x,v,s

v subject to A⊤x + 1v− s = bλ

1
⊤x = 1

x , s≥ 0 .

(19)
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For optimal solutions (y, t) to Dλ and (x, v, s) to Pλ we have λb⊤y + t = v. The next lemma (essen-

tially a corollary to Lemma 6 and Lemma 8) states that−t and v can be interpreted as the player’s

payoffs for the games in Lemma 6(a) and (b), and asserts that t, v, s are uniquely determined by

(λ, x, y) (that is, a point on N ).

LEMMA 9. Let λ ∈R. Then (x, y) is an equilibrium of the game (A,−A + 1λb⊤) if and only if (y, t) is

an optimal solution to Dλ in (17) for some t which is uniquely determined by y, and (x, v, s) is an optimal

solution to Pλ in (19) for some v and s which are uniquely determined by λ and x. The equilibrium payoffs

are −t to player 1 and v to player 2. If x⊤a = λ, these are also the payoffs in the game (A,−A + ab⊤), and

(x, y) is an equilibrium of that game.

Proof. By Lemma 6 with C =−A, the game (A,−A + ab⊤) has the same equilibria (x, y) and,

by (7), payoffs as the game (A,−A + 1λb⊤) if x⊤a = λ. Consider any optimal solutions (y, t) to

Dλ and (x, v, s) to Pλ. Then Ay + 1t ≤ 0 states for each row i of A the inequality (Ay)i ≤ −t.

Complementary slackness, equivalent to LP optimality, states that (Ay)i = −t whenever xi > 0.

This is the equilibrium condition in (3) that states that x is a best response to y. Because it holds

for at least one i, it uniquely determines −t, which is the equilibrium payoff to player 1 in the

above games.

Similarly, the constraint s = A⊤x− bλ + 1v in (19) means that s is determined by (x, λ, v), and

states sj = (A⊤x − bλ)j + v ≥ 0 for all j, or equivalently ((−A⊤ + bλ1
⊤)x)j ≤ v. Complementary

slackness, equivalent to LP optimality, states that this inequality is tight whenever yj > 0. This

is the condition (4) that states that y is a best response to x in the game (A,−A + 1λb⊤), and it

uniquely determines v as the equilibrium payoff to player 2. �

Primal-dual pairs Pλ, Dλ of LPs with a parameter λ have been studied since Gass and Saaty

(1955). The next result is well known, which we show following Jansen et al. (1997).

LEMMA 10. For λ ∈ R, let φ(λ) be the optimum value of Pλ and hence of Dλ. Then φ : R→ R is the

pointwise maximum of a finite number of affine functions on R and therefore piecewise linear and convex.

Proof. The optimum of Dλ exists for any λ and is taken at a vertex of the polyhedron D in (18).

Let V be the set of vertices of D, which is finite. Hence,

φ(λ) = max{λ(b⊤y) + t | (y, t) ∈V} (20)

where for each of the finitely many (y, t) in V the function λ 7→ λ(b⊤y) + t is affine. Hence, φ is the

pointwise maximum of a finite number of affine functions as claimed. The epigraph of φ given by

E = {(λ, θ) | θ ≥ φ(λ)} is the intersection of the convex epigraphs of these affine functions, so E is

convex and φ is a convex function. �



Adsul, Garg, Mehta, Sohoni, von Stengel: Fast Algorithms for Rank-1 Bimatrix Games

Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 11

By (20), the function φ(λ) is the “upper envelope” of the affine functions λ 7→ λ(b⊤y)+ t defined

by the vertices (y, t) of D. A breakpoint is any λ∗ so that φ(λ) has different left and right derivatives

when λ approaches λ∗ from below or above, denoted by φ′−(λ
∗) and φ′+(λ

∗), respectively.

For any LP L, say, let OptFace(L) be the face of the domain of L where its optimum is attained.

For any λ we denote OptFace(Dλ) by Y(λ), that is,

Y(λ) = { (y, t) ∈ D | λb⊤y + t = φ(λ)} . (21)

Then the left and right derivatives of φ at λ are characterized as follows (obvious from (20), also

Prop. 2.4 of Adler and Monteiro (1992)):

φ′−(λ) = min{ b⊤y | (y, t) ∈Y(λ)} ,

φ′+(λ) = max{ b⊤y | (y, t) ∈Y(λ)} ,
(22)

which are the optima of the two LPs

SLmin(λ) : minimize
y,t

b⊤y subject to (y, t) ∈Y(λ) ,

SLmax(λ) : maximize
y,t

b⊤y subject to (y, t) ∈Y(λ) .
(23)

That is, λ∗ is a breakpoint if and only if φ′−(λ
∗) < φ′+(λ

∗). Clearly, in that case there are at least

two vertices (y, t) and (ŷ, t̂) of D that define two different affine functions λ 7→ λ(b⊤y) + t and

λ 7→ λ(b⊤ŷ) + t̂ that meet at λ = λ∗ to define the maximum φ(λ∗) in (20). These are also vertices

of Y(λ∗), which is then a higher-dimensional face (such as an edge) of D. The following central

observation shows that the breakpoints give all the information about the optimal faces Y(λ) of

Dλ for any λ between these breakpoints.

THEOREM 11. (Adler and Monteiro 1992, Theorem 4.1) Let λ1, . . . , λK be the breakpoints, in increas-

ing order, for the parameterized LPs Pλ and Dλ, and let λ0 = −∞ and λK+1 = ∞. For 0 ≤ k ≤

K, consider any λ′k ∈ (λk, λk+1). Then Y(λ′k) = OptFace(SLmax(λk)) for 1 ≤ k ≤ K, and Y(λ′k) =

OptFace(SLmin(λk+1)) for 0≤ k≤ K− 1.

For finding the solutions to Pλ as a function of λ, the nondegenerate case is straightforward,

where Y(λ) is a vertex of Dλ unless λ is a breakpoint, in which case Y(λ) is an edge of Dλ. Then

these vertices uniquely describe the pieces of the piecewise linear function φ(λ), and can be tra-

versed by a parameterized simplex algorithm Gass and Saaty (1955). An example is shown in the

right diagram of Figure 4 below with the constraints (44) for Ay + 1t≤ 0 in D, with the additional

constraints 0≤ y2 ≤ 1 to represent y ∈ Y, and objective function λb⊤y + t given by λ(1− 2y2) + t.

The three linear parts of φ(λ) are

φ(λ) =











−λ− 1 for λ≤− 1
2

− 1
2

for − 1
2
≤ λ≤ 1

2

λ− 1 for 1
2
≤ λ

(24)
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which correspond to the optimal vertices (y2, t) of D given by (1,−1), ( 1
2
,− 1

2
), and (0,−1). The

two breakpoints are λ1 =−
1
2

and λ2 =
1
2

which correspond to the two edges of D.

In the degenerate case, one typically does not get polynomial-time algorithms by considering

vertices and corresponding basic solutions to the LP Pλ as in a parameterized simplex algorithm.

Instead of partitioning the variables of Pλ into basic and nonbasic variables, Adler and Monteiro

(1992) consider “optimal partitions”; we use here only the partition part that replaces the nonbasic

variables, which we denote by M(λ) ∪ N(λ) in (26) below (called N(λ) in Adler and Monteiro

(1992)). This is the set of variables of the dual LP Dλ that may be strictly positive in an optimal

solution, which represent the “true inequalities” of Y(λ).

DEFINITION 12. For some A, b, C, d suppose that the constraints in x

Ax≤ b, Cx = d (25)

are feasible. Then any row i of Ax ≤ b so that (b − Ax)i > 0 for some feasible x is called a true

inequality of (25).

If there are solutions x and x̂ to (25) so that (b− Ax)i > 0 and (b− Ax̂)j > 0 then both inequal-

ities are true for x 1
2
+ x̂ 1

2
, so there is a unique largest set of true inequalities with some feasible

solution where all these strict inequalities hold simultaneously. These define the relative interior

of the polyhedron defined by (25).

Let A ∈ Rm×n and b ∈ Rn. Let M(λ) ∪ N(λ) be the set of true inequalities of the optimal face

Y(λ) of Dλ in (17), that is,

M(λ) = { i ∈ {1, . . . , m} | (Ay)i + t < 0 for some (y, t) ∈Y(λ) } ,

N(λ) = { j ∈ {1, . . . , n} | yj > 0 for some (y, t) ∈Y(λ) } .
(26)

Any non-true inequality of Y(λ) is always tight, that is, (Ay)i + t = 0 if i 6∈ M(λ) and yj = 0 if

j 6∈ N(λ). It can be shown that for such i and j there are optimal solutions (x, v, s) to Pλ where xi > 0

and sj > 0, so these are the true inequalities of OptFace(Pλ). This is also known as “strict comple-

mentary slackness” (Schrijver 1986, Section 7.9). Consider the polyhedron P of the constraints for

Pλ in (19) where λ is allowed to vary,

P = {(λ, x, v, s) ∈R×Rm ×R×Rn | A⊤x + 1v− s = bλ, x ∈ X, s≥ 0} . (27)

The following lemma considers the face of P defined by the equations xi = 0 for i ∈ M(λ) and

sj = 0 for j ∈ N(λ), which are necessary and sufficient for a feasible solution to Pλ to be optimal.

This is immediate from the standard complementary slackness condition.



Adsul, Garg, Mehta, Sohoni, von Stengel: Fast Algorithms for Rank-1 Bimatrix Games

Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 13

LEMMA 13. Let A ∈Rm×n and b ∈Rn. For M⊆ {1, . . . , m} and N ⊆ {1, . . . , n}, with xM = (xi)i∈M and

sN = (sj)j∈N, define

P(M, N) = {(λ, x, v, s) ∈ P | xM = 0, sN = 0} . (28)

Then any feasible solution (x, v, s) to Pλ is optimal if and only if (λ, x, v, s) ∈ P(M(λ), N(λ)).

Crucially, according to Theorem 11, for any λ in an open interval (λk, λk+1) (for 0≤ k ≤ K) the

optimal face Y(λ) is constant in λ. Hence, for all λ ∈ (λk, λk+1) the true inequalities (M(λ), N(λ))

of Y(λ) are equal to some fixed (M, N), and for the points (λ, x, v, s) in P(M, N) the value of λ can

be any real in the closed interval [λk, λk+1]. Namely, with the LPs

BRmax(M, N) : maximize
λ,x,v,s

λ subject to (λ, x, v, s) ∈ P(M, N) ,

BRmin(M, N) : minimize
λ,x,v,s

λ subject to (λ, x, v, s) ∈ P(M, N) ,
(29)

the following holds.

LEMMA 14. Consider λ0, λ1, . . . , λK, λK+1 and λ′k ∈ (λk, λk+1) for 0≤ k≤ K as in Theorem 11. Let Mk =

M(λ′k) and Nk = N(λ′k) (which do not depend on the choice of λ′k). Then for 1≤ k≤ K,

(a) the breakpoint λk is the optimum of the LP BRmax(Mk−1, Nk−1) and of the LP BRmin(Mk, Nk);

(b) if (λ, x, v, s) ∈ P(M(λk), N(λk)) then λ = λk .

Proof. See Adler and Monteiro (1992), p. 171 for (a), and Theorem 3.1(a) and Lemma 3.1(b) for

(b). �

Lemma 14(a) implies that for any λ in the open interval (λk, λk+1), for 1 ≤ k ≤ K − 1, the

endpoints of the closed interval [λk, λk+1] are given by the minimum and maximum of λ for

(λ, x, v, s) ∈ P(M, N) where M = M(λ) and N = N(λ). Lemma 14(b) and Lemma 13 imply that if

λ is itself a breakpoint, then P(M, N) = {λ} ×OptFace(Pλ).

As we will describe in detail in the next section, Theorem 11 and Lemma 14 lead to a description

of the set of optimal solutions to Pλ and Dλ for all λ with the help of the breakpoints λ1, . . . , λK in

the form of 2K + 1 polyhedral segments (which are lines in the nondegenerate case). Any solution

(x, v, s) to Pλ is optimal if and only if (λ, x, v, s) belongs to P(M(λ), N(λ)), which is a face of P, and

any solution to Dλ is optimal if and only if it belongs to Y(λ), which is a face of D. For λ between

two breakpoints, these faces do not change (but x typically varies with λ), and their Cartesian

product defines K + 1 of the segments. If λ is equal to a breakpoint, the set P(M(λ), N(λ)) is a

subset of the two adjoining faces P(M(λ′), N(λ′)) for λ′ near λ, whereas Y(λ) is a superset of the

adjoining faces Y(λ′), as described in Theorem 11. This defines the other K segments. Using this

we will give a precise description of the set N in Theorem 16 below.

Adler and Monteiro (1992) describe how to generate the breakpoints of Pλ, Dλ in polynomial

time per breakpoint, with a polynomial-time algorithm applied to the LPs (17), (23), (29), which
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we will adapt to our purpose. (However, the number of breakpoints may be exponential, see

Murty (1980).) The true inequalities in Definition 12 can also be found with an LP, according to

the following lemma (Prop. 4.1 of Adler and Monteiro (1992)), due to Freund et al. (1985); for an

alternative polynomial-time algorithm see Mehrotra and Ye (1993).

LEMMA 15. For A, b, C, d and the constraints (25) consider the LP

maximize
x,u,α

1
⊤u subject to Ax + u− bα≤ 0,

Cx− dα = 0,

0≤ u≤ 1,

α≥ 1.

(30)

Then (25) is feasible if and only if (30) is feasible and bounded, and any optimal solution (x∗, u∗, α∗)

to (30) satisfies u∗i = 1 (and u∗i = 0 otherwise) if and only if i is a true inequality of (25). For such an

optimal solution (x∗, u∗, α∗) to (30), x = x∗(1/α∗) is a solution to (25) where (b− Ax)i > 0 for all true

inequalities i.

Proof. If the LP (30) is feasible then it is also bounded because u ≤ 1. Let I be the set of true

inequalities of (25), that is, (b− Ax)i = ε i > 0 for i ∈ I for some x with Cx = d. Choose α∗ ≥ 1 so

that α∗ ≥ 1/ε i for all i ∈ I. Then (bα∗ − A(xα∗))i = (b− Ax)iα
∗ = ε iα

∗ ≥ 1 for i ∈ I. Hence, x∗ = xα∗

and u∗ defined by u∗i = 1 if i ∈ I, and u∗i = 0 otherwise, give a feasible solution (x∗, u∗, α∗) to the LP

(30). This solution is also optimal because any solution (x̂, û, α̂) to (30) where ûi > 0 would give a

solution x = x̂(1/α̂) to (25) with (b− Ax̂)i > 0 and thus i ∈ I, so for any feasible solution (x, u, α)

to (30) we have ui = 0 whenever i 6∈ I. This proves the claim. �

5. Finding one equilibrium of a rank-1 game by binary search

We use the results of the previous section to present a polynomial-time algorithm for finding

one equilibrium of a rank-1 game (A,−A + ab⊤), using binary search for a suitable value of the

parameter λ in Theorem 7. The search maintains a pair of successively closer parameter values

and corresponding equilibria of the game (A,−A+ 1λb⊤) that are on opposite sides of the hyper-

plane H in (10). Generically, the set N in (11) is a piecewise linear path which has to intersect H

between these two parameter values. In general, the segments of that “path” are products of cer-

tain faces of the polyhedra D in (17) and P in (27) described in Theorem 11 and Lemma 14 using

the breakpoints λ1, . . . , λK of the LPs Pλ and Dλ.

We give a complete description of N in terms of these faces of P and D, which we project

to R× X (for the possible values of (λ, x)) and Y. Namely, consider λ0, λ1, . . . , λK, λK+1 and λ′k ∈

(λk, λk+1) for 0≤ k≤ K as in Theorem 11. For 0≤ k≤ K, define

X′k = {(λ, x) | (λ, x, v, s) ∈ P(M(λ′k), N(λ′k)) } . (31)
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Note that for any (λ, x, v, s) ∈ P(M(λ′), N(λ′)) (for any λ′ ∈ R) the components v and s are

uniquely determined by (λ, x) by Lemma 9. Similarly, let

Y′k = {y | (y, t) ∈Y(λ′k) } (32)

where again t in (y, t) is uniquely determined by y. Recall that the choice of λ′k ∈ (λk, λk+1) does

not matter for the definitions of X′k and Y′k. The polyhedra X′k × Y′k for 0≤ k ≤ K (which for k = 0

and k = K + 1 are infinite, otherwise bounded) represent K + 1 of the segments that constitute N

between any two breakpoints λk and λk+1. They are successively connected by K further segments,

which are polytopes Xk ×Yk that correspond to the breakpoints themselves. These are for 1≤ k≤

K defined by

Xk = {(λ, x) | (λ, x, v, s) ∈ P(M(λk), N(λk)) } (33)

and

Yk = {y | (y, t) ∈Y(λk) } . (34)

THEOREM 16. The set N in (11) is given by

N = (X′0 ×Y′0) ∪
K
⋃

k=1

(

(Xk ×Yk) ∪ (X′k ×Y′k)
)

, (35)

where for 1≤ k≤ K we have

Yk ⊇Y′k−1 ∪Y′k (36)

and

Xk ⊆ X′k−1 ∩ X′k . (37)

Proof. This follows from Lemma 9, Lemma 13, and Theorem 11. By Theorem 11, Y(λ′k) is the

optimal face of SLmax(λk) which is a subset of Y(λk). Hence, Y′k ⊆Yk, and similarly Y′k−1 ⊆Yk, which

implies (36). In addition, we have M(λ′k)⊆M(λk) and N(λ′k)⊆ N(λk) and thus Xk ⊆ X′k because

of the additional tight constraints in P(M(λk), N(λk)). Similarly, Xk ⊆ X′k−1. This shows (37). �

The preceding characterization of N is used in the following lemma.

LEMMA 17. Let λ 6 λ and x, x ∈ X and y, y ∈Y so that for N in (11)

(λ, x, y) ∈N , λ 6 x⊤a , (λ, x, y) ∈N , x⊤a 6 λ . (38)

Then x⊤a = λ for some (λ, x, y) ∈N with λ ∈ [λ, λ].

Proof. Consider the largest λ∗ so that λ∗ ∈ [λ, λ] and there are x∗, y∗ with (λ∗, x∗, y∗) ∈ N and

λ∗ ≤ x∗⊤a, which exists since λ fulfills this property and N is closed by Theorem 16.
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If λ∗ = λ then both (λ∗, x) and (λ∗, x∗) belong to the same set Xk or X′k which is convex, where

since x⊤a≤ λ∗ and λ∗ ≤ x∗⊤a we have x⊤a = λ∗ for a suitable convex combination x of x and x∗,

and (λ∗, x, y∗) ∈N , as claimed.

Hence, we can assume λ∗ < λ. Suppose λ∗ is a breakpoint λk, so that (λ∗, x∗) ∈ Xk. Consider

λ′ ∈ (λk, min{λk+1, λ}) and (λ′, x′, y′) ∈ X′k × Y′k where λ′ > x′⊤a by maximality of λ∗. By (37), we

have (λ∗, x∗) ∈ X′k and hence (λ∗, x∗, y′) ∈ X′k × Y′k. Because λ∗ ≤ x∗⊤a and λ′ > x′⊤a, a suitable

convex combination (λ, x, y′) of (λ∗, x∗, y′) and (λ′, x′, y′) belongs to N and fulfills λ = x⊤a as

claimed (in fact, (λ, x, y′) = (λ∗, x∗, y′) does by maximality of λ∗). If λ∗ is not a breakpoint, we

directly have (λ∗, x∗, y∗) ∈ X′k×Y′k for some k and can choose (λ′, x′, y∗) ∈ X′k×Y′k with λ∗ < λ′ ≤ λ

and apply the same argument. �

The binary search algorithm will maintain (38) as an invariant while halving the length of the

interval [λ, λ] in each iteration.

Lemma 17 ensures that the interval contains some λ with (λ, x, y) ∈ N and x⊤a = λ (which

is not true when applied to games of higher rank, as shown in the example in Figure 5 below).

Let λ′ = (λ + λ)/2 and let x′ be the strategy of player 1 in an equilibrium (x′, y′) of the game

(A,−A + 1λ′b⊤), which is found as a solution (x′, v′, s′) to Pλ′ . If λ′ ≤ x′⊤a, it is natural to proceed

with λ set to λ′ (written as λ← λ′), otherwise with λ← λ′. The binary search should terminate

once λ and λ are in the same interval [λk, λk+1] between two breakpoints, with the desired equi-

librium found in (X′k ×Y′k) ∩ H.

However, this straightforward approach has the following problems:

(i) the search may converge to an equilibrium (x, y) with x⊤a = λ where λ is a breakpoint λk,

so that λ and λ are always in different intervals (λk−1, λk] and [λk, λk+1) and the described

termination condition fails;

(ii) the number of digits to describe λ and λ may pile up, which slows down solving Pλ′ .

We address these problems as follows. First, we identify with M = M(λ′), N = N(λ′) the face

P(M, N) of P that contains (λ′, x′, v′, s′). We then check if that face contains some (λ, x, v, s) with

x⊤a = λ. Depending on whether λ′ ≤ x′⊤a or x′⊤a ≤ λ′, this is achieved by one of the following

variations of the LPs in (29) (these variations will also be used for the enumeration of all equilibria

in Section 6):
Pmax(M, N, a, λ′) : maximize

λ,x,v,s
λ− x⊤a

subject to (λ, x, v, s) ∈ P(M, N) ,

x⊤a≥ λ≥ λ′ ,

Pmin(M, N, a, λ′) : minimize
λ,x,v,s

λ− x⊤a

subject to (λ, x, v, s) ∈ P(M, N) ,

x⊤a≤ λ≤ λ′ .

(39)
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Figure 1 illustrates Pmax(M, N, a, λ′) where λ′ < x′⊤a, and λ′ is between two breakpoints λk−1 and

λ′k (but λ′ could also be a breakpoint itself), so that P(M, N) is projected to X′k−1. Here the optimal

solution x′ to Pλ′ is not unique, but always fulfills λ′ < x′⊤a. Moreover, X′k−1 × Y′k−1 and H inter-

sect. In the left diagram in Figure 1, P(M, N) is not just a line segment but a higher-dimensional

polytope. It contains some (λ, x, v, s) and (λ, x̂, v̂, ŝ) with x⊤a < λ < x̂⊤a, for example for λ = λ̂,

but not for λ = λ′ nor λ = λk. In the right diagram of Figure 1, we always have λ < x⊤a, and

Pmax(M, N, a, λ′) attains its optimum λ∗ at λ′ because for the corresponding (x∗, λ∗), shown as a

dot, λ∗ − x∗⊤a is least negative. Here, the solution λ∗ = λk would be more useful for proceeding

because it is the next breakpoint. We will introduce an extra computation step to achieve this, as

we discuss further below.

λ

λk−1

λ
′

λ̂

λk

x⊤a

P(M, N)

constraint set of

P
max(M, N, a, λ

′)

x

λ

λk−1

λ
′

λ
∗

λk

x⊤a

P(M, N)

x

Figure 1 (Color online) Illustration of Pmax(M, N, a, λ′) in (39) for λ′ ∈ (λk−1, λk), with M = M(λ′), N = N(λ′), and

P(M, N) as a polytope (left) or line segment (right)

The next lemma states that the appropriate LP in (39) identifies if there is an equilibrium (x, y)

of the game (A,−A + 1λb⊤) with x⊤a = λ for some λ between λ′ and the next breakpoint λk .

LEMMA 18. Let λk be a breakpoint of Pλ and Dλ as in Theorem 11, 1≤ k ≤ K. Let λ′ ∈R, let (x′, v′, s′)

be an optimal solution to Pλ′ , and let (M, N) = (M(λ′), N(λ′)) as in (26).

(a) Suppose λ′ ∈ (λk−1, λk] and λ′ ≤ x′⊤a. Let (λ∗, x∗, v∗, s∗) be an optimal solution to Pmax(M, N, a, λ′).

Then λ∗ ∈ [λ′, λk], and the game (A,−A + 1λb⊤) has an equilibrium (x, y) with x⊤a = λ for some

λ ∈ [λ′, λk] if and only if this holds for λ = λ∗ and x = x∗.



Adsul, Garg, Mehta, Sohoni, von Stengel: Fast Algorithms for Rank-1 Bimatrix Games

18 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

(b) Suppose λ′ ∈ [λk, λk+1) and λ′ ≥ x′⊤a. Let (λ∗, x∗, v∗, s∗) be an optimal solution to Pmin(M, N, a, λ′).

Then λ∗ ∈ [λk, λ′], and the game (A,−A + 1λb⊤) has an equilibrium (x, y) with x⊤a = λ for some

λ ∈ [λk, λ′] if and only if this holds for λ = λ∗ and x = x∗.

Proof. We prove (a), where (b) is entirely analogous. By Lemma 13, (λ′, x′, v′, s′) is feasible for

Pmax(M, N, a, λ′). Clearly λ′ ≤ λ∗, and Lemma 14 implies λ∗ ≤ λk. Because λ≤ x⊤a for any feasible

solution (λ, x, v, s), the objective function λ− x⊤a is nonpositive, and zero and hence optimal if

and only if λ = x⊤a, in which case x is part of the described equilibrium (x, y). �

BINSEARCH

1 Input : A ∈Rm×n, a ∈Rm, b ∈Rn

2 Output : one Nash equilibrium of the game (A,−A + ab⊤)

3 λ←min{a1, . . . , am}, λ←max{a1, . . . , am}

4 repeat

5 λ← (λ + λ)/2

6 (x, v, s)← solution of Pλ

7 (M, N)← (M(λ), N(λ))

8 if λ≤ x⊤a then

9 (λ∗, x∗, v∗, s∗)← solution of Pmax(M, N, a, λ)

10 if λ
∗
< x∗⊤a then

11 (λ∗, x∗, v∗, s∗)← solution of BRmax(M, N)

12 λ← λ
∗

13 else [ know: x⊤a < λ ]

14 (λ∗, x∗, v∗, s∗)← solution of Pmin(M, N, a, λ)

15 if x∗⊤a < λ
∗ then

16 (λ∗, x∗, v∗, s∗)← solution of BRmin(M, N)

17 λ← λ
∗

18 until x∗⊤a = λ
∗

19 (y∗, t∗)← solution of Dλ∗

20 output (x∗, y∗)

Figure 2 The BINSEARCH algorithm for finding one Nash equilibrium of a rank-1 game (A,−A + ab⊤)

We now describe the BINSEARCH algorithm in Figure 2, where we will return to the LPs in

(39). The conditions x⊤a = λ and x ∈ X mean that λ is a convex combination of the components
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a1, . . . , am of a, so that we can initialize λ and λ as their minimum and maximum in line 3 of the

algorithm. The main loop of the algorithm is between lines 4 and 18. The candidate value for λ

(called λ′ in the above explanations) is the midpoint between λ and λ in line 5. Line 6 computes

some optimal solution (x, v, s) of the LP Pλ in (19), where the dual LP Dλ in (17) is typically solved

alongside Pλ. The optimum φ(λ) of Pλ and Dλ determines the optimal face Y(λ) of Dλ in (21). The

true inequalities M, N of Y(λ) in line 7 are determined according to (26), for example with the

help of the LP in Lemma 15.

Lines 8 to 12, and symmetrically 13 to 17, use the LPs in (39). In order to match the notation in

the discussion before Lemma 18, let λ′ = λ. Consider the case λ′ ≤ x⊤a, handled in lines 8 to 12.

Line 9 invokes the LP Pmax(M, N, a, λ′). By Lemma 18, the optimum (λ∗, x∗, v∗, s∗) to this LP will

find the desired equilibrium with λ∗ = x∗⊤a if there is one for some λ∗ up to the next breakpoint λk,

that is, for λ∗ ∈ [λ′, λk]. Suppose this is not the case, that is, λ∗ < x∗⊤a and the optimum λ∗ − x∗⊤a

of Pmax(M, N, a, λ′) is negative. By Lemma 18, in this case the next breakpoint λk does not define

an equilibrium, so that problem (i) above does not occur. However, as shown in the right diagram

in Figure 1, this may result in λ∗ = λ′ . We could simply continue with λ ← λ∗ as in line 12,

but if λ∗ = λ′ this increases the description size of λ which we would like to keep bounded to

avoid problem (ii) (the description size of λ probably increases only by one bit per main iteration,

but it is useful to keep it independent of the number of iterations both for the computation and

for the analysis). In line 10, the condition λ∗ < x∗⊤a recognizes that the current segment of N

contains no equilibrium, and then BRmax(M, N) in line 11 computes λ∗ as the next breakpoint λk

according to Lemma 14(a); the LP in line 11 can be solved by starting from the current solution to

Pmax(M, N, a, λ′). The left diagram in Figure 1 shows that we cannot simply replace the objective

function λ− x⊤a of Pmax(M, N, a, λ′) by λ: While this would compute the next breakpoint λk , it

may overlook that the current segment of N defined by P(M, N) intersects the hyperplane H;

this could possibly miss the equilibrium altogether, for example if λ = λ̂ as shown in the diagram

(in particular if λ still has its initial value, which is not checked in the algorithm as to whether it

produces an equilibrium).

In summary: lines 8 to 11 find λ∗ and x∗ so that either (a) x∗⊤a = λ∗, or (b) λ∗ < x∗⊤a and λ∗ is a

breakpoint and (λ + λ)/2 = λ≤ λ∗ < λ, which implies λ− λ∗ ≤ (λ− λ)/2 . The next value of λ is

set to λ∗ in line 12. In case (a), the loop terminates in line 18. In case (b), the loop continues, and in

the next iteration the difference λ− λ has shrunk by at least one half. The analogous statements

hold for lines 13–17. The following theorem states the correctness and polynomial running time

of the algorithm.

THEOREM 19. Algorithm BINSEARCH finds one equilibrium of the rank-1 game (A,−A + ab⊤).

Assume that the entries of A, a, b are rational numbers with combined bit length L, and that LPs are solved
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with polynomial-time solvers that return extreme LP solutions obtained from linear equations derived from

A, a, b. Then BINSEARCH runs in polynomial time in L.

Proof. During the main loop, the invariant (38) is preserved, and the length of the interval

[λ, λ] shrinks by at least a factor of two per iteration. By Lemma 17, a solution (λ, x, y) ∈ N with

x⊤a = λ and λ ∈ [λ, λ] is guaranteed to exist. The termination condition x∗⊤a = λ∗ in line 18

holds once λ reaches a segment of N that intersects H, which is identified with one of the LPs

in line 9 or 14 by Lemma 18. Because the length of the search interval [λ, λ] shrinks by at least

half in each iteration, the search interval eventually contains at most one breakpoint λk. If there

is no breakpoint in [λ, λ], then (M(λ), N(λ)) = (M(λ), N(λ)) = (M(λ), N(λ)) for λ = (λ + λ)/2.

Hence, a solution (λ∗, x∗, v∗, s∗) to Pmax(M(λ), N(λ), a, λ) or to Pmin(M(λ), N(λ), a, λ) determines

an equilibrium (x∗, y∗) to (A,−A + ab⊤) by Lemma 18 and Lemma 6. This holds also if there is a

single breakpoint λk in [λ, λ]. Hence, as claimed, the algorithm computes an equilibrium (x∗, y∗)

of (A,−A + ab⊤).

The number of overall iterations is polynomial for the following reason. Any breakpoint λ is

part of a vertex (λ, x, v, s) of P by Lemma 14(a). This vertex is a solution to a linear system of

equations where each component (such as λ) is a fraction with an integer determinant obtained

from A, b in the denominator (which has a polynomial of bits), and distinct fractions for different

breakpoints λ. Hence, any two breakpoints have minimum distance 1/2p(L) for some polynomial p

(see also (Schrijver 1986, Section 10.2)). Therefore, there will be at most O(p(L)) binary search

iterations until the search interval contains at most one breakpoint and the search terminates.

Each iteration of the algorithm solves three or four LPs. The first is Pλ in line 6. Using the

optimum φ(λ) of that LP, in line 7 the true inequalities in (26) of Y(λ) in (21) are found with

another LP as in Lemma 15. The third LP is either Pmax(M, N, a, λ) in line 9 or Pmin(M, N, a, λ) in

line 14. The fourth LP is either BRmax(M, N) or BRmin(M, N) in line 11 or 16, respectively (which

just relaxes the extra constraints of the previous LP in (39) and has a different objective function).

In all cases, the output λ∗ is described in terms of A, a, b and found in polynomial time in the

bit size L, and λ∗ itself has polynomial bit size (Schrijver 1986, Corollary 10.2a(iii)). In the next

iteration, λ∗ determines with the constant arithmetic expression in line 5 the next parameter λ for

Pλ in line 6 and for (M, N) in line 7 so that the bit size of λ remains polynomial in L. Hence, each

main iteration takes polynomial time, and the overall running time is polynomial. �

In practice, as observed in (Adler and Monteiro 1992, Section 5), in the nondegenerate case the

segments of N are line segments. Then the LP in line 9 or 14 is solved starting from the current

solution to Pλ in line 6 with a single pivot, and similarly the next LP in line 11 or 16.



Adsul, Garg, Mehta, Sohoni, von Stengel: Fast Algorithms for Rank-1 Bimatrix Games

Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 21

6. Enumerating all equilibria of a rank-1 game

In this section, we show how to obtain a complete description of all Nash equilibria of a rank-1

game with the help of Theorem 7 and Theorem 16.

A degenerate bimatrix game may have infinite sets of Nash equilibria. They can be described

via maximal Nash subsets (Jansen 1981), called “sub-solutions” by Nash (1951). A Nash subset for

(A, B) is a nonempty product set S × T where S ⊆ X and T ⊆ Y so that every (x, y) in S × T

is an equilibrium of (A, B); in other words, any two equilibrium strategies x ∈ S and y ∈ T are

“exchangeable”. Using the “best response polyhedra” P and Q in (2), it can be shown that any

maximal Nash subset S× T is a polytope, with S as a suitable face of P projected to X, and T as

a suitable face of Q projected to Y (Avis et al. 2010). These faces are defined by converting some

inequalities in (2) to equations, which have to fulfill the equilibrium conditions (3) and (4). The

usual output for “enumerating” all equilibria consists of listing all maximal Nash subsets S× T

via the vertices of S and T. These are vertices of P and Q, respectively (projected to X and Y) that

define the “extreme” Nash equilibria of (A, B), with maximal Nash subsets obtained as maximally

exchangeable sets of such vertices (Avis et al. 2010, Prop. 4). Maximal Nash subsets may intersect,

in which case their vertex sets intersect. In a nondegenerate game, all maximal Nash subsets are

singletons.

For a rank-1 game (A,−A + ab⊤), its set of Nash equilibria is N ∩ H projected to X × Y by

Theorem 7, with N in (11) and H in (10). By (35), N is the union of polyhedra, whose nonempty

intersections with H give almost directly the maximal Nash subsets.

THEOREM 20. Let (A,−A + ab⊤) be a rank-1 bimatrix game, and let λ0, λ1, . . . , λK, λK+1 and λ′k ∈

(λk, λk+1) for 0≤ k≤ K as in Theorem 11. With (31), (32), (33), (34), let

Sk = { x | (λ, x) ∈ Xk , x⊤a = λ } (1≤ k≤ K),

Lk = {λ | (λ, x) ∈ Xk , x⊤a = λ } (1≤ k≤ K),

S′k = { x | (λ, x) ∈ X′k , x⊤a = λ } (0≤ k≤ K),

L′k = {λ | (λ, x) ∈ X′k , x⊤a = λ } (0≤ k≤ K).

(40)

Then the maximal Nash subsets of (A,−A + ab⊤) are the sets Sk × Yk if Sk 6= ∅, and S′k × Y′k if S′k 6= ∅

and L′k is not equal to {λk} or {λk+1}.

Proof. Each set Sk is the projection of (Xk × Yk) ∩ H on X, and S′k is the projection of (X′k ×

Y′k) ∩ H on X, with Lk and L′k containing the corresponding set of λ’s. Hence, by Theorem 16, if

Sk 6= ∅ then Sk × Yk is a Nash subset, and if S′k 6= ∅ then S′k × Y′k is a Nash subset, and the union

of these is the set of all equilibria which is the projection of N ∩ H on X × Y by Theorem 7. The

only question is which of these Nash subsets are inclusion-maximal. By Corollary 3.2 of Adler

and Monteiro (1992), Yk ∩ Yk+1 = Y′k where Yk and Yk+1 contain Y′k properly, Yk ∩ Yℓ = ∅ whenever
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|k− ℓ| ≥ 2, and Y′k ∩ Y′
ℓ
= ∅ whenever k 6= ℓ, and Lemma 14 implies Lk = {λk}= Lk−1 ∩ Lk. So the

only possible inclusions are that S′k × Y′k is a subset of Sk × Yk or of Sk+1 × Yk+1. Suppose x ∈ S′k,

that is, (λ, x) ∈ X′k and x⊤a = λ. If this implies λ = λk then L′k = {λk}. By Lemma 13, this means x

is part of an optimal solution (x, v, s) to Pλk
and hence x ∈ Sk, which shows the proper inclusion

S′k ×Y′k ⊂ Sk ×Yk because Y′k ⊂Yk. Similarly, L′k = {λk+1} implies S′k ×Y′k ⊂ Sk ×Yk+1. These are the

only possible inclusions because if x ∈ S′k with (λ, x) ∈ X′k so that x⊤a = λ 6∈ {λk, λk+1} we clearly

cannot have x ∈ Sk, say, where x⊤a = λk.

This proves the theorem. We also note that the described sets Sk and S′k are defined in terms of

the game (A,−A + ab⊤) independently of the parameter λ. Namely, the condition x⊤a = a⊤x = λ

implies that the polyhedron P in (2) for B =−A + ab⊤ is given by

P = {(x, v) ∈ X×R | (−A + ab⊤)⊤x≤ 1v }

= {(x, v) ∈ X×R | −A⊤x + bλ≤ 1v } ,
(41)

so Sk and S′k are projections of certain faces of P. �

A suitable algorithm that enumerates all Nash equilibria can be adapted from the algorithm by

Adler and Monteiro (1992, p. 173) that proceeds from breakpoint to breakpoint using Theorem 11.

The corresponding segments ofN can then be checked for nonempty intersections with H, which

are then output as maximal Nash subsets if they meet the conditions of Theorem 20.

We give an outline of this algorithm. Suppose λ is equal to a breakpoint λk. Then Yk in (34)

is the projection of Y(λk) = OptFace(Dλk
), and Xk in (33) is the projection of OptFace(Pλk

) by

Lemma 14(b) and Lemma 13. If (Xk × Y) ∩ H is not empty, its projection to X × Y is a maximal

Nash subset Sk×Yk. Start from some (λ, x) ∈ Xk. If λ = x⊤a then x ∈ Sk, which is a suitable starting

point for the vertex enumeration of the polytope Sk, for example with the program lrs (Avis 2000).

If λ < x⊤a or λ > x⊤a then the condition (Xk × Y) ∩ H 6= ∅ is checked with one of the LPs in (39)

by Lemma 18 which then have optimal value zero, with optimum (λ∗, x∗, v∗, s∗); then λ∗ = x∗⊤a,

and x∗ ∈ Sk is a new starting point to enumerate the vertices of Sk.

The next segment to be tested for its intersection with H is X′k × Y′k in (31) and (32). For that

purpose it is not necessary to find some λ′ ∈ (λk, λk+1), because Y(λ′) = OptFace(SLmax(λk)) by

Theorem 11, and the true inequalities M ∪ N of that face are found by Lemma 15, so that one

obtains X′k as the projection of P(M, N). Moreover, we have x ∈ Xk ⊆ X′k. If λ = x⊤a then x is also a

starting point for the enumeration of the vertices of S′k, which gives the Nash subset S′k×Y′k (which

is, however, not maximal if S′k ⊆ Sk, see Theorem 20). If λ < x⊤a then we solve Pmax(M, N, a, λk)

in (39) to find out if H intersects the current segment X′k × Y′k, and similarly Pmin(M, N, a, λk)

if λ > x⊤a. Finally, the next breakpoint λk+1 is found as the solution to BRmax(M, N) in (29) by

Lemma 14(a).
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For initialization and termination of this algorithm, we use that the possible values of λ can be

restricted to [α, α] with α and α as minimum and maximum of {a1, . . . , am}. The initialization is

λ = α, which is decided to be a breakpoint or not as described after (23). The constraint λ ≤ α is

added to the step of finding the next breakpoint, which terminates the algorithm when it is found

to hold as equality.

This algorithm, based on Theorem 20, for enumerating all Nash equilibria of a rank-1 game has

the following noteworthy features. First, it works for all games (degenerate or not), and its char-

acterization of maximal Nash subsets is simpler than for general bimatrix games (Avis et al. 2010),

and could even be adapted to easily represent these Nash subsets in terms of their inequalities

rather than their vertices (which would be of interest if they are high-dimensional). Secondly, the

algorithm in effect traversesN which is generically a path. Rather than by solving a succession of

LPs, it can also be implemented by a variant of the algorithm by Lemke (1965) with the additional

linear constraints λ≥ x⊤a or λ≤ x⊤a, depending on the current sign of λ− x⊤a. Here, traversing

this path gives all Nash equilibria, whereas for general bimatrix games Lemke’s algorithm (as in

von Stengel et al. 2002 or Govindan and Wilson 2003) only finds one Nash equilibrium.

7. Two examples

In this section, we illustrate the results of the previous sections with an example of a rank-1 game.

After that we will give an example that shows that binary search will in general not work for

a game of rank 2 or higher, even though Lemma 6 suggests the possibility of finding a Nash

equilibrium of such a game via a recursive rank reduction.

Consider the following rank-1 game (A, B),

A =

[

1 0
0 1

]

, B =

[

1 −2
−1 0

]

, A + B =

[

2 −2
−1 1

]

= ab⊤, (42)

where a⊤ = (2,−1) and b⊤ = (1,−1). This game has the two pure equilibria ((1, 0), (1, 0)) and

((0, 1), (0, 1)), and the mixed equilibrium (( 1
4
, 3

4
), ( 1

2
, 1

2
)). By Theorem 7(b), these are the equilibria

(x, y) of the game (A,−A + 1λb⊤) so that x⊤a = λ. For x = (1, 0), ( 1
4
, 3

4
), (0, 1), this means λ =

2,− 1
4
,−1.

Figure 3 shows the set N in (11) where (x, y) is an equilibrium of the parameterized game

(A,−A + 1λb⊤), where

− A + 1λb⊤ =

[

−1 0
0 −1

]

+

[

λ −λ
λ −λ

]

. (43)

These equilibria are pure except when λ ∈ [− 1
2
, 1

2
], when the unique mixed strategy (1− x2, x2) of

player 1 is given by equalizing the column payoffs, −(1− x2) + λ =−x2 − λ, that is, λ = 1
2
− x2.

The white dots indicate the intersection of N with the hyperplane H in (10), which is defined by

the equation λ = x⊤a = 2(1− x2)− x2 = 2− 3x2, and no constraints on y.



Adsul, Garg, Mehta, Sohoni, von Stengel: Fast Algorithms for Rank-1 Bimatrix Games

24 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

H

λ  

x

10

λ  

y

0 1

−1

0

1/2

2

−1/4

1/2

−1/2−1/2

−1/4
2 2

Figure 3 (Color online) The path N in (11) for the game (43), for x = (1− x2, x2) ∈ X and y = (1− y2, y2) ∈ Y, and

the hyperplane H in (10)
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0 1
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0 1

t

D
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−1
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−1/2
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1/4 1/2

−1/2

x2 2

Figure 4 (Color online) The LP Pλ in (19) and the polyhedron D in (18) with the objective function of the LP Dλ in

(17) for λ =− 1
4 , for the game (43)

Figure 4 shows the domains of the LPs Pλ in (19) and Dλ in (17) for λ = − 1
4
. Again we show

x in X as (1− x2, x2) and y in Y as (1− y2, y2). The constraints of Pλ are then 1− x2 + v ≥ λ and

x2 + v≥−λ, which for λ =− 1
4

are v≥− 5
4
+ x2 and v≥ 1

4
− x2. The constraints Ay + 1t≤ 0 of Dλ
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are

1− y2 + t≤ 0 and y2 + t≤ 0 , (44)

and the objective function λb⊤y + t is λ(1− y2− y2) + t, with gradient ( ∂
∂y2

, ∂
∂t
) = (−2λ, 1) = ( 1

2
, 1)

for λ = − 1
4
. For λ >

1
2
, the optimum of Dλ is attained at the vertex (y1, y2, t) = (1, 0,−1) of D, for

1
2
> λ >− 1

2
at the vertex ( 1

2
, 1

2
,− 1

2
), and for− 1

2
> λ at the vertex (0, 1,−1). For λ2 =

1
2

and λ1 =−
1
2
,

the optimal face of Dλ is an edge of D. These are the two breakpoints λ1 and λ2 in Theorem 11.

Figure 3 also demonstrates the characterization of the path N in Theorem 16. The left diagram

shows (from left to right) the three pieces X′2, X′1, X′0, each of which happen to intersect H. In

the central diagram, the vertical parts of the path are Y′2, Y′1, Y′0, and the horizontal parts (for the

breakpoints) are Y2 and Y1. This corresponds to the following, more elementary game-theoretic

explanation. Except when λ =− 1
2

or λ = 1
2
, player 2’s equilibrium strategy y in the game (A,−A+

1λb⊤) is constant in λ, which holds because player 1’s payoff matrix A does not change with λ

and y is chosen so as to make player 1 indifferent between the pure strategies in the support of his

equilibrium strategy. When λ =− 1
2

or λ = 1
2
, the game is degenerate, and player 2’s equilibrium

strategies form a line segment, which allows the change of support of her equilibrium strategy y.

yx
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22
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Figure 5 (Color online) The path N of equilibria of the games in (46) where the binary search method fails

Our second example shows that the binary search algorithm no longer works for rank-r games

with r > 1. Consider the following game (A, B) of rank 2:

A =

[

1 −1
0 0

]

, C =

[

4 0
0 0

]

, B = C + ab⊤ =

[

1 0
2 0

]

, (45)
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where a⊤ = (−3, 2) and b⊤ = (1, 0). Here, (A, B) is of rank 2 and (A, C) is of rank 1. The only equi-

librium of (A, B) is the pure equilibrium ((1, 0), (1, 0)). The parameterized game (A, C + 1λb⊤)

has payoff matrices

A =

[

1 −1
0 0

]

, C + 1λb⊤ =

[

4 + λ 0
λ 0

]

. (46)

It has the following equilibria (x, y) depending on λ, which define the set N in (9), shown in

Figure 5: The pure equilibrium ((1, 0), (1, 0)) for λ≥−4; the pure equilibrium ((0, 1), (0, 1)) for

λ ≤ 0; the mixed equilibrium ((− λ
4
, 1 + λ

4
), ( 1

2
, 1

2
)) for −4 < λ < 0, and two further components

((1, 0), (1− y2, y2)) with y2 ∈ [0, 1
2
] when λ =−4 and ((0, 1), (1− y2, y2)) with y2 ∈ [ 1

2
, 1] when λ = 0

where the game in (46) is degenerate. These are multiple disjoint equilibrium components for

−4≤ λ≤ 0, which cannot happen for a parameterized zero-sum game. As a result, λ may change

non-monotonically along the path N , which in general causes a binary search to fail, as we show

next.

We describe a suitably adapted binary search method for this example, where instead of solv-

ing parameterized LPs we find equilibria of the parameterized game (46) of lower rank. The

smallest and largest components of a as in line 3 of the BINSEARCH algorithm are λ = −3 and

λ = 2. For λ = λ, the only equilibrium of the game in (46) is (x, y) = ((1, 0), (1, 0)), but for λ = λ

there are multiple equilibria, where we choose (x, y) = ((0, 1), (0, 1)). Then λ = −3 < x⊤a = 2

and x⊤a = −3 < λ = 2, so we next consider the midpoint λ = (λ + λ)/2 = −1/2 as in line 5 of

BINSEARCH, and compute a new equilibrium of this parameterized game. Suppose this is again

(x, y) = ((0, 1), (0, 1)), so that because λ < x⊤a the assignment (λ, x, y)← (λ, x, y) takes place for

the binary search to continue. This is the situation shown in Figure 5. At this point, the method

will no longer succeed in finding a suitable value of λ because the search interval [λ, λ] = [− 1
2
, 2]

no longer contains the only possible value for λ, namely −3. The problem is that in that interval,

the set N consists of two disconnected parts where λ < x⊤a and λ > x⊤a on opposite sides of

the hyperplane H, so that N no longer intersects with H. Hence, even though the values of λ

converge, the corresponding equilibria (x, y) on the two sides of H will not converge.

This example shows that because of the non-monotonicity of λ along the path N , there is no

equivalent statement to Lemma 17 that would guarantee that a binary search will succeed.

8. Rank-1 games with exponentially many equilibria

Kannan and Theobald (2010, Open Problem 9) asked if the number of Nash equilibria of a non-

degenerate rank-1 game is polynomially bounded. This is not the case, because our next result

shows that this number may be exponential.
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THEOREM 21. Let p > 2 and let (A, B) be the n× n bimatrix game with entries of A

aij =











2pi+j if j > i

p2i if j = i

0 if j < i

(47)

for 1≤ i, j≤ n, and B = A⊤. Then A + B is of rank 1, and (A, B) is a nondegenerate bimatrix game with

2n − 1 many Nash equilibria.

Proof. By (47), A + B = ab⊤ with the n components of a and b defined by ai = pi and bj = 2pj

for 1≤ i, j≤ n, so A + B is of rank 1.

Let y ∈ Y with support S. Consider a row i and let T = {j ∈ S | j > i}. Because A is upper

triangular, the expected payoff against y in row i is

(Ay)i = aiiyi + ∑
j∈T

aijyj . (48)

Suppose i 6∈ S. If T is empty, then (Ay)i = 0 < (Ay)1, otherwise let t = min T and note that for

j ∈ T we have aij = 2pi+j < p1+i+j ≤ pt+j ≤ atj, so (Ay)i < (Ay)t. Hence, no row i outside S is a best

response to y. Similarly, because the game is symmetric, any column that is a best response to x

in X belongs to the support of x. This shows that the game is nondegenerate. Moreover, if (x, y) is

an equilibrium of (A, B), then x and y have equal supports.

For any nonempty subset S of {1, . . . , n}, we construct a mixed strategy y with support S so

that (y, y) is an equilibrium of (A, B). This implies that the game has 2n − 1 many equilibria, one

for each support set S. The equilibrium condition holds if (Ay)i = u for i ∈ S with equilibrium

payoff u, because then (Ay)i < u for i 6∈ S as shown above. We start with s = max S, where (Ay)s =

assys = u, by fixing u as some positive constant (e.g., u = 1), which determines ys. Once yi is known

for all i ∈ S (and yi = 0 for i 6∈ S), we scale y and u by multiplication with 1/1
⊤y so that y becomes

a mixed strategy. Assume that i ∈ S and T = {j ∈ S | j > i} 6= ∅ and assume that yk has been found

for all k in T so that (Ay)k = u for all k in T, which is true for T = {s}. Then, as shown above,

∑j∈T aijyj < ∑j∈T atjyj = (Ay)t = u for t = min T, so yi is determined by (Ay)i = u in (48), and yi > 0.

By induction, this determines yi for all i in S, and after re-scaling gives the desired equilibrium

strategy y. �

By Theorem 7, the equilibria (x, y) of a rank-1 game are the intersection of the path N in (11)

with the hyperplane H in (10). The exponential number of Nash equilibria of the game in Theo-

rem 21 shows thatN has exponentially many line segments. Murty (1980) describes a parameter-

ized LP with such an exponentially long path of length 2n. The payoffs for the game in Theorem 21

have been inspired by Murty’s example, but are not systematically constructed from it, which

would be interesting. See von Stengel (2012) for further discussions and related work on the max-

imal number of Nash equilibria in bimatrix games, such as von Stengel (1999).
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9. A rank-preserving structure theorem

Nash equilibria of games are in general not unique, which has led to a large literature on equilib-

rium refinements (van Damme 1991) that impose additional conditions on equilibria, such as stabil-

ity against small changes in the game parameters, as proposed in the seminal paper by Kohlberg

and Mertens (1986) (KM). They showed that stability has to apply to equilibrium components,

that is, maximal sets of equilibria that are topologically connected (which for bimatrix games are

unions of intersecting maximal Nash subsets, see Section 6). That is, an equilibrium component is

stable if every perturbed game has an equilibrium near that component (although possibly in dif-

ferent positions depending on the perturbation, which is why any single equilibrium may fail to

be stable). KM proved the existence of stable equilibrium components with the help of a structure

theorem (Kohlberg and Mertens 1986, Theorem 1) which states that the equilibrium correspon-

dence E over the set Γ of strategic-form games with a given number of players and numbers of

strategies is homeomorphic to Γ itself.

In this section, we present in Theorem 23 a similar structure theorem with a new homeo-

morphism for bimatrix games that preserves rank. In analogy to Kohlberg and Mertens (1986,

Appendix B), one consequence of this new structure theorem is the existence of an equilibrium

component in a game (A, B) that is stable with respect to small perturbations that preserve the

sum A + B of the payoff matrices. This is not interesting for zero-sum games which always have

only one component, but it is for games of higher rank and applies, for example, to perturbations

of the matrix A in a rank-1 game given as (A,−A + ab⊤). Furthermore, a number of equilibrium-

finding algorithms can be interpreted as following a path on the equilibrium correspondence E via

the KM homeomorphism and suitable projections (Wilson 1992, Govindan and Wilson 2003). As a

topic for further research, it may be interesting to study our new homeomorphism in this context,

or, similar to Jansen and Vermeulen (2001), the computation of equilibrium components that are

stable with respect to small perturbations that preserve the sum A + B of the payoff matrices.

We first recall the KM homeomorphism from Kohlberg and Mertens (1986). Let Γ be the set of

m× n bimatrix games (A, B) and E⊆ Γ× X×Y be its equilibrium correspondence,

E = {(A, B, x, y) | (A, B) ∈ Γ, (x, y) is a NE of (A, B)}. (49)

To distinguish the dimensions of the all-zero and all-one vectors we write them as 0, 1 ∈Rm and

0,1∈Rn. Let a and b be the vectors of row and column averages of A and B,

a = A1
1
n
, b = B⊤1 1

m
. (50)

Then A and B correspond uniquely to pairs (Ã, a) and (B̃, b) with

A = Ã + a1⊤, B = B̃ + 1b⊤, Ã1= 0, 1⊤B̃ = 0
⊤, (51)
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with a and b as in (50). That is, (A, B) is parameterized by a “base game” (Ã, B̃) where each

row of player 1 and each column of player 2 gets payoff zero when the other player randomizes

uniformly (as in Ã1
1
n
= 0, where the factor 1

n
does not matter), and a pair of vectors a inRm and b⊤

with b in Rn that are added to the rows of Ã and columns of B̃, respectively, to obtain the correct

payoffs.

The KM homeomorphism φ : Γ→ E only changes a and b. It is most easily described by its

inverse φ−1 : E→ Γ defined by φ−1(A, B, x, y) = (C, D),

C = Ã + (Ay + x)1⊤, D = B̃ + 1(x⊤B + y⊤). (52)

That is, (C, D) has the same “base game” (Ã, B̃) as (A, B) but different parameters (Ay + x) ∈Rm

and (B⊤x + y) ∈ Rn. The fact that (x, y) is an equilibrium of (A, B) implies that φ−1 is injective

(and therefore φ well-defined), by the following intuition. Because x is a best response to y, each

row of the vector Ay of expected payoffs in the support of x has maximal and equal value u

among all components of Ay, by (3). This condition allows us to re-construct x from the sum

c = Ay+ x, which is used in the definition of C in (52) and which can be obtained from C. Suppose

the components ci of c are heights of m “poles in the water” of which a certain amount xi is “above

the waterline” depending on the “water level” w, where

xi = max(ci − w, 0) , (53)

so xi ≥ 0 and if ci < w then xi = 0. For any c ∈Rm, there is a unique choice of w ∈R in (53) so that

∑
m
i=1 xi = 1 and therefore x ∈ X. By this construction of w and x, all components pi of the vector

p = c − x fulfill (a) w = maxk pk, and (b) xi > 0 implies pi = w, as when p = Ay and x is a best

response to y. In a similar way, y is a best response to x and the sum x⊤B + y⊤ used to define D

in (52) is special because it allows us first to obtain a vector d ∈Rn from D, and second to obtain

the original y ∈ Y and q ∈ Rn so that d = q + y and q⊤ = x⊤B. The following lemma states this

construction, which we apply afterwards to define the KM homeomorphism, and will later use

again for our new homeomorphism.

LEMMA 22. Given c ∈Rm and d ∈Rn, there are unique x ∈ X, y ∈Y, p ∈Rm and q ∈Rn so that

c = p + x , d = q + y ,

xi = 0 or pi = u = max1≤k≤m pk (1≤ i≤m),

yj = 0 or qj = v = max1≤l≤n ql (1≤ j≤ n).

(54)

Proof. For t ∈R, let t+ = max(t, 0), and

u = min{w ∈R |∑m
i=1(ci − w)+ ≤ 1},

v = min{w ∈R |∑n
j=1(dj − w)+ ≤ 1},

(55)
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where u (and similarly v) is the unique lowest “water level” w so that the “heights” of the com-

ponents ci of c that are “above the waterline” sum up to (at most) one. Then

xi = (ci − u)+ (1≤ i≤m), yj = (dj − v)+ (1≤ j≤ n), (56)

and p = c − x and q = d − y fulfill (54), and x, y, p, q are uniquely determined by the conditions

x ∈ X, y ∈Y, and (54). �

The KM homeomorphism φ : (C, D) 7→ (A, B, x, y) is then defined as follows.

(a) Let c = C1
1
n
, d = D⊤1 1

m
, Ã = C− c1⊤ and B̃ = D− 1d⊤.

(b) Apply Lemma 22 to get x, y, p, q so that (54) holds.

(c) Let a = c− x− Ãy and b = d− y− B̃⊤x, and define A and B by (51).

Then φ is continuous because it is defined by continuous linear mappings and (55) and (56) for (b).

We show that (A, B, x, y) ∈ E. We have Ay = (Ã + a1⊤)y = Ãy + a = Ãy + c − x − Ãy = p, and

similarly x⊤B = x⊤B̃ + b⊤ = d⊤ − y⊤ = q⊤. Then the conditions (54) are equivalent to the best-

response conditions (3) and (4), that is, (x, y) is indeed an equilibrium of (A, B). Moreover, c =

p + x = Ay + x and d = B⊤x + y, which shows that the (continuous) function (A, B, x, y) 7→ (C, D)

in (52) is indeed the inverse of φ (so φ is injective), and also that φ is surjective, because we can

start in (52) from any (A, B, x, y) ∈ E.

The KM homeomorphism does not operate within a subset of games of fixed rank (for example,

the zero-sum games). Our new homeomorphism ψ : Γ→ E has this property. Consider a fixed

matrix M ∈Rm×n, the set ΓM bimatrix games (A, B) with A + B = M, and EM as the equilibrium

correspondence E in (49) restricted to these games,

ΓM = {(A, B) ∈ Γ | A + B = M}, EM = {(A, B, x, y) ∈ E | (A, B) ∈ ΓM}. (57)

The following theorem states we can restrict ψ to a homeomorphism ΓM → EM for any M (for

example, the all-zero matrix M). Also, ψ is continuous in M and therefore a homeomorphism

Γ→ E like the KM homeomorphism.

THEOREM 23. Let M ∈Rm×n. There is a homeomorphism ψ : ΓM→ EM, (C, D) 7→ (A, B, x, y), that is,

A + B = M for all (C, D) ∈ ΓM.

Proof. We will use a new parameterization of any matrix A in Rm×n, which corresponds

uniquely to a quadruple (Â, γ, a, b) with Â ∈Rm×n, γ ∈R, a ∈Rm, and b ∈Rn according to

A = Â + 1γ1
⊤ + a1⊤ + 1b⊤ (58)

so that

1⊤ Â = 0
⊤, Â1= 0, 1⊤a = 0, b⊤1= 0 . (59)
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It is easy to see that Â, γ, a, and b are uniquely given by A, (58), and

γ = 1
m

1⊤A1
1
n
, a = A1

1
n
− 1γ, b⊤ = 1

m
1⊤A− γ1

⊤ . (60)

The homeomorphism ψ : ΓM→ EM, (C, D) 7→ (A, B, x, y) uses this parameterization of C and only

changes the vectors a and b, and maintains the sum M of the payoff matrices, that is, A + B =

C + D = M. Like for the KM homeomorphism, we first describe its inverse ψ−1, which maps

(A, B, x, y) in EM to (C, D) in ΓM. Let A + B = M and (x, y) be an equilibrium of (A, B). Let A be

represented as in (58) so that (59) holds, and let

C = Â + 1γ1
⊤ + c1⊤ + 1d⊤ (61)

with c and d given by

c = ρ(Ay + x), d = σ(B⊤x + y) (62)

where ρ : Rm → R
m and σ : Rn → R

n are the linear projections on the hyperplane through the

origin with normal vector 1 respectively 1,

ρ(x) = x− 1( 1
m

1⊤x), σ(y) = y− 1( 1
n
1
⊤y) (63)

which achieves 1⊤ρ(x) = 0 and 1
⊤σ(y) = 0 for any x ∈Rm and y ∈Rn, as required for a parameter-

ization of the payoff matrix C like it is done for A in (59). With C thus encoded, we let D = M−C.

The homeomorphism ψ : (C, D) 7→ (A, B, x, y) itself is obtained as follows. Let (C, D) ∈ ΓM.

Similar to (58) we represent C by (61) where as in (60)

γ = 1
m

1⊤C1
1
n

, c = C1
1
n
− 1γ , d⊤ = 1

m
1⊤C− γ1

⊤, (64)

which implies

1⊤ Â = 0
⊤, Â1= 0 , 1⊤c = 0 , d⊤1= 0 . (65)

Given c and d, we determine x ∈ X, y ∈ Y, p ∈ Rm and q ∈ Rn by Lemma 22 so that (54) holds.

Then, let

a = c− ρ(Ây + x), b = σ((M− Â)⊤x + y)− d (66)

so that a and b fulfill (59), define A by (58), and let B = M− A. Like φ before, ψ is defined by linear

maps and the continuous operations in (55) and (56) and is therefore continuous.

We show that ψ(C, D) = (A, B, x, y) ∈ EM. Because A + B = M, we only need to show the equi-

librium property. Using (58), 1
⊤y = 1, (66), c = p + x, and the definition of ρ in (63),

Ay = Ây + 1γ1
⊤y + a1⊤y + 1b⊤y

= Ây + 1γ + a + 1b⊤y

= Ây + 1γ + c− ρ(Ây + x) + 1b⊤y

= Ây + 1γ + p + x− (Ây + x) + 1( 1
m

1⊤(Ây + x)) + 1b⊤y

= p + 1(γ + 1
m

1⊤(Ây + x) + b⊤y)

= p + 1α

(67)
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for some α ∈ R which means that (Ay)i = pi + α for 1 ≤ i ≤ m and therefore by (54) the best-

response condition (3) holds (which is unaffected by a constant shift), that is, x is a best response

to y. Similarly, using 1⊤x = 1, (66), the definition of σ in (63), and d = q + y,

B⊤x = (M− A)⊤x

= (M− Â− 1γ1
⊤ − a1⊤ − 1b⊤)⊤x

= (M− Â)⊤x− 1γ1⊤x− 1a⊤x− b1⊤x

= (M− Â)⊤x− 1γ− 1a⊤x− b

= (M− Â)⊤x− 1γ− 1a⊤x− σ((M− Â)⊤x + y) + d

= −1γ− 1a⊤x− y + 1
1
n
1
⊤((M− Â)⊤x + y) + q + y

= 1β + q

(68)

for some β ∈ R which means that (B⊤x)j = qj + β for 1 ≤ j ≤ n and therefore by (54) the best-

response condition (4) holds, that is, y is a best response to x. Hence, (x, y) is indeed an equilib-

rium of (A, B).

To show that ψ has the inverse described in (61) and (62), note that ρ and σ in (63) are linear and

ρ(1) = 0 and σ(1) = 0. Therefore, for ψ(C, D) = (A, B, x, y) with C as in (61), we have by (67) and

(68) and because 1⊤c = 0 and 1
⊤d = 0,

ρ(Ay + x) = ρ(p + 1α + x) = ρ(p + x) = ρ(c) = c ,

σ(B⊤x + y) = σ(1β + q + y) = σ(q + y) = σ(d) = d ,
(69)

that is, ψ has indeed the (continuous) inverse described in (62) and ψ is both injective and surjec-

tive. This shows that ψ is indeed a homeomorphsim from ΓM to EM. �

10. Conclusions

We conclude with some open questions. Our analysis shows that rank-1 games are computation-

ally easy to analyze: One Nash equilibrium can be found in polynomial time, and enumerating

all equilibria can be performed by following a piecewise linear path, similar to finding a single

Nash equilibrium of a bimatrix game (which is in general a PPAD-hard problem).

As described in Section 6, the path of solutions to the parameterized LP consists in general of

polyhedral segments whose intersections with the hyperplane H define the sets of Nash equilib-

ria of the rank-1 game. This set-up suggests the application of smoothed analysis as pioneered by

Spielman and Teng (2004) for the “shadow vertex algorithm” for parameterized LPs. This anal-

ysis has been subsequently improved and simplified; for recent developments see Dadush and

Huiberts (2018). In smoothed analysis, the LP data are perturbed by some moderate Gaussian

noise which cancels “pathological” cases that lead to exponential worst-case examples, like the

game constructed in Section 8. Applied to our parameterized LP, it would imply that in expecta-

tion there is a polynomial number of segments in Theorem 16. If this holds, the number of Nash
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equilibria is similarly polynomially bounded by Theorem 20 (the Nash subsets are all single equi-

libria because the perturbed game is generic and therefore nondegenerate with probability one).

However, the standard framework of smoothed analysis (as in e.g. Dadush and Huiberts 2018)

assumes that the LP constraints are of the form Ax ≤ 1, which is not the case for the LP (16) that

we consider, so combining this with our approach requires a careful study that we leave for future

work. For a general bimatrix game, finding one equilibrium is PPAD-hard even under smoothed

analysis (Chen et al. 2009). However, it is not known if a perturbed game may have exponentially

long Lemke–Howson paths; the long paths in Savani and von Stengel (2006) do not persist due to

exponential size differences in the payoffs.

In Section 8 we described rank-1 games with exponentially many equilibria (also with expo-

nential size differences in the payoffs). This raises the following question: Can all equilibria of a

rank-1 game be computed in running time that is polynomial in the size of the input and output?

Such an algorithm is called “output efficient”. For example, the algorithm by Adler and Monteiro

(1992) that computes all segments of a parameterized LP is output efficient. We have extended

this algorithm in Section 6. For general bimatrix games, an output efficient algorithm that finds

all Nash equilibria would imply P = NP because it is NP-hard to decide if a game has more than

one Nash equilibrium (Gilboa and Zemel 1989). Our binary search algorithm gives no informa-

tion about the existence of a second equilibrium, so it is conceivable that finding a second Nash

equilibrium of a rank-1 game is also NP-hard. The existence of an output efficient algorithm to

find all Nash equilibria of a rank-1 game is an open question.

General bimatrix games are computationally difficult, but rank-1 games are computationally

easy. One should therefore investigate economic applications of large rank-1 games, also as approx-

imate economic models that can serve as fast-solvable benchmarks. As a possible starting point,

we describe here a simple “trade game”, which suggests that rank-1 games are much more versa-

tile and economically interesting than zero-sum games. Let player 1 be a seller of a product who

can choose possible quality levels ai for i = 1, . . . , m, and let player 2 be a buyer who can decide on

possible quantity levels bj for j = 1, . . . , n that she buys from the seller. A price pij that is paid from

buyer to seller can be chosen arbitrarily for each i and j. Suppose there are further parameters α,

β, γj, and δi so that the payoffs to the players are

payoff to player 1 : pij − αaibj + γj

payoff to player 2 : −pij + βaibj + δi .
(70)

We further assume that β > α > 0, which reflects that high quality is costly to produce for player 1

and beneficial for player 2, with β− α representing the benefits from trade. The additional param-

eter γj (increasing with bj) is an additional benefit to player 1 for higher amounts of sold quan-

tities, and similarly δi to player 2 for higher quality. Neither γj nor δi affect the players’ best
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responses and can therefore assumed to be zero. This gives a strategically equivalent game whose

sums of payoffs are (β− α)aibj and therefore of rank one. Because rank-1 games can be analyzed

very fast, this “trade game” can be studied for large values of m and n, and in particular for its

possibly many price levels. The concrete economic interpretation of such games and their equilib-

ria remains to be investigated. Bulow and Levin (2006) consider a “multiplication game” which

is a matching game between n workers and n firms where the suitability of a worker for a firm is

described by a matrix of rank one. However, it is a game with 2n players, not two players.
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