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Quasi-normal free-surface impacts, capillary
rebounds and application to Faraday walkers.
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(Received xx; revised xx; accepted xx)

We present a model for capillary-scale objects that bounce on a fluid bath as they
also translate horizontally. The rebounding objects are hydrophobic spheres that impact
the interface of a bath of incompressible fluid whose motion is described by linearised
quasi-potential flow. Under a quasi-normal impact assumption, we demonstrate that the
problem can be decomposed into an axisymmetric impact onto a quiescent bath surface,
and the unforced evolution of the surface waves. We obtain a walking model that is free
of impact parametrisation and we apply this formulation to model droplets walking on a
vibrating bath. We show that this model accurately reproduces experimental reports of
bouncing modes, impact phases, and time-dependent wave field topography for bouncing
and walking droplets. Moreover, we revisit the modelling of horizontal drag during droplet
impacts to incorporate the effects of the changes in the pressed area during droplet-surface
contacts. Finally, we show that this model captures the recently discovered phenomenon
of superwalkers.

Key words: capillary waves, drops, wave-structure interactions.

1. Introduction

Examples of millimetric objects bouncing on the surface of a bath as they cruise
along the surface are common in capillary scale applications; these include raindrop
impacts (Zhbankova & Kolpakov 1990; Ho et al. 1997) and locomotion of insects and
small vertebrates (Bush & Hu 2006). In the case of droplets, it was shown by Couder
et al. (2005a) that coalescence with an underlying bath of the same fluid can be inhibited
through vertical oscillation of the bath. The droplet is prevented from merging with
the bath by the sustenance of a thin air layer that separates the two at all times
(Couder et al. 2005a; Terwagne et al. 2007). These droplets can bounce for extremely
long times, displaying different bouncing regimes which are controlled by the amplitude
and frequency of the shaking. Moreover, within a certain range of parameters, these
bouncing droplets can become unstable to horizontal perturbations (Couder et al. 2005b),
breaking the axial symmetry of the surface wave field. Droplets then bounce off a slanted
free surface, acquiring a horizontal velocity component and thus start walking along a
straight path.

Walking droplets are affected at each bounce by the wave field at the impact location.
Since these waves were triggered by previous bounces, the droplet is in practice interacting
with a record of its own trajectory. This droplet-wave association at millimetric scale
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has come to be known as a hydrodynamic pilot-wave (Bush 2015). Hydrodynamic pilot-
waves exhibit complex dynamics that have been shown to have numerous analogies with
quantum-scale phenomena (Bush et al. 2018), which motivated their study by several
groups over the past 14 years. Some examples of models created to address walking
droplet dynamics include a first phenomenological model by Eddi et al. (2011), a non-
linear spring based surface-droplet interaction by Moláček & Bush (2013b), a stroboscopic
model introduced by Oza et al. (2013) and a model that introduced wave generation by
impacts by Milewski et al. (2015).

Galeano-Rios et al. (2017) developed a model for the impact of a hydrophobic sphere
onto the free surface of a bath. Their impact model modified the Wagner theory of surface
impacts (Wagner 1932; Korobkin & Pukhnachov 1988; Howison et al. 1991) to account
for the reaction of the impacting solid to forces exerted by the flow, including capillary
effects, and to intrinsically allow for a mechanism for the impacting solid to detach
from the surface. This resulted in a model that can solve all stages of a rebounding
impact at the capillary scale, provided the surface deformation is not too large. They
essentially imposed a kinematic match between the motion of the free surface and that of
the impacting sphere, i.e. they imposed the natural geometric and kinematic constraints,
together with simple assumptions on the contact angle, to derive a solution strategy that
yields predictions for the motion of the contact line and for the pressure field supported
within the contact area. Their impact model was validated against experimental results
and they went on to show that it can be used to accurately predict the vertical motion of
bouncing droplets whilst also introducing fewer assumptions on the nature of the impact
and, consequently, fewer parameters than in previous works (Moláček & Bush 2013a;
Milewski et al. 2015).

Superposing translations of axisymmetric impacts on linear quasi-potential free surface
flows has proven to be a highly effective strategy to model walking droplets (Moláček &
Bush 2013b; Oza et al. 2013; Milewski et al. 2015). This approximation is justified on the
basis of some clear separation of scales; namely, the Faraday wave length (λF ≈ 0.5 cm)
is long in relation to the droplet radius (Ro ≈ 0.4 mm), the droplet radius is in turn large
in relation to the typical free-surface elevation (ε . 10µm at impact location just before
contact), moreover the walking speed (Cw ≈ 1 cm/s) is slow in relation to the phase
velocity of the Faraday waves (Cp ≈ 20 cm/s) and also to the typical vertical velocity
of the impacting droplet (Uz ≈ 10 cm/s). Under these assumptions, vertical forces can
be calculated assuming the impact is normal to a flat horizontal surface. The horizontal
component of the impact forces on the droplet can then be computed assuming these
impact forces are actually normal to the relatively small local average of the surface
gradient in the region of impact.

The kinematic match method is very versatile, and is applicable to impact problems
with no assumptions on symmetry; however, its implementation in such a general case
is more complex. In this paper; we demonstrate that, under the assumptions above, we
may approximate the dynamics by a superposition of translated axisymmetric impacts.
Using the kinematic match for these axisymmetric impacts results in a more detailed and
realistic modelling of the walking droplets, in relation to existing methods, whilst also
providing information about the fastest time-scales in the problem, such as those of the
evolution of forces and of the pressed area during impacts.

In this work, we also demonstrate how to combine an efficient solution of the large-
scale non-axisymmetric free-surface waves using a spectral method developed in Milewski
et al. (2015) with the superposition of axisymmetric impacts described above, so as to
obtain an accurate and efficient model for walking droplets that is free of any impact
parametrisation. The decomposition here introduced opens many new possibilities, as
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there are no restricting assumptions on the geometry of the bath, or the presence of
neighbouring droplets. This is fundamental to simulate collective behaviour of bouncing
and walking droplets as keeping the details of wave generation by impact has proven
to be fundamental to capture wave mediated droplet-droplet interactions (Galeano-Rios
et al. 2018).

In section 2, we pose the full problem, presenting the kinematic match method,
expanding the discussion in Galeano-Rios et al. (2017), and reviewing the linearised quasi-
potential fluid model. We close this section justifying the superposition of translations of
axisymmetric impacts to obtain a model for walking droplets and deriving a model for
friction effects during droplet-surface contacts that is consistent with the theory devel-
oped here and that incorporates changes in pressed area over droplet-surface contacts. In
section 3 we summarise the resulting mathematical problems, describe the numerical
methods used to solve each, and the recombination of their results. We also show
how we use experimental data to set our single parameter for skidding friction during
droplet contacts. In section 4 we present comparisons to experimental data available
in the literature, including bouncing modes, impact and take off phases and wave field
topography, and we show that our model is able to capture the newly discovered walking-
droplet phenomenon of superwalkers (Valani et al. 2019). In the case of superwalkers we
are specifically able to capture the transition from bouncing to walking as the second
frequency is introduced, and to obtain wave fields that qualitatively resemble that of
superwalkers. We highlight that we were unable to obtain realistic results with the model
introduced by Milewski et al. (2015). Finally, in section 5 we discuss our findings and
consider future directions.

2. Problem formulation

We consider the three-dimensional, free-surface, incompressible flow of a fluid bath of
infinite depth and uniform density ρ. The fluid flow is subject to gravitational, viscous
and interfacial forces. We introduce Cartesian coordinates with gravity pointing in the
negative z direction. We also assume that the free surface can be described by z = η(x, t),
where x = (x, y), whose spatial domain is the entire plane. We define u and p as the
velocity and pressure fields, respectively, ν as the kinematic viscosity of the fluid and
g = (0, 0,−G) as the acceleration due to gravity. We note that G can be a function of
time. Under these assumptions, the flow is governed by

ut + u ·∇u =∇
(
−p
ρ

)
+ ν∆u + g, z 6 η(x, t); (2.1)

∇ · u = 0, z 6 η(x, t). (2.2)

The velocity field u is subject to decay conditions at infinity

u→ 0, as
√
x2 + y2 + z2 →∞, (2.3)

and the free surface is subject to the kinematic boundary condition

ηt + u ·∇(η − z) = 0, z = η(x, t); (2.4)

and the dynamic boundary condition

−pn̂ + T · n̂ = (σ κ[η]− ps(x, t)) n̂, z = η(x, t); (2.5)

where n̂ is the unitary vector normal to the free surface, pointing out of the fluid domain;
T is the deviatoric part of the stress tensor; ps is the pressure above the free surface; σ
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is the surface tension coefficient; and κ[·] is twice the mean curvature operator, with the
convention of positive curvature for convex functions, i.e.

κ[η] =

(
1 + η2y

)
ηxx − 2ηxηyηxy +

(
1 + η2x

)
ηyy(

1 + η2x + η2y
)3/2 . (2.6)

We define h(t) as the height of the lowest point, the “south pole”, of the impacting
sphere, cf as the coefficient of friction due to air drag on the sphere, ms as the mass
of the impacting object, and we consider ps(x, t) = 0 everywhere outside the area that
is pressed by the impacting solid. In the pressed area A(t), we disregard the thickness
of the air layer separating the surface of the bath and the sphere; i.e. A(t) ∈ R2 is the
projection onto the xy-plane of the set S(t), which is given by the part of the surface of
the impacting object that coincides with the free surface of the bath. Consequently, we
have

htt = −G− cf
ms

ht +
1

ms

∫
A(t)

psdA. (2.7)

We denote by zs(x) the height of the lower half of the sphere, such that zs(X) = 0, with
X = (X,Y ) being the horizontal coordinates of the south pole of the sphere. On the
contact line L(t), i.e. the boundary of A(t), we define ∂n as the derivative in the direction
normal to L(t) which points outside of the plane region A(t). We impose continuity of
the free-surface gradient on L(t), as would be expected in the presence of an intervening
air layer. Solutions must therefore satisfy

ps(x, t) = 0, x /∈ A(t); (2.8)

η(x, t) = h(t) + zs(x), x ∈ A(t); (2.9)

η(x, t) < h(t) + zs(x), x /∈ A(t); (2.10)

∂nη(x, t) = ∂nzs(x), x ∈ L(t); (2.11)

where we define zs(x) = ∞ away from the sphere. We emphasise that equations (2.8),
(2.9), (2.10) and (2.11) simply state the minimal compatibility conditions consistent
with a model that ignores the effects of the air flow in the lubrication layer. We also
note that equation (2.11) corresponds to our assumption of perfect hydrophobicity.
This assumption is based on the established fact that there is an intervening air layer
separating droplet and bath (Couder et al. 2005a), and therefore no contact angle smaller
than π is to be expected. It is worth mentioning that it is possible to modify this condition
to allow for different, or even dynamic, contact angles.

We highlight that determining A(t), is itself a part of the problem; that is to say that
finding the pressure field and its domain is a two-dimensional free-boundary problem
within our original three-dimensional free-boundary fluid-flow problem. Moreover, the
problem of the pressure field is a free-boundary problem with an added difficulty, given
that the domain of the pressure actually collapses to a point upon lift-off and re-appears
from a point when a new impact takes place.

2.1. Solving the two free-boundary problems

The algorithm presented in Galeano-Rios et al. (2017) solves the problem of the
suddenly appearing pressed area and its subsequent evolution upon the impact of a
solid. Moreover, the method is able to deal with the vanishing contact area when lift-off
takes place. We review it in what follows. We first consider, for simplicity, the solid to
be fixed as the free surface impacts on it. That is to say, we consider the case of h(t)
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Figure 1: Schematics of onset of contact as solved by the kinematic match method. The
boundary of the fixed solid, given by zs, is shown in grey; and the fluid interface, given
by η, in black. The height of the solid surface zs is measured with respect to that of
its lowest point h. Panels show: regular evolution with no pressed area (a), inconsistent
estimate of free surface at t = t0 + δt (b), tentative solution for t = t0 + δt with an Atest

that yields a wrong contact angle (c), and solution with an Atest that yields the right
contact angle (d).

being constant and solving the system given by (2.1)-(2.11), disregarding (2.7) initially.
We then discuss how (2.7) is introduced.

We consider the free surface of a fluid bath which, at a time t = t0, approaches a fixed,
perfectly hydrophobic solid, shown in figure 1(a). In order to calculate the free-surface
elevation at a certain time t0 + δt, we need to solve the free boundary problem over the
time interval t ∈ [t0, t0 + δt]. First, we tentatively impose ps(x, t) = 0 and we solve the
system given by (2.1)-(2.6); if the solution satisfies (2.10) everywhere (i.e. predicts no
contact or overlap between the fluid and the solid), then it trivially solves the remaining
conditions of system (2.1)-(2.11). However, if (as in the example of figure 1) our prediction
for the location of the free surface at time t0 + δt suggests that part of the fluid occupies
the same space as the solid, then we have not obtained a solution to (2.1)-(2.11) and an
impact must have occurred, see figure 1(b). The evolution of the free surface should have
been constrained by the presence of the solid and there should be a region within which
ps(x, t) was not identically zero over the interval [t0, t0 + δt].

In order to find a correct solution to system (2.1)-(2.11), and since A(t0 + δt) is to
be determined, we proceed by testing a contact area candidate Atest. We assume the
contact area changes continuously, therefore Atest must be small at the onset of contact.
We solve the system for η everywhere outside Atest, and for the value of ps on Atest
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(where η is known). The method exchanges the known and unknown variables in the
pressed area, yielding a closed problem for system (2.1)-(2.9) at t0 + δt. Naturally, the
solution to (2.1)-(2.9), obtained assuming A(t + δt) = Atest might not satisfy (2.10) or
(2.11), since this was just an initial choice, so we need to verify these. If either condition
is not satisfied we repeat the process using a new Atest, obtained by perturbing our prior
choice until the solution satisfies (2.10) and (2.11) (see figures 1(c) and 1(d)).

At a time t = t1, when the fluid is in contact with the solid (i.e. A(t1) 6= ∅), we proceed
with the method in a similar manner. For time t1+δt we iterate on our candidate pressed
areas Atest, chosen in the vicinity of A(t1), and we solve system (2.1)-(2.9) for each Atest

until we verify (2.10) and (2.11). We note that, if A(t1) is relatively small, the empty set
is considered to be in its vicinity and therefore we include the possibility of Atest = ∅,
i.e. ps(x, t) = 0.

When the impacting object is able to move vertically, the problem involves the response
of the fluid forces onto it and we still need to iterate on the contact area; however, we
no longer know a priori the exact elevation of the free surface η on Atest. Nevertheless,
we know η up to a vertical translation, given by h(t). This vertical translation adds an
unknown to the system, but we also add (2.7), which closes the problem (2.1)-(2.9) for a
given Atest at t = t0 + δt. We can thus iterate on Atest once again, and stop the iteration
when (2.10) and (2.11) are satisfied.

2.2. The linearised model

2.2.1. Linearised fluid equations

Following Galeano-Rios et al. (2017) we use a linearised quasi-potential approximation
of the fluid flow, with u defined on the domain D = {(x, z), z 6 0}, where z = 0 is the
undisturbed free-surface level. We define; ϕ(x, z, t) as the velocity potential; ∆H as the
two-dimensional Laplacian, i.e. ∆H = ∂xx + ∂yy; and N as the Dirichlet-to-Neumann
operator, given by

Nϕ(x, 0, t) = ϕz(x, 0, t). (2.12)

In formulating the Faraday wave problem, g as the gravity constant, a as the amplitude
of the vertical shaking and ωo as its angular frequency. The fluid viscosity ν is corrected
to ν∗ in order to use a quasi-potential approximation whilst still matching the driving
amplitude at which the Faraday threshold is observed. For the parameter regime at which
we run simulations (see Appendix A), ν∗ = 0.8025ν (Milewski et al. 2015). Adopting the
Faraday wavelength λF as the unit length, the reciprocal of the subharmonic Faraday
wave frequency f−1F as the unit time, and ρλ3F as the unit mass, where ρ is the density
of the bath’s fluid. We also define

Fr = λF f
2
F /g, We = ρλ3F f

2
F /σ, Γ = aω2

o/g, Re = λ2F fF /ν
∗; (2.13)

and φ(x, t) = ϕ(x, 0, t).
The free surface can be shown to evolve (Galeano-Rios et al. 2017) according to

ηt =
2

Re
∆Hη +Nφ, (2.14)

φt = − (1− Γ cos(4πt))

Fr
η +

1

We
κ[η] +

2

Re
∆Hφ− ps, (2.15)

subject to

η → 0, when
√
x2 + y2 →∞; (2.16)

φ→ 0, when
√
x2 + z2 →∞. (2.17)
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We note that these equations describe the free surface in the frame of reference of the
moving bath, which introduces a time dependent coefficient in (2.15), and that the
curvature κ is not yet linearised. In fact, we will retain the full curvature in the contact
area, where it is O(1) and known a priori from the geometry of the solid, as was done
in Galeano-Rios et al. (2017).

2.2.2. Vertical dynamics of the sphere

We recall that ms is the mass of the droplet and define µair as the dynamic viscosity
of air; Ro as the droplet radius and hc as the height of the centre of mass, which yields
h = (hc − Ro)/λF as the dimensionless height of the south pole of the sphere. We
approximate the effects of air on the moving droplet using Stokes’ drag and we introduce
the dimensionless quantities

Ma = ms/
(
ρλ3F

)
, So = 6πµairRo/(msfF ). (2.18)

We thus have

htt = − (1− Γ cos(4πt))

Fr
− Soht +

1

Ma

∫
A(t)

psdA. (2.19)

We describe the lower half of the impacting sphere, in dimensionless variables, using

zs(x) =


Ro

λF
−
√

R2
o

λ2
F
− |x|2 |x| 6 Ro

λF
,

∞ |x| > Ro

λF
;

(2.20)

thus, given the horizontal location of the centre of mass as X(t) = (X(t), Y (t)), we can
re-write constraints (2.8)-(2.11) as

ps = 0, x /∈ A(t); (2.21)

η(x, t) = h(t) + zs (x−X(t)) , x ∈ A(t); (2.22)

η(x, t) < h(t) + zs (x−X(t)) , x /∈ A(t); (2.23)

∂nη(x, t) = ∂nzs (x−X(t)) , x ∈ L(t). (2.24)

The horizontal trajectory X(t) is naturally dependent on the surface waves, and it
needs to be coupled to system (2.14)-(2.24) to close the problem. For the sake of clarity,
we present the horizontal dynamics in detail, later in the text.

We highlight that, whilst the problem given by (2.14)-(2.24) is linear during each
droplet flight, the problem remains highly non-linear during impacts. The implicit non-
linearity takes place through the free-boundary problem for the pressure and the pressed
area.

2.3. Approximation by superposition of normal impacts

We now introduce a further approximation to the problem, namely we consider impacts
to be quasi-normal to the surface. This approximation was used by all previous works
on walking droplets; however, the arguments that follow constitute (to the best of our
knowledge) the first mathematical justification for it.

As mentioned in section 1, the walking velocity of droplets (Cw ≈ 1 cm/s) is typically
small relative to the vertical velocity of impact (Uz ≈ 10 cm/s). This means that impacts
are nearly vertical and that the difference between imposing condition (2.22) exactly and
approximately (i.e. using the simplification that X(t) is constant during the impact) is of
the order of the distance that the droplet moved during contact with the bath times the
gradient of zs (bottom half of a sphere). Moreover, the linear approximation to surface
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deflection allows for the problem to be decomposed into a vertical (i.e. almost normal)
impact on an initially quiescent interface and the unforced evolution of the waves.

We consider the time t = t0 at which impact is imminent and we re-write equation
(2.22), in dimensionless units, as for t ∈ (t0, tl):

η(x, t) = h(t) + zs (x−X(t0)) + [zs (x−X(t))− zs (x−X(t0))] , x ∈ A(t); (2.25)

where we know the term in brackets to be of O(|∇zs|Cw(tl − t0)/λF ), where tl is the
time at which lift off happens with tl − t0 < TF /2 (typically), and Cw is the typical
speed of a walking droplet, which is small with respect to the phase velocity of the waves
Cp = λF /TF . Moreover, for the case of an impacting sphere, when the pressed radius
is less than half the radius of the sphere (as is the typical case for walking droplets)
|∇zs| is at most O(1). Therefore the term in brackets is at most O(Cw/Cp) (typically
Cw/Cp ≈ 0.05) and thus, we can conclude that, near the impact location, we can impose
an axisymmetric kinematic condition (by ignoring the term in brackets) with an error of
at most this order.

We now rewrite the quasi-normal impact as the superposition of three different prob-
lems. Problem a, given by the axisymmetric impact of a sphere onto the quiescent surface
of a bath; problem b defined by the unforced wave field evolution of the free surface
without the ongoing impact, and problem r, given by the remaining terms in the full
problem. More specifically, we define problems a and b, such that

η = ηa + ηb + ηr, (2.26)

φ = φa + φb + φr, (2.27)

h(t) = ha(t) + ηb(X(t), t) + hr(t); (2.28)

where the super-indexes a and b indicate the solution of each problem and r is the
remainder with respect to the solution of the full impact problem (2.14)-(2.24). First, for
t ∈ [t0, tl], we define the homogeneous problem b as

ηbt =
2

Re
∆Hη

b +Nφb, (2.29)

φbt = − (1− Γ cos(4πt))

Fr
ηb +

1

We
∆Hη

b +
2

Re
∆Hφ

b, (2.30)

subject to ηb → 0, when x→∞; and φb → 0, when x→∞; with

ηb(x, t0) = η(x, t0), and φb(x, t0) = φ(x, t0). (2.31)

That is to say, problem b gives the evolution of the fluid flow as if the impact that occurs
in the time interval [t0, tl] does not take place. We highlight that, due to the finite wave
speed, outside the vicinity of the impact location, problem b is in fact the full problem.

We can then re-write equation (2.25) using equation (2.26) and subtract ηb(X(t), t)
from both sides to obtain

ηa(x, t) +
[
ηb(x, t)− ηb (X(t), t)

]
+ ηr(x, t) =[

h(t)− ηb (X(t), t)
]

+ zs (x−X(t0)) +O(Cw/Cp); (2.32)

where the term in brackets on the right hand side of equation (2.32) will be used to define
ha as used in equation (2.28). Namely, for t ∈ [t0, tl], we define the axisymmetric impact
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problem a as

ηat =
2

Re
∆Hη

a +Nφa, (2.33)

φat = − (1− Γ cos(ωot))

Fr
ηa +

1

We
κ[ηa] +

2

Re
∆Hφ

a − pas , (2.34)

hatt = − (1− Γ cos(4πt))

Fr
− Sohat +

1

Ma

∫
Aa(t)

pasdAa; (2.35)

subject to ηa → 0, when |x| → ∞; φa → 0, when x→∞; and

ηa(x, t) = ha(t) + zs(x−X(t0)), x ∈ Aa(t); (2.36)

ηa(x, t) < ha(t) + zs(x−X(t0)), x /∈ Aa(t); (2.37)

pas(x, t) = 0, x /∈ Aa(t); (2.38)

∂nη
a(x, t) = ∂nzs(x−X(t0)), x ∈ La(t); (2.39)

with

ηa(x, t0) = 0, and φa(x, t0) = 0 (2.40)

and

ha(t0) = h(t0)− ηb (X(t0), t0) , hat (t0) = ht(t0)− ηbt (X(t0), t0) . (2.41)

Hence, problem a is given by an axisymmetric impact on an undisturbed quiescent free
surface, which preserves the relative initial height and relative incoming velocity from
the full impact problem. Moreover, we assume that the contact area is simply connected,
which (under the axial symmetry assumption) translates into the axisymmetric approx-
imation Aa(t) (of the full-problem contact area A(t)) being a disc.

We also know that the term in brackets on the left hand side of equation (2.32) is such
that [

ηb(x, t)− ηb (X(t), t)
]

= O(εRo/λ
2
F ), (2.42)

where ε is the typical amplitude of the wave and equation (2.42) is in dimensionless units.
We note that typically εRo/(λ

2
F ) ≈ 1.5× 10−4. This shows that the remainder, ηr, must

be at most of O(εRo/λ
2
F ) +O(Cw/Cp). We note that ηr is given by problem r

ηrt =
2

Re
∆Hη

r +Nφr, (2.43)

φrt = − (1− Γ cos(4πt))

Fr
ηr +

1

We
∆Hη

r +
2

Re
∆Hφ

r − (ps − pas)

+ (κ−∆H)
[
ηa + ηb + ηr

]
− (κ−∆H) [ηa] , (2.44)

with

ηr(x, t0) = 0, and φr(x, t0) = 0. (2.45)

It is important to mention that problem r, can only be solved a posteriori, as it
needs function ps which is obtained from the full problem (2.14)-(2.24). Nevertheless,
equations (2.43) and (2.44) show that when the pressure is well approximated by that
of an axisymmetric impact and when the curvature of the unforced problem is small,
the remainder problem r is the result of weakly forced problem for which we expect to
observe very small waves. In what follows, we approximate the problem by the sum of
problem a and problem b, that is to say, we disregard the residual term in equations
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(2.26)-(2.28). We note that the resulting approximation yields a continuous solution for
η, φ and h.

In summary, we model the wave field of a walking droplet by superposing translations
of axisymmetric wave fields due to droplet impacts. When the droplet is in flight we
calculate the free surface evolution by solving the linear equations (2.14) and (2.15),
with κ = ∆H , and the droplet height from equation (2.19); all subject to ps(x, t) = 0.
When an impact is about to happen, we separate the problem into two (see figure 2). We
define problem a as the axisymmetric impact of a droplet onto a bath, with the initial
conditions of ηa(x, t0) = 0, φa(x, t0) = 0, and the position and velocity of the droplet
being such that the relative height and vertical velocity with respect to the surface point
exactly below the south pole are the same as in the physical problem (figures 2(b) and
2(d)). For this problem, we preserve the full curvature κ within A(t), as done in Galeano-
Rios et al. (2017). We solve the axisymmetric problem a until the droplet is once again
airborne. In parallel, we define problem b in which we find waves ηb, φb with initial
conditions ηb(x, t0) = η(x, t0), φb(x, t0) = φ(x, t0), but without the pressure induced by
the droplet, which is to say we ignore the forcing of the ongoing droplet contact as we
solve the wave field (figures 2(c) and 2(e)). The temporally dependent nature of gravity is
preserved in both problems. We then superpose the axisymmetric solution of the droplet
impact on the unforced surface waves at the predicted location of the droplet X(t). Once
the droplet is again in flight we carry on solving a single problem, namely that resulting
from the superposition.

We note that the vertical droplet motion obtained from the impact on the flat free
surface is treated as an approximation to the motion of the actual droplet relative to the
point on the fluid surface that is directly under the south pole of the droplet. That is to
say, that the height and velocities of the droplet as obtained from the impact of a flat
interface will be added to the height and velocity of the fluid surface at the X(t) location
in order to obtain the prediction for the height of the droplet for t ∈ [t0, tl]. We highlight
that this superposition does not result in a perfect match of the surfaces (see figure 2(f));
however, it still yields an exact match between the south pole of the droplet and the
corresponding point of the free surface. The mismatch between the sphere and the free
surface of the bath is of the order of the wave gradient in problem b, i.e. ε/λF = O(10−3),
times the radius of the typical pressed area (6 0.5Ro). Therefore, the typical mismatch
of O(10−3) when expressed as a fraction of the droplet radius.

2.4. Horizontal dynamics

We derive equations for the horizontal motion of the sphere on the basis of the
approximations introduced in section 2.3. For impacts, we arrive at a model that includes
the horizontal components of the pressure forces that were previously discussed in section
2.2.2, as well as a drag force due to a simplified model of viscous forces in the intervening
air layer similar to the one presented in Couder et al. (2005a) and Protière et al. (2006).
The main advantage of the derivation presented in what follows is that we are able to
include the effect of changes in pressed area over each contact of the droplet.

The horizontal motion of the droplet, expressed in dimensionless variables, is governed
by

Xtt =
1

Ma

 ∫
A(t)

−ps∇η√
1 + |∇η|2

dA+

∫
S(t)

(Tair · n̂)HdS +

∫
S2\S(t)

(−pairn̂ + Tair · n̂)HdS

 ,

(2.46)
where Tair is the deviatoric part of the stress tensor for the air flow, n̂ is the outward
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Figure 2: Schematics of the decomposition of the impact of a walking droplet problem
into two simpler calculations. Panel (a) shows the initial conditions given by an imminent
droplet impact, (b) and (c) show the initial conditions for each of the separate problems,
(d) and (e) respectively show the evolution of (b) and (c), and (f) shows how the results
(d) and (e) are combined. The sub-index rel indicates magnitudes measured in relation
to the point of the free surface that is directly below the south pole of the sphere.



12 C. A. Galeano-Rios, P. A. Milewski and J.-M. Vanden-Broeck

pointing unit normal to the sphere, pair is the air pressure, the sub-index H indicates the
projection onto the xy-plane, S2 is the surface of the whole sphere, and we recall that A(t)
is the horizontal projection of S(t), the portion of the sphere’s surface that is in contact
with the free surface of the bath. The first term in the parenthesis on the right hand
side of equation (2.46) corresponds to horizontal forces due to pressure between the two
free surfaces; the second corresponds to the horizontal component of the viscous effects
of the flow of air in the intervening layer; the third term accounts for the contribution of
horizontal forces due to the air, outside of the pressed area.

Given the scaling considerations discussed in section 2.3, the leading order term for
the pressure forces due to impact yields

− 1

Ma

∫
A(t)

ps
∇η√

1 + |∇η|2
dA ≈ −∇ηb|(X(t),t)

1

Ma

∫
Aa(t)

pasdA, (2.47)

where we have also used the assumption that, since surface waves are long when compared
to the droplet diameter, the local average of the gradient is approximately equal to
∇ηb(X(t), t).

Since we are not simulating the air flow, we approximate the effect of the deviatoric
stresses within the pressed area by

1

Ma

∫
A(t)

(Tair · n̂)H
√

1 + |∇η|2dA ≈ −E(t)TF
ms

Xt, (2.48)

with E(t) being a skidding friction coefficient whose form we discuss below. The third
term is approximated using Stokes’ drag, assuming the pressed area is a relatively small
fraction of the surface area of the sphere, hence

1

Ma

∫
S2\S(t)

(−pairn̂ + Tair · n̂)HdS ≈ SoXt, (2.49)

with So as in equation (2.18). We thus have

Xtt = −D(t)Xt −∇ηb|(X(t),t)
1

Ma

∫
Aa(t)

pasdA, (2.50)

where D(t) = So + E(t)/(fFm). We note that, during impacts, the term So (due to
Stokes’ drag) is negligible.

2.4.1. Skidding friction

Realistic modelling of skidding friction due to the air flow within the lubrication layer
requires methods that can solve a free-boundary lubrication theory problem on a curved,
non-symmetric geometry that deforms, and whose deformation is coupled to droplet and
wave motion. Moreover, it is the non-symmetric part of the solution to this problem that
must be responsible for drag in walking droplets. Given the complexity of this problem,
prior works have introduced different simplifications to address this effect; for instance
Moláček & Bush (2013b) introduced a scaling argument based on the assumption of
a constant pressed area and experimental observations of the horizontal coefficient of
restitution in single droplet impacts on a flat interface.

We recall that our model yields a time-dependent pressed area approximation as part
of the solution to the axisymmetric problem a. This allows for the construction of the
first skidding friction model that accounts for the effects of the changes in the pressed
area during impacts. We thus revisit skidding friction modelling and we are able to
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derive a working approximation which yields slightly improved predictions (in terms
of comparison to experiments) on the existing methods and also offers an explanation
as to why two competing approaches used in the past by other groups can be seen as
expressions of the same effect when we account for changes in the pressed area over an
impact.

Assuming the pressed area A(t) is small enough that the part of the sphere in contact
with the free-surface is almost flat, viscous friction forces in the thin air layer would be
approximately given, in dimensional variables, by

FD = −µair|A(t)| ∂zuH |(z=η), (2.51)

where µair is the dynamic viscosity of air, |A(t)| is the surface area of A(t), uH is the
horizontal velocity of the air, and the bar indicates the mean in the contact area. The
expression under the bar should scale as Xt/e, where e is the width of the air layer,
which we assume does not change substantially during the contact time. We thus make
the following approximation

FD = −k̄µair|A(t)|Xt

e
≈ −kµair|Aa(t)|Xt

Ro
, (2.52)

where k̄ is a scaling factor for the vertical derivative of the horizontal velocity which we
absorb into k = k̄Ro/e, a drag parameter. Moreover, we approximate the pressed area
A(t) by its the circlular Aa(t). We note that for a typical droplet radius (Ro ≈ 0.4 mm)
and for the typical air layer width (e ≈ 2 µm) as predicted in Protière et al. (2006),
we obtain Ro/e ≈ 200, which suggest that the values of the dimensionless coefficient k
should be of order O(100k̄).

In principle, k could be different for each value of driving acceleration or even impact
velocity and impact phase, as well as other factors; however, in the present work, we will
treat k as constant with respect to those variables. Consequently, in equation (2.48), we
estimate

E(t) = k
µair

Ro
|Aa(t)|, (2.53)

which in equation (2.50), in dimensionless variables, yields

Xtt = −3Da

4Ra

(
6 + k

|Aa(t)|
πR2

o

)
Xt −∇ηb|(X,t)

1

Ma

∫
Aa(t)

pasdA, (2.54)

where Ra = R2
ofF /νair and Da = ρair/ρ, with νair and ρair being the kinematic viscosity

and the density of air, respectively. We note that the only undetermined parameter in this
equation is k, whose value we set as described later in the text. We anticipate however,

that the term k |A
a(t)|
πR2

o
will dominate the drag effect, in accordance with the relatively

minor effect that air drag during flight has shown to have, for instance using the model
of Milewski et al. (2015) we see nearly unchanging waking speeds with or without Stokes’
drag.

3. Solution

For completeness, and given the complexity of the full model, we summarise it below
together with a discussion of the numerical techniques used.
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When the droplet is in flight we solve

ηt =
2

Re
∆Hη +Nφ, (3.1)

φt = − (1− Γ cos(4πt))

Fr
η +

1

We
∆Hη +

2

Re
∆Hφ, (3.2)

htt = − (1− Γ cos(4πt))

Fr
− Soht; (3.3)

Xtt = −9Da

2Ra
Xt; (3.4)

for η, φ, h and X. This is done using a spectral method in space, a second order Runge-
Kutta method in time for equations (3.1) and (3.2) with a fixed time step, following
Milewski et al. (2015); and exact integration for equations (3.3) and (3.4). Care is
taken to ensure that the periodic domain used in the spectral method is large enough
to guarantee that the waves have decayed at the boundary, mimicking the conditions
η → 0, when

√
x2 + y2 → ∞; and φ → 0, when

√
x2 + y2 → ∞. More specifically, we

find that a domain of 40λF × 40λF is sufficient for all simulations considered here, the
spatial mesh for the unforced wave field is set to have 211 × 211 points, and the regular
temporal mesh is set to have 80 time steps per Faraday period.

When the method described above yields h(t) 6 η (X(t), t), i.e. the sphere and the
bath are overlapping, we discard this solution and we define the previous time step as
t = t0. We then define

ηa(x, t0) = 0, ηb(x, t0) = η(x, t0), (3.5)

φa(x, t0) = 0, φb(x, t0) = φ(x, t0), (3.6)

ha(t0) = h(t0)− η(X(t0), t0), hb(t0) = ηb(X(t0), t0), (3.7)

hat (t0) = ht(t0)− ηt(X(t0), t0), hbt(t0) = ηbt (X(t0), t0), (3.8)

and we solve independent problems for initial conditions a and b.
The axisymmetric, forced problem for the impact is given by

ηat =
2

Re
∆Hη

a +Nφa, z = 0; (3.9)

φat = − (1− Γ cos(4πt))

Fr
ηa +

1

We
κ[ηa] +

2

Re
∆Hφ

a − pas , z = 0; (3.10)

hatt = − (1− Γ cos(4πt))

Fr
− Sohat +

1

Ma

∫
Aa(t)

pasdA; (3.11)

subject to ηa → 0, when
√
x2 + y2 →∞; φa → 0, when

√
x2 + y2 + z2 →∞; and

ηa(x, t) = ha(t) + zs(x), x ∈ Aa(t); (3.12)

ηa(x, t) < ha(t) + zs(x), x /∈ Aa(t); (3.13)

pas(x, t) = 0, x /∈ Aa(t); (3.14)

∂nη
a(x, t) = ∂nzs(x), x ∈ La(t); (3.15)

whilst also assuming that κ[ηa(x, t)] ≈ ∆Hη
a(x, t), when x /∈ Aa(t). This problem is

solved using finite differences and a numerical approximation to the singular integral
operator N (following Galeano-Rios et al. (2017)), in space; and implicit Euler in time,
with an adaptive time step. The axisymmetric domain size is set to 2λF , the spatial mesh
size is set for each droplet size to Ro/40, and the adaptive time step is always chosen as
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a refinement of the temporal mesh of the unforced problem. The solution to this problem
is calculated until t = tl, by which the droplet is once again in flight.

In parallel, we solve the homogeneous non-axisymmetric problem

ηbt =
2

Re
∆Hη

b +Nφb, (3.16)

φbt = − (1− Γ cos(4πt))

Fr
ηb +

1

We
∆Hη

b +
2

Re
∆Hφ

b, (3.17)

subject to ηb → 0, when
√
x2 + y2 → ∞; and φb → 0, when

√
x2 + y2 → ∞, from

t = t0 to t = tl; and we define

hb(t) = ηb(X(t), t), hbt(t) = ηbt (X(t), t), (3.18)

for t ∈ [t0, tl].

The horizontal motion of the particle for t ∈ [t0, tl] is computed by solving

Xtt = −3Da

4Ra

(
6 + k

|Aa(t)|
πR2

o

)
Xt −∇ηb|(X(t),t)

1

Ma

∫
Aa(t)

pasdA; (3.19)

with a semi-implicit Euler method.

The solutions η, φ, h, ht for t ∈ [t0, tl] are thus given by

η(x, t) = ηa (x−X(t), t) + ηb(x, t), (3.20)

φ(x, t) = φa (x−X(t), t) + φb(x, t), (3.21)

h(t) = ha(t) + hb(t), (3.22)

ht(t) = hat (t) + hbt(t); (3.23)

at which point the droplet is once again in flight and we can repeat the procedure.

In summary, when an impact is about to take place, we first solve an axisymmetric
impact until a time which we define as tl, when the droplet has lifted off. From this
problem, we find the vertical forces on the droplet and the surface deflection due to
the impact. In parallel, we evolve the unforced surface waves until t = tl. We take the
information of the surface elevation gradient of the unforced waves, at the location given
by the droplet position, and we compute the horizontal motion of the droplet. Finally,
we superpose the axisymmetric wave from problem a to the solution of problem b, at the
corresponding location X(t).

There are several advantages to the approach taken here. For instance, the impact
problem can be solved in a smaller domain, as this domain only needs to be large enough
to guarantee that the waves have not reached its boundary over the duration of an
impact. This allows for a much finer mesh, with respect to that reported in Galeano-
Rios et al. (2017), to be used to solve the impact problem whilst still allowing much
faster computations. Conversely, the wave propagation without the impact can be solved
using a much coarser mesh than was used in Galeano-Rios et al. (2017), since the typical
wavelength is large in comparison to the droplet. More importantly, we are able to use
a Fourier method for the unforced waves, which diagonalises the Laplacian operators.
Similarly, we can use a much finer time step for the impacts, which allows for an improved
resolution of the vertical forces on the droplet with respect to what was obtained in
Galeano-Rios et al. (2017), whilst we use a coarser time mesh for the unforced wave-
propagation problem, allowing for faster computations. In section 4, we show that the
approximation method described above also provides increased accuracy.
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Figure 3: Simulation results for droplets walking at different driving accelerations (Γ ).
Solid black lines show the trajectory of the south pole of the droplet and dashed lines
correspond to the point of the free surface just under the south pole. Grey lines show
the horizontal speed of the droplets. Cp is the phase velocity of the Faraday waves
(Cp = 19.88 cm/s), and Tf is the forcing period. Both panels correspond to a droplet

of radius Ro = 0.38 mm, i.e. vibration number Ω = 0.8 (Ω = ωo
√
ρR3

o/σ) and drag
parameter k = 3100. Panels (a), (b), (c) and (d) correspond to modes (1, 1), (2, 2),
(2, 1)1 and (2, 1)2, respectively.

3.1. Simulations

Simulations are initiated by imparting the droplet with a horizontal velocity of 0.1 Cp
and with a downward vertical velocity that is in the typical range for walking droplets;
all while the droplet is slightly above the surface. Droplets will then settle onto a steady
walking speed or come to a halt, if the system parameters do not allow steady walking. We
are able to identify the known bouncing modes which we describe with the ordered pairs
(m,n), following Gilet & Bush (2009) and Moláček & Bush (2013a), in which m stands
for the number of forcing periods contained in a complete period of vertical motion, and
n corresponds to the number of contacts that take place during m forcing periods. These
different modes can be identified in figure 3, in which droplet contacts correspond to the
time intervals over which the south pole coincides with the free surface. We are also able
to distinguish variants within the same (m,n) mode, such as the (2, 1)1 and (2, 1)2 (see
figures 3c and 3d). We discuss the distinction of these modes in greater detail later in
the text.

Figure 4 shows the simulation of the wave fields of a bouncer and a walker, which
display the typical features reported in Eddi et al. (2011). We highlight that the vertical
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Figure 4: Wave field simulations for vibration number Ω = 0.8, and drag parameter
k = 3100. (a) Bouncer at Γ/ΓF = 0.74, with (c) its cross-section at y = 0. (b) Walker
moving to the right at Γ/ΓF = 0.98 and (d) its section along the direction of walking. The
wave field in a, b, c and d is sampled at the time of maximum absolute surface deflection
and with X(t) = (0, 0). The inset plots in panels c and d show a close up to the wave
field at the impact location using the same vertical and horizontal scale (units of λF ).
The cross-sections in panels e and f are analogue to those in panels c and d, respectively;
though in e and f the section is obtained just before a droplet impact. Animations of the
wave field and droplet motion for these two simulations are included as supplementary
material. We note that the figures do not show the totality of computational domain.
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scale in panels c-f is largely exaggerated in order to provide a quantitative comparison of
the scales of the unforced waves and the impact dimple. This might create the illusion of a
non-smooth interface. The inset plot in panels c and d (for which we use the same scale in
x and z) show that the free surface is in fact very smooth. Animations of the simulations
presented in figure 4 are provided as supplementary material, these also clearly portray
the surface smoothness.

We run simulations of walking droplets in the parameter regimes investigated experi-
mentally by previous works (Wind-Willassen et al. 2013; Moláček & Bush 2013b; Pucci
et al. 2016) with the experimental set up of 20 cSt and 80 Hz (see Appendix A) for
different values of the vibration number Ω = ωo

√
ρR3

o/σ (as defined in Dorbolo et al.
(2008)), we then compare their experimental reports to our simulation results for different
values of the skidding friction parameter k. We use the comparison to define an adequate
value of k for each Ω and complete our skidding friction model. We note, that since all
other parameters involved in the definition of Ω are fixed for this study, Ω can be simply
considered as a proxy for the droplet radius.

3.1.1. Optimal values of k

Protière et al. (2006) proposed a skidding friction model in which viscous effects yield
a force that is proportional to droplet speed, where the proportionality constants were
estimated on the basis of typical sizes for the contact area and air layer width. Moláček
& Bush (2013b) presented a different skidding friction model in which the horizontal
drag force due to the motion of the droplet as it slides on the surface is considered to be
proportional to the vertical force exerted on the droplet, and to the droplet speed. They
arrived at this form for the drag by means of experimental measurements of the horizontal
coefficient of restitution of droplets impacting a bath at different angles. They go on to
fit the resulting data of tangential coefficient of restitution as a function of the Weber
number and interpret their findings as implying that the dominant effect for horizontal
drag is momentum transference to the fluid bath. Moreover, they assume throughout
their work that the pressed area is roughly constant.

Our present approach is similar to that of Protière et al. (2006); however, we are able to
consider the change in contact area during each impact. We obtain, as shown in equation
(2.52), a friction model that is proportional to the instantaneous value of the contact area
and to the droplet’s velocity. Nevertheless, in Galeano-Rios et al. (2017) it was shown
that the pressed area and the vertical force are roughly proportional, therefore, a model
that accounts for pressed area variations will produce a skidding friction term that is
approximately proportional to forces and droplet speeds. Thus, when we account for the
effects of the varying pressed area, we can re-interpret the findings of Moláček & Bush
(2013b) as not being incompatible with those of Protière et al. (2006). In particular, we
can justify the form of the friction term given in Moláček & Bush (2013b) whilst still
considering viscous effects as the main drivers of the resistance to motion during contact.

To find the optimal value K of the proportionality constant k for each droplet size
(i.e. Ω) for which the walking speed was reported at different driving accelerations in
the experimental works, we test a sequence of values of k. For each tested k we find the
differences ξi between the experimental report for horizontal speed uei and the average
horizontal speed as calculated from the simulations usi , where the i-th experimental point
corresponds to a given value of Γi/ΓF (see figure 5). We thus define the total squared
error for each attempted value of the drag parameter k as:

ξ2 (k,Ω) =

n∑
i=1

ξ2i (k,Ω, Γi/ΓF ) =

n∑
i=1

(uei − usi )2 (k,Ω, Γi/ΓF ), (3.24)



Quasi-normal free-surface impacts and capillary walking 19

0.75 0.8 0.85 0.9 0.95 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.75 0.8 0.85 0.9 0.95 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.8 0.85 0.9 0.95 1

0.04

0.045

0.05

0.055

0.06

0.065

0.8 0.85 0.9 0.95 1

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

Figure 5: Walker speed as a function of Γ for different values of the drag parameter k,
normalised by Faraday wave phase velocity (Cp = 19 cm/s in experiments, and Cp =
19.88 cm/s in simulations). (a) Ω = 0.7, (b) Ω = 0.8, (c) Ω = 0.83, (d) Ω = 0.86.
Dashed lines correspond to the skidding friction model presented in Moláček & Bush
(2013b), solid lines correspond to the skidding friction model developed in the present
work. Experimental data for (a), (b) and (d), obtained from Moláček & Bush (2013b),
data for (c) from Pucci et al. (2016)

and we define

K(Ω) = argmin ξ2(·, Ω). (3.25)

The values of K(Ω) are identified up to two significant figures and are reported in
figure 5. Figure 6(a) shows the distribution of K(Ω). We perform an entirely analogous
calculation, using the friction model presented in Moláček & Bush (2013b), in which FD =
−c
√
ρRo/σF (t)Xt, and we obtain a similar distribution of values for the corresponding

optimal proportionality constant C(Ω). The respective walking speed predictions are
reported in dashed lines in figure 5 and the distribution of C(Ω) is presented in figure
6(b). In practice, the value of C used in different models ranges from 0.1 to 0.35, as can
be seen in the literature (Moláček & Bush 2013b; Oza et al. 2013; Milewski et al. 2015;
Durey & Milewski 2017).

The agreement between theory and experiment shown in figure 5 is overall good,
especially when considering the simplifications introduced; however, there clearly is room
for improvement. The choice to stop at two significant figures in determining K is based
on the fact that the two neighbouring values at that precision provide an obvious bound
to how much the predictions can be improved by a more precise value of K, which indicate
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Figure 6: Skidding friction coefficients for the two models here considered. Panel (a)
shows K(Ω) for the proposed model, panel (b) shows C(Ω) for the model in Moláček &
Bush (2013b). Numbers along the markers indicate the number of data points available
in the literature for a given droplet size.

that no qualitative agreement is likely to be gained. A more complete understanding of
the air flow in the intervening air layer would enable the production of better reduced
models; as it would allow for a realistic treatment of the dependence of the k̄ scaling
factor on time or pressure distribution, and also of the time varying air layer width e.
As part of our ongoing work, we have posed the problem including a coupled lubrication
theory equation which we will attempt to address once we have successfully incorporated
droplet deformations.

The skidding friction parameter k is O(103) and |Aa(t)|/(πR2
0) (i.e. the fraction of the

droplet’s “shadow” that is pressed) is O(10−1). Therefore the k|Aa(t)|/(πR2
0) is O(102),

which is significantly larger than 6 (the factor that corresponds to Stokes’ drag). This
verifies the intuition suggested at the end of section 2.4.1. Moreover, the value of 1/Ma
(the reciprocal of the dimensionless mass of the droplet) ranges from 425 (biggest walking
droplets) to 1334 (smallest walking droplets). This is consistent with walking droplet
motion being dominated by the forces exerted by the waves onto the droplets, and also
with bigger droplets, such as the superwalker considered in section 4.1 (for which 1/Ma =
93), being less prone to walking under single frequency forcing.

The similarity between figures 6(a) and 6(b) is consistent with the finding of the
approximate proportionality between vertical force and pressed area reported in Galeano-
Rios et al. (2017). We notice that our proposed skidding friction model produces less total
errors (ξ2(K(Ω), Ω)) for most values of Ω and that the relative deviation with respect to
the mean value is smaller for K (σd(Ki)/K̄ = 0.16, σd(Ci)/C̄ = 0.24 ). In what follows,
we use K(Ω) for each droplet radius.

4. Comparisons to experiments of walking and bouncing droplets

Our model is completed with the specification of the skidding friction parameter. We
thus proceed to simulating various experiments reported in the literature, across a range
of physical parameters (Γ , Ω). In particular, we will compare the many walking and
bouncing states observed and the details of the wave field and impact phases.

We vary Ω over the range of values typically used in experiments and with the driving
amplitude Γ ranging from bouncing threshold to Faraday threshold. We compare the
resulting steady state bouncers and walkers to the experimental results reported in Wind-
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Figure 7: Phase diagram for bouncing and walking droplets. Bullets indicate experimental
reports of the modes of bouncing (Wind-Willassen et al. 2013), background colouring
corresponds to the bouncing mode found in our simulations. The bouncing mode colour-
coding is the same for bullets and background. The leftmost region (red) indicates the
range of Γ for which our droplets are always in contact with the bath and the vertical
yellow dashed line indicates Γ = 1. The red curve encloses the region in which the droplets
walk in simulations. Grey regions correspond to (4, 2) modes, light grey to (4, 2)1 and
dark grey to (4, 2)2; chaotic bouncing is shown in black. The six F markers indicate the
bouncing and walking modes shown in figure 8. The hashed region corresponds to (2, 2)2

modes, which in Wind-Willassen et al. (2013) were classified as (2, 1), but were later
revealed by Damiano (2015b) to be less obvious instances of a (2, 2) mode (see figure 8a
and 8b for details).

Willassen et al. (2013). The results are summarised in figure 7, where squares (bouncers)
and circles (walkers) indicate experimental reports and the background corresponds
to our simulation results. The colour coding is shared between squares, circles and
background. The red curve encloses the region in which the droplets walk in simulations
and the vertical yellow dashed line indicates Γ = 1, to the right of which the driving
acceleration reverses the sign of the gravity (in the frame of reference of the bath), during
part of the cycle. The hashed region describes (2, 2)2 bouncers, which could easily be
mistaken for (2, 1) bouncers, as was reported in Galeano-Rios et al. (2017) and observed
experimentally by Couchman et al. (2018).

We note that, in figure 7, the comparison to experimental results is excellent, with
the exception of cases for which even the experimental distinction of bouncing modes
is challenging. In particular, the agreement with experimental results is substantially
improved with respect to the most detailed walking droplet model that was previously
available (see figure 4 in Milewski et al. (2015)). These improved walker prediction are
obtained whilst also doing away with three parameters and solving realistic and detailed
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Figure 8: Variants of the same (m,n) mode. Solid black lines depict the height of the
south pole of the droplet, dashed black lines indicate the point on the free surface that is
directly below the south pole; all with respect to an inertial observer in the laboratory.
Grey lines correspond to the vertical force on the droplet F↑. (a) (2, 2)1 mode, in which
the droplet reverses the direction of its vertical motion during both impacts. (b) (2, 2)2

mode, in which the droplet reverses its vertical direction of motion every other impact.
(c) (2, 1)1 mode, in which the vertical force has two clearly marked maxima. (d) (2, 1)2

mode, in which the vertical force shows a single peak. (e) (4, 2)1 mode, which arises as
a period doubling bifurcation from the (2, 1)1 mode with all bounces producing vertical
forces with two clear peaks but consecutive bounces have different force profiles. (f) (4, 2)2

mode, which results from a period doubling bifurcation of the (2, 1)2 mode.
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Figure 9: Evolution of the touch down and take off times as a function of the driving
acceleration amplitude (Ω = 0.8). The shaded regions indicate the experimental report
in Damiano (2015b), of the start (dark) and end (light) of droplet contacts. The vertical
width of each region corresponds to the experimental uncertainty in the measurements
(Damiano 2015a). The corresponding simulation results for impact and take off times
are shown in black and grey lines, respectively. The vertical lines indicate the transition
to a different (m,n) mode in experiment (solid) and simulations (dashed).

impact dynamics. Furthermore, this model is also able to capture all bouncing droplet
phenomena reported in figure 10 of Galeano-Rios et al. (2017), with improved accuracy.

Figure 8 shows the three observed instances in which we distinguish two kinds of
bouncing modes that are characterised by the same (m,n) notation. Panels (a) and
(b) show two qualitatively different (2, 2) modes. We refer to the mode in panel (a) as
the (2, 2)1 mode, in which the vertical motion of the droplet actually reverses direction
four times over a period of motion, and as the (2, 2)2 mode to the one in panel (b), in
which reversals only take place twice over a motion period. Panels (c) and (d) reveal
the qualitative differences between the (2, 1)1 and (2, 1)2 modes; the clearest distinction
between the two being given by the fact that the in the (2, 1)1 mode (panel c), there
are two maxima in the vertical force over a relatively long (≈ Tf ) contact, whereas in
the (2, 1)2 mode (panel d) a single maximum in vertical force is attained. Finally, we
are also able to distinguish a (4, 2)1 mode (panel e) and a (4, 2)2 mode (panel f), which
result from period doubling bifurcations of the (2, 1)1 and (2, 1)2 modes, respectively.
Moreover, the comparison between panels (b) and (c) illustrates the reason why (2, 2)2

bouncers can easily be mistaken for (2, 1)1 bouncers. In fact, the hashed region in figure
7 mostly coincides with experimental reports of (2, 1)1 modes. However, a more detailed
report in Damiano (2015b) shows that for Ω = 0.8, the bouncers in the hashed regions
actually correspond to the gradual shrinking of the interval between the two bounces; as
described below.

Figure 9 shows the dependence of impact and lift-off times for driving accelerations
ranging from the bouncing threshold to Faraday threshold. Along every vertical traverse,
we can see the transitions undergone over a bouncing period, at a given Γ/ΓF . The left
end of the graph shows how a weak driving acceleration leads to longer contacts; which
for low enough Γ , end up merging and causing the droplet to stay attached to the surface.
In reality coalescence would occur in the vicinity of the left end of the graph; however,
since we do not model the thin air layer dynamics in this work, we are not able to predict
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Figure 10: Comparison of wave field predictions to experimental measurements reported
in Damiano et al. (2016). The wave field corresponds to a bouncer in the (2, 1)1 mode,
Ω = 0.8 and Γ/ΓF = 0.75.

it accurately. As we move to the right in the graph, we can see first the (1, 1) mode
(between Γ/ΓF ≈ 0.23 and Γ/ΓF ≈ 0.42 in the experiments, and between Γ/ΓF ≈ 0.17
and Γ/ΓF ≈ 0.49 in the simulations), for which both contacts are identical except for a
shift in time of one forcing period. The period doubling mechanism from the (1, 1) mode
into the (2, 2) mode is evidenced in the middle section of the figure, where we see that
consecutive contacts start to differ from each other. As Γ is increased further, the two
contacts grow closer, finally merging into one long contact with two peaks in force (see
figure 8c) that are inherited from each one of the two distinct bounces in the (2, 2) mode.
Further to the right of the graph, the contact time shortens and the force peaks fuse into
a shorter pulse (see figure 8d) that takes place roughly during the same interval of time
for which contact took place in the (1, 1) mode, but in a period doubled state. For insight
on how driving acceleration influences walking velocity through changes in the vertical
dynamics, figure (9) should be read alongside figure (5b).

A comparison between surface topography measurements (Damiano et al. 2016) and
our current wave field predicitons is shown in figure 10. In this figure we observe a
similar agreement to that reported in figure 12 in Galeano-Rios et al. (2017), where the
impact was computed directly onto the perturbed surface and not decomposed into an
impact onto a flat surface and the unforced wave field evolution. This suggests that the
separation of the problem into two has not affected our wave field predictions significantly.
The disagreement observed is mostly in the magnitude of the wave elevation in the near
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field of the droplet. We believe the disparity here is mainly due to the shortcomings of
the quasi-potential fluid formulation. It is important to highlight that, with the current
fluid model, the wave length in experiments (≈ 4.75 mm, as reported by Pucci et al.
(2016)) is slightly different from that predicted by our fluid model (= 4.97 mm).

4.1. Superwalkers: two frequency shaking

Valani et al. (2019) recently reported a new kind of walking droplets. These are
relatively large droplets (up to 1.4 mm radius) that always bounce in place when the
underlying bath is subject to simple harmonic motion, but walk particularly fast (up
to about three times the maximum velocity for regular walkers, i.e. Cw/Cp ≈ 0.15)
when the bath is subject to vertical oscillations obtained using the superposition of two
sinusoidal signals of different frequencies. More specifically, this was observed to happen
when the second frequency added is resonant with the subharmonic Faraday waves. The
most relevant predecessor of this work is Sampara & Gilet (2016), who considered a
combination of 80 Hz and 64 Hz forcing in a bath of 20 cSt silicone oil, and were thus able
to find a series of novel trajectories for the walking droplet system.

Valani and collaborators drive the oil bath with a vertical acceleration of the form

ztt = −g
(
Γ cos (ωot) + Γ 1 cos

(ωo
2
t+ θ1

))
, (4.1)

and therefore have two extra physical parameters with respect to the regular walking
droplet experiment; namely the subharmonic forcing amplitude, controlled by Γ 1, and
the phase shift between the two frequencies, given by θ1. Regarding the bath motion, the
two main differences between Sampara & Gilet (2016) and Valani et al. (2019) are the
choice of the second frequency as resonant with the sub-harmonic Faraday waves and
the introduction of the phase shift parameter, which was kept constant and equal to zero
in Sampara & Gilet (2016). Moreover, the droplet size considered in Sampara & Gilet
(2016) is in the regular walker size range. These differences explain why the superwalkers
where not observed in their work.

The changes to the problem formulation, needed to model superwalkers, amount to
replacing each instance of the expression

(1− Γ cos(4πt))

Fr
(4.2)

in equations (3.2), (3.3), (3.10), (3.11) and (3.17) by

(1− Γ cos(4πt)− Γ 1 cos(2πt+ θ1))

Fr
, (4.3)

and selecting an appropriate value for the skidding friction constant k. Another minor
modification to simulate superwalkers is the use of a larger axisymmetric impact domain,
i.e. a domain of radius 4λF (twice the diameter of the one used for regular walkers). This
choice was made to guarantee that waves triggered by large droplets, which sometimes
produce contacts that are twice as long as those of walkers, do not reach the boundary
of the axisymmetric domain before the impact is over.

We highlight that superwalking droplets undergo a non-negligible amount of defor-
mation. In particular, one can see that the droplet’s Bond (Bod = ρgR2/σ) and Weber
(Wed = ρRV 2

rel/σ) numbers are larger that those for regular walkers, which indicates
that deformations induced by gravity and inertia will be more prevalent. Typical physical
parameters for walking droplet yield Bod = 0.0671 and Wed = 0.195, whereas for the
superwalkers considered here Bod = 0.91 and Wed = 0.261. Moreover, the ratio of
walking speed Cw to the relative vertical speed before impact Uz is Cw/Uz ≈ 0.6. We
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Figure 11: Superwalkers at Ω = 1.91 (Ro = 0.68 mm), Γ/ΓF = 0.71, θ1 = 8π/9. (a)
Average velocity of superwalkers for different values of the drag parameter k, normalised
by the phase velocity of the Faraday wave of frequency 40 Hz(Cp = 19 cm/s in
experiments, and Cp = 19.88 cm/s in the simulations). Vertical trajectories of the south
pole (solid black lines) and of the free surface point just underneath (dashed lines),
together with vertical forces F↑ on droplets for different driving accelerations Γ 1. Panels
b to f show: a droplet bouncing at single frequency forcing in the (2, 1)1 mode (b), walking
in the (2, 1)1 mode (c), walking in the (4, 2)1 mode (d), walking in the (2, 1)2 mode (e),
and walking in the (4, 2)2 mode (f). Experimental data in panel a was obtained from
Valani et al. (2018).

therefore consider that the main motivation for the present section is to demonstrate
the surprising extent to which a model based on a non-deforming droplet can capture
(super)walking droplet phenomena.

In figure 3(a) of Valani et al. (2019), it is shown that superwalkers only appear in a
window of the θ1 parameter that is centred roughly about θ1 = 7π/9. Moreover, in figure
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2(c) of Valani et al. (2018), the walking speed of a superwalker of Ro = 0.68 mm for
fixed Γ/ΓF = 0.71 and θ1 = 8π/9, is reported as a function of Γ 1/Γ 1

F , with Γ 1
F given by

the Faraday threshold for the fluid bath when driven at an angular frequency of ωo/2.
The superwalker phenomenon is reproduced for any value of the drag parameter k in the
order of the values chosen for K(Ω) (figure 6). That is to say, droplets bounce when in
the presence of a single frequency and walk faster than typical walkers (up to more than
twice as fast as the fastest walkers) when the second frequency is added to the driving.
To find the optimal K(Ω) for Ω(Ro = 0.68), we test different values of k and find the
one that minimises the squared error with respect to the experimental results reported
in figure 2(c) of Valani et al. (2018).

Figure 11(a) shows the comparison between experimental report of superwalker veloc-
ity (Valani et al. 2019) and our simulation results for values of k in the vicinity of its
optimal value K(Ω = 1.91). Figure 11(b-f) show the modes of bouncing displayed and
the forces on the droplet due to collisions with the bath. When in the presence of a single
frequency forcing (figure 11b), Γ1 = 0; the droplet bounces in place displaying a (2, 1)1

mode with a particularly long contact. We note that our model shows in fact that the
superwalkers are barely lifting off the surface when a single frequency is present. As the
second frequency is introduced (panels c-f), the droplet walks even for Γ 1/Γ 1

F as low as
0.18 (figure 11a and 11b). Like in the case of the walkers, the mode of bouncing observed
changes with the driving acceleration (Γ 1, in this case). In figure 11, we see superwalkers
bifurcation sequence: (2, 1)1 → (4, 2)1 → (2, 1)2 → (4, 2)2. It is worth noting that, even
though the skidding friction coefficient is of the same order as the one used for regular
walkers, the walking speeds we obtain are in line with the superwalker experiments (up
to three times the speed of single-frequency walkers).

We note that our model predicts that the superwalkers have a wave field that is
qualitatively different to that of single-frequency walkers. As can be seen in figure
12(b), the wave field behind the superwalker does not exhibit, for these parameters,
the typical interference pattern reported by Eddi et al. (2011), also observable in figure
4(b). Experimental reports from Valani et al. (2019) show that the wave field of the
superwalkers indeed looks like our predictions. This distinctive wave field is likely due
to the fact that we are exciting Faraday waves under two-frequency forcing, which will
respond to a Mathieu equation that is different from the one for single frequency forcing
found by Benjamin & Ursell (1954), see Zhang & Vinals (1997). In particular, the Fourier
transform of the wave field contains a higher contribution of wavelengths in the range
of the Faraday wavelength for 40 Hz forcing (k ≈ 7.16 cm−1). Moreover, the wave field
associated to such a large droplet deforms the free surface substantially in the vicinity of
the droplet, as can also be seen in figures 11(b-f), even in the absence of a second forcing
frequency (figures 11b and 12a). We highlight that the inset plots in panels c and d show
that the surface remains smooth at the impact location. This can also be appreciated in
the corresponding animation of the simulations results from the cases in figure 12, which
are provided as supplementary material.

To the best of our knowledge, no other model has captured superwalker phenomena.
In particular, we attempted to use the model presented in Milewski et al. (2015) and
obtained a significant mismatch in the vertical dynamics.

The superwalker phenomenon is one more piece of evidence of the extremely rich
dynamics associated with the bouncing droplet system. A more complete treatment of
superwalkers requires the consideration of droplet deformation and will be the subject of
future work.
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Figure 12: Wave field predictions for Ω = 1.91, Γ/ΓF = 0.71, θ1 = 8π/9. (a) Bouncer at
Γ 1/Γ 1

F = 0, and (b) superwalker moving to the right at Γ 1/Γ 1
F = 0.87. Panels c and d

show cross-sections of the wave field represented in a and b, respectively. The wave fields
in a, b, c and d are sampled at the time at which the maximum surface deflection (in
absolute value) occurs while the droplet is located at X(t) = (0, 0). Inset plots in panels
c and d show the impact location using the same scale for the vertical and horizontal
axes (units of λF ). Panels e and f show the respective analogue cross-section, to c and
d; though taken just before a droplet impact. Animations of the wave field and droplet
motion for these two simulations are included as supplementary material.

5. Discussion

We have described a general methodology to study impacts and rebounds at capillary
scale. The method relies on the assumption that the impacting object does not become
immersed and that we have a theory for the evolution of the capillary contact angle. When
we apply the methodology to Faraday walkers, after a series of approximations, we arrive
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at a walker model that combines a quasi-potential fluid model with the superposition
of translated axisymmetric impacts. We obtain a highly realistic walking droplet model
that solves repeated bounces with minimal assumptions on the nature of the impact. The
use of few assumptions enables the generation of a great amount of detailed predictions
for the physical system. We carefully compare these predictions to experimental reports
available in the literature obtaining an overall remarkable agreement.

We highlight the fact that our system is able to capture extremely well the majority
of phenomena here tested. This is a strong indication that droplet deformation plays
a relatively minor role in the overall dynamics of the walking droplet system; except
possibly for superwalkers, for which our walking speed predictions deviate slightly more
from the experimental reports. These deviations from our predictions are not unexpected,
as droplet deformation is known to be non-negligible in this case. An adaptation of the
kinematic match method which couples the deformation of the impacting droplet to the
fluid equations is underway, its implementation should result in a substantial improve-
ment for our superwalker predictions and it should provide the tools to assess precisely the
extent to which the results change when the impacting object is compliant. To account
for inertial effects in droplet deformation during impact, we need to approximate the
fluid flow inside the droplet. Moreover, the decomposition of the impact into vertical and
horizontal motion, though in principle still possible, requires the observation of some
additional effects (Purvis & Smith 2005).

Single bounce dynamics, similar to those observed in bouncing droplets, have been
obtained for solid spheres (see for instance Lee & Kim (2008) and Bauman et al. (2019));
however, sustained periodic bouncing and walking regimes have not been reproduced
with solids. Surface roughness of solids at the scale of the air layer width, which can
puncture the lubrication layer, could be the cause. It is also possible that deformation
plays a role in preserving the integrity of the air layer; nevertheless, our present work
strongly suggests that the role of these deformations is otherwise relatively minor in
terms of the overall dynamic behaviour for the parameter regime here considered (see for
instance figure 9). Moreover, droplet deformations have been shown to play an important
role when the fluid of the bath is significantly less compliant than that of the droplet
(see Terwagne et al. (2013)). Such a system can also be studied using a kinematic match
method for deformable impactors. Deformation in bouncing, walking and superwalking
droplets will be the subject of a separate study, which will also consider more general two-
frequency forcing bouncing droplet systems, including the system reported by Sampara
& Gilet (2016). This future work will allow us to quantify dynamic droplet deformation
and can be compared to experimental measurements of droplet deformation reported by
Couchman et al. (2018), indicating at most a 5% radial deformation for single frequency
walkers. Similarly, in a private communication with the lead author of Valani et al. (2019)
it was reported that superwalkers of the size here considered show a radial deformation
of at most 9%.

Our work re-enforces the well established notion that translating axisymmetric impacts
provides a sufficiently good approximation when modelling walkers. This is also in
agreement with the more general notion that the horizontal component of impact velocity
has a negligible role in solid-impact problems unless it is significantly large (see for
instance Moore et al. (2012)), which is one of Trefethen’s paradoxes (Trefethen & Panton
1990). Moreover, we make use of the linear nature of the waves in this problem to
decompose its solution into two parts, which introduces the possibility of using different
methods to solve the impact and the wave evolution. One can then use the optimal
method for each part and arrive more efficiently at a more accurate solution to the
full problem, once they are combined. Consequently, in this work, we solve bouncers



30 C. A. Galeano-Rios, P. A. Milewski and J.-M. Vanden-Broeck

and walkers in less than half the computation time as required for the bouncer only
simulations in Galeano-Rios et al. (2017) and at four time increased spatial accuracy.
Another important consequence of successfully separating the problem into two is that
this allows for the possibility of solving the unforced waves with other, perhaps more
elaborate, fluid models which might be solved very efficiently when unforced by surface
pressures but with which it would prove challenging to solve numerous impacts.

Many walking droplet experiments involve complex interactions between the impact
phase and the droplet trajectory. This is expected to be the case in confined chaotic
motion in a potential (Perrard et al. 2014; Durey et al. 2018) or in a corral (Harris et al.
2013). For long time realistic computations of such problems, where the impacts may vary
chaotically, we could accelerate simulations by pre-computing a library of droplet impacts
with the surface, i.e. a database of axisymmetric solutions parameterised by relative
impact velocity and impact phase, from which the resultant wave field and droplet forces
can be recalled, the droplet trajectory calculated, and the new wave field superposed
onto the preexisting wave field. This approach is currently being developed to realistically
introduce the effect of impact phase variations in 2D models of tunnelling and two particle
correlations, such as those in Nachbin et al. (2017) and Nachbin (2018).

Detailed wave field predictions have proven to be fundamental to capture droplet-
droplet interactions, as the role of moving wave fronts and subtle changes in impact
phases define the direction of the horizontal forces on the droplets bouncing in close range
(Galeano-Rios et al. 2018). The next order approximation for the fluid motion in the bath
is given by the linearised Navier-Stokes equations for incompressible flow (Galeano-Rios
2016; Durey 2018; Tadrist et al. 2018), which are non-local in time (Prosperetti 1976;
Beyer & Friedrich 1995). In view of our present results, it seems clear that a combination
of the solution of the linearised Navier-Stokes equations with a library of impacts is likely
the most adequate approach to study multi-droplet systems in great detail.

Multi-droplet systems are the subject of particular interest, as they are a realisation
of an active matter system in which the “agents” take energy from the waves and also
interact through them. Moreover, other collections of surface bounded objects would
provide similar examples of wave-mediated active matter systems which can be modelled
with relatively simple modifications of the methods here presented.

C.A.G.-R. and P.A.M. gratefully acknowledge the support of EPSRC project
EP/N018176/1. J.-M.V.-B. gratefully acknowledges the support of EPSRC project
EP/NO18559/1. We also thank Adam Damiano and Rahil Valani for sharing details of
their experimental measurements.

Appendix A. Physical constants

Air:

µair = 1.8× 10−4 gr cm−1 s−1. (A 1)

Silicone Oil:

σ = 20.6 dyne cm−1, (A 2)

ρ = 0.949 gr cm−3, (A 3)

ν = µ/ρ = 0.2 St = 0.2 cm2 s−1. (A 4)

Gravity in the frame of reference of the bath:

g = 980 cm s−2, (A 5)
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ΓF = 4.22 g = 4135 cm s−2, (A 6)

Γ 1
F = 1.19 g = 1166 cm s−2, (A 7)

ωo = 2π 80 rad s−1, (A 8)
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