
1 | P a g e

WebNSM: A Novel Scalable WebRTC Signalling

Mechanism for Many-to-Many Video Conferencing

Naktal Moaid Edan

School of Science and Technology, The University of Northampton

Northampton, United Kingdom
University of Mosul, Mosul, Iraq

naktal.edan@northampton.ac.uk

Ali Al-Sherbaz, Scott Turner

School of Science and Technology, The University of Northampton
Northampton, United Kingdom

{Ali.al-Sherbaz, scott.turner}@northampton.ac.uk

 Abstract— There is a strong focus on the use of Web Real-

Time Communication (WebRTC) for many-to-many video

conferencing, while the IETF working group has left the

signalling issue on the application layer. The main aim of this

paper is to create a novel scalable WebRTC signalling

mechanism called WebNSM for many-to-many (bi-directional)

video conferencing. WebNSM was designed for unlimited users

over the mesh topology based on Socket.io (API) mechanism. A

real implementation was achieved via LAN and WAN networks,

including the evaluation of bandwidth consumption, CPU

performance, memory usage, maximum links and RTPs

calculation; and Quality of Experience (QoE). In addition, this

application supplies video conferencing on different browsers

without having to download additional software or user

registration. The results present a novel signalling mechanism

among various users, devices and networks to open one or multi

rooms at the same time using the same server, determine room

initiator to keep the session active even if the initiator or another

peer leaves, sharing new user with current participants, etc.

Moreover, this experiment highlights the limitations of CPU

performance, bandwidth consumption and using mesh topology

for WebRTC video conferencing.

 Keywords— The Real-Time Web Communication (WebRTC),

Socket.IO signalling mechanism, Local Area Network (LAN), Wide

Area Network (WAN), Quality of Experience (QoE), Mesh topology

and a Web New Signalling Mechanism (WebNSM).

I. INTRODUCTION

Since the start of web applications, developers have worked

towards diverse ways of getting full duplex communication

between the server and the browser. Whether it is using Flash,

Java and so on; all aims are for the same goal. Therefore, the

Internet Engineering Task Force (IETF) and World Wide Web

Consortium (W3C) developed a new standard named Web

Real Time Communication (WebRTC) [1]. WebRTC is an

open source and a collection of JavaScript APIs and standards

[2]. JavaScript APIs are directly used to provide support for

interactive communications using various kinds of data such

as audio, video, etc. [3]. WebRTC offers several benefits such

as no need for plug-ins, softphones, ease of use, cost

reduction, no licensing and high-quality RTC (Real Time-

Communication) application [4]. It has also been used from

more than 1,000,000,000 endpoints [5]. On the other hand,

W3C and IETF have not yet been agreed to a final signalling

mechanism or protocol to test WebRTC [6]. Therefore,

WebRTC cannot support the multi-browser communication

mainly for a conference over participating browsers [7];

including communication between browser-to-browser and

server is not standardised yet [1][3][8][9]. Signalling is

considered as the main part of the application which has not

yet been specified [10]. Thus, WebRTC requires a kind of

signalling mechanism and a support of protocols to achieve a

communication among different users [11]. Signalling is the

heart of the peer detection that discovers peers and coordinates

communication among them; it supports the establishing

communication among users by exchanging data through

channels [1]. Signalling connects the browser to a server and

allows the other peers to communicate this server. Moreover,

signalling supports the SDP (Session Description Protocol) for

combining the network addresses and port numbers for the

media exchange [12]. Different platforms are designed for

WebRTC video chat such as Simple WebRTC and easyRTC;

however, they have some limitations. For instance, some of

them are not free of charge and the others use their own

infrastructure to handle the service [5]. In addition, many

implementations have been accomplished to create WebRTC

video chat/calls but they have used XMLHttpRequest (XHR)

or polling cycle which leads to waste of bandwidth and delay,

while the browser keeps polling for data periodically and the

server continues responding with an empty response even

when no messages that are ready to be sent or received [13].

XHR (polling) is efficient with communication that does not

need to full duplex approach, therefore it is used just for

pushing updates from the server to the client [14]. Moreover,

different developers attempted to use SIP (Session Initiation

Protocol) with WebRTC to obtain video calls, but SIP still

needed an installation and a software to such servers [15]. In

addition, WebRTC requires protocols which are not yet

embedded within existing SIP clients [11]. While the current

real-time communication APIs in an application is more cost

efficient and faster than developing a SIP client [16]. The

combination of WebRTC functions with SIP platform requires

some development using a new kind of integrated

communication environment to enable multi media sessions

[11]. Furthermore, SIP has a high bandwidth consumption and

delays comparing with the other protocols such Inter-Asterisk

eXchange2 (IAX2) [17].

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NECTAR

https://core.ac.uk/display/286027051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 | P a g e

According to the limitations of the current mechanisms such

as XHR and SIP, as well as the necessity for creating a

signalling mechanism to offer video conferencing for

undefined users in WebRTC.

In this paper, WebNSM was created for video conferencing

based on RTCPeerConnection (API) using socket.io

mechanism to connect between each of the browsers. A

Socket.io API that provides real-time bi-directional event-

based communication between a client and a server was used

[18]. Besides, RTCPeerConnection (API) is an array of URL

objects which sends any ICE (Interactive Connectivity

Establishment) candidates to the other peer, handles the video

stream, starts offer/answer negotiation process, etc [19].

WebNSM presents a flexible signalling mechanism through

Wired of LAN and WAN networks that are able to provide

various characteristics as follows: (a) offering bi-directional

video conferencing for different users and devices, (b)

opening single or multi rooms at the same time using same

server, (c) keeping or returning the previous state by rejoining

the previous room, (d) determining room initiator, (e) keeping

session active even if the initiator or another peer leaves, (f)

sharing participants with all users, (g) joining an existing

session or renegotiating new session, (h) stoping or removing

self-streams, (i) stoping the remote stream, (j) skipping non-

candidate events, etc. WebNSM is beneficial in that it can

assist web developers making a decision in their choice of

technologies, mechanisms and protocols when developing

WebRTC supported applications. The primary objectives of

this paper are to create a novel and scalable signalling

mechanism for WebRTC video conferencing based on the

Socket.io API, and for unlimited users using mesh topology in

a physical implementation. Moreover, an evaluation of

WebNSM performance, bandwidth consumption, CPU

performance, memory usage, Quality of Experience (QoE)

and maximum links and RTPs calculation. In-depth

elaboration of this paper will help concerned users getting a

factual prognosis of the advantages and disadvantages of using

mesh topology. This illustration is beneficial for interested

users who intend to use WebRTC video conferencing among

different communications such as communication

applications, e-learning, mHealth, monitoring, game, etc.

This paper is organised as follows, The reports on WebRTC

related work is given in section II. The methodology along

with implementation and analysis are presented in section III.

Evaluation is explained in Section IV and Section V has the

conclusion and future work.

II. RELATED WORK AND SOME LIMITATIONS

Different developers attempted to create or develop a

signalling mechanism or a protocol for WebRTC. However,

most of them faced some reasons. The following elaborations

will describe some of these issues:

As mentioned in [20], signalling management has not yet been

specified by WebRTC to allow the developer to modify, reuse

existing protocols and permits them freedom to design their

signalling to avoid redundancy and to increase compatibility

with established technologies [15]. Moreover, an overview of

WebRTC video conferencing architecture using MCU

(Multipoint Conferencing Unit) was shown in [17]. However,

this scenario does not discuss any signalling mechanism or

protocol while the proposed test was relying on using MCU

that can be applied using a single connection. Also, [21] ran

an application of WebRTC video conferencing using the

Licode-Erizo (MCU) and Samsung Galaxy for each

participant. Licode offers a client API with -Erizo that handles

connections for virtual rooms and a server API for

communication. Nevertheless, without using the third party

(Licode-Erizo) it cannot run this application. The test was

achieved among three rooms each room consists of maximum

three participants, as well as they have not presented anything

about the signalling mechanism. On the other hand, as

illustrated in [22], MCU is costly and it can be rented from

service providers during a conference, although some video

conferencing CODECs are able to support a specific number

of multipoint (e.g. up to 4 users). Adding to that, [23]

emphasised that MCU consumes a significant amount of

bandwidth.

According to [24], evaluated the performance of WebRTC

video calls using the node.js server, WebSocket protocol for

the signalling and TURN servers. This evaluation was done

over different topologies such as a mesh (using separate

switches) and star (using MCU). On the other hand, the calls

were established between three participants in each topology

using a fake device and video sequence in VGA frame instead

of employing a live camera. The media bit rate is set by the

browser as 2Mbps maximum value. Besides, all calls were

forced to stream through the TURN servers. Moreover, [15]

designed and implemented a novel WebRTC signalling

mechanism for chat messages using WebSocket via Node.JS

cross-platform on the local host. The signalling of this

application only supports a chat between two peers.

Based on the current works using the existing protocols and

the various articles of the related work as shown above. The

physical implementation in this paper gave a real elaboration

that helps to overcome most of the existing limitations at the

current suggestions and implementations, for instance, it

extended the number of participants in mesh topology, to be

more than 8 peers, analysed CPU performance, bandwidth

consumption, QoE, etc. Moreover, it mentions the limitations

of using mesh topology and offers a flexible signalling

mechanism that is applied to a full duplex for many-to-many

video conferencing.

III. METHODOLOGY, IMPLEMENTATION AND ANALYSIS

A. METHODOLOGY

This application used Firefox to test a client side, and used

Apache HTTP server as a web server and Wireshark analyser.

Moreover, fifteen computers were used, ten PCs Xeon (CPU

E3-1246 v3 & 16 GB RAM), three PCs (CPU Core i7 & 4-12

GB RAM) and two Laptops (core i5 & 8 GB RAM) connected

through Wired of LAN and WAN networks, cameras and

microphones.

B. IMPLEMENTATION

A test-bed lab was created to achieve many-to-many video

conferencing. The experiment environment can be divided

into two types, setting up a browser (to initiate, join or leave

the room) and creating WebNSM as described below:

3 | P a g e

1) Setting up a Browser to Initiate, Join or leave the Room

The main web page of this application uses Firefox and has

many features such as open room, mute-audio/video, use full-

screen, use volume slider and screenshot. In the beginning, to

open a room the initiator needs to specify "user-id", which can

be a Boolean random string, numbers or chosen manually.

User-id is the most important thing for initiating and joining

the room. Therefore, all users should have identical "user-id"

to enter the room, otherwise, they cannot prove themselves. In

this application, communication has one initiator who

specifies "user-id" and different participants who already

know the user-id that the initiator will use. When the room is

opened, it will present arbitrary audio and video

“MediaStream” including multiple tracks. A “MediaStream”

can be obtained using “navigator.getUserMedia” method

which can be invoked when only the first participant is found

and then a web browser will pop out of an HTTP prompt and

request permission to access the camera and microphone to

capture peer’s screen. Once the permission is granted; a

camera will start streaming; and then the application would be

ready for other peers to join. Moreover, a participant needs to

type the same "user-id" to enter the room. Otherwise, the

participant cannot confirm to WebNSM, using a different

user-id leads to opening a new room. Additionally, a

participant needs to fetch "MediaStream", invokes

"getUserMedia" and shares camera and microphone as well.

Finally, a participant has joined the room and communicates

with the existed peer(s). These steps of opening/entering the

room will apply to every peer.

To leave the room, a peer needs to refresh or close the browser

web page, as well as stopping the streaming of their own

camera/microphone without influencing the communication of

the rest. The following algorithm (1) shows presents

getMediaElement.js and getAudioElement.js.

Algorithm (1): demonstrates some functions for getMediaElement.js and

getAudioElement.js

2) WebNSM (A Novel Scalable Signalling Mechanism)

This signalling mechanism was created using Socket.io (API)

bi-directional mechanism. WebNSM works based on two

concepts, offerer and answerer. The offerer is a peer who

initiates the WebRTC session (room) to connect another peer.

In contrast, the answerer is asked for the connection from the

offerer. WebNSM has a nobility feature to enable many peers

to join one room or multiple rooms at the same time and using

one-to-one or/and many-to-many bi-directional video

conferencing, as well as inappropriating users, and it also does

n ot have the ability to receive a new session event. The

offerer is assumed to know the answerer’s user-id and then

requests a connection through WebNSM. When the initiator

opens the browser (main page), WebNSM will be ready to

support the offerer to detect a room presence. WebNSM will

send the request from the offerer to the initiator (answerer) for

the availability, including SDP offer to receive audio and

video. The answerer will receive a request and will validate

the "user-id" to decide either accept or reject the request. If the

request is accepted, the answerer will send a confirmation of

the availability as "room is active" with the SDP constraints to

receive audio and video. Now the answerer and offerer are

able to respond by Datagram Transport Layer Security

(DTLS) and Secure Real-time Transport Protocol (SRTP) to

allow the exchange of the cryptographic parameters and

conclude keying material. They both configure the Real Time

Communication (RTC) packets transported.

The answerer gets remote stream-id and uses

"getLocalDescription" to create an offer and

RTCPeerConnection. In RTCPeerConnection, a

"createDataChannel" method is used to create an

"RTCDataChannel" object. When an "RTCDataChannel" on

the offerer’s side is generated, the offerer invokes

"createOffer" of RTCPeerConnection, thereby enabling

"createOffer" to return an offerer’s Session Description

Protocol (SDP) message. To make a connection, based on

socket.io (API) the offerer first generates the SDP-offer

message by setting the following: session name (s) &

information (i), bandwidth information (b), using the period

audio and video CODECS by map the Real Time Protocol

(RTP), Real-Time Control Protocol (RTCP), etc. Moreover,

the offerer changes the state of ICE connection and ICE

gathering to “new”, also a signalling state to "have a local

offer" and then needs to send the message to a certain

answerer through WebNSM. Additionally, both the offerer

and answerer change a signalling state to "stable" to realise

that there is no offer/answer exchange in progress. The ICE

connection presents the relationship of peers with ICE state

such "is connected", as well as it can configure the user-id,

new number and user's information of the offerer and

answerer even if they are not connected. Once the "SDP-offer"

message reaches the answerer, the answerer also initiates its

RTCPeerConnection instance to accept the request. The

answerer uses the "SDP-offer" into its RTCPeerConnection to

creates an "SDP-answer". WebNSM handles this message

over to the offerer’s side. After two peers exchange SDP-

offer/answer, they can create their session. The other peers can

join the session based on similar steps. Chart (1), presents a

simple example of offer and answer.

function getMediaElement(mediaElement, config)

 muteAudio.onclick = function()
 muteVideo.onclick = function()

 takeSnapshot.onclick = function()

 stop.onclick = function()
 zoom.onclick = function()

 function launchFullscreen(element)

 function screenStateChange(e)
 function adjustControls()

 mediaElementContainer.toggle = function(clasName)

// getAudioElement.js
function getAudioElement(mediaElement, config)

 muteAudio.onclick = function() {

 stop.onclick = function() {

4 | P a g e

Chart (1), illustrates WebNSM between two peers

C. ANALYSIS

This implementation was achieved among fifteen peers (PCs).

The experiment took place during three to four minutes over

each communication via Local Area Network (LAN) and

Wide Area Network (WAN). In addition, the implantation was

repeated twice, once using Wireshark software and another

time without using Wireshark in order to validate the CPU

loads. The analysis can be described as follows:

1) WebNSM

Based on the network analysis at inspect element of Firefox at

the real-time communication, WebNSM demonstrates a

productive achievement. While its performance was analysed

individually among two to fifteen users based on signalling

delay for two concepts, the first was based on the signalling

delay to get ready and the second relies on sending a request

and receiving a response between two peers. Thus, WebNSM

consumes 161 (ms) as a minimum consumption and 180 (ms)

as a maximum consumption to get ready, it also consumes 106

(ms) as a minimum use and 110 (ms) as a maximum

consumption to send a request and receive a response. The

delay was changeable based on CPU capability, the speed of

web server and the kind of network. The mean time was

calculated so WebNSM expends 171 (ms) to be ready and

consumes 112 (ms) to send a request and receive a response.

Diagram (1) elaborates more on that. WebNSM is able to

setup, establish a video conferencing and end a

communication simultaneously among all participants.

Moreover, the CPUs and bandwidth consumption have not

effected the presentation of WebNSM. On the other hand, the

quality of audio and video was affected by the CPU and the

bandwidth.

Diagram (1), presents the delay in WebNSM among fifteen peers over LAN

and WAN networks. Unite is milliseconds.

2) Quality of Experiment (QoE)

This research was applied by actual users and collected their
individual feedbacks on the perceived user experience by the
use of questionnaires:

a) Video conferencing via LAN network

Without using Wireshark software, the quality of audio and

video by individual tests among two to ten peers were

excellent, also between eleven to twelve peers were acceptable

while some peers showed some interruption. On the other

hand, when the number of peers increased to be over thirteen

users, it displayed an unacceptable quality over both audio and

video as demonstrated in table (1).

Table (1), shown the quality of audio and video without Wireshark among

fifteen peers over wired of LAN network

When using Wireshark, the quality of audio and video among

two to eight peers were excellent and between nine to eleven

peers were acceptable. But, some peers led to disorders in both

audio and video. When the number of peers increased to be

more than eleven, it offered an unacceptable quality.

M
o

n
ito

r

S
eq

u
en

ce

N
u

m
b

er o
f

p
eer

D
u

ra
tio

n

Q
u

a
lity

 o
f

a
u

d
io

Q
u

a
lity

 o
f

v
id

eo

W
ith

o
u

t

W
iresh

a
rk

1. 2–10 3-4 m Excellent Excellent

2. 11-12 3-4 m Acceptable Acceptable

3. 13-15 3-4 m Unacceptable Unacceptable

5 | P a g e

b) Video conferencing via WAN network

Using Wireshark, the quality of audio and video among two to

seven peers was excellent and between eight to ten peers were

acceptable, but some peers presented an echo and high delay

over video. However, the quality with more than ten peers was

unacceptable and showed a frozen image all most. As

displayed in the table (2).

Table (2), demonstrated the results of audio and video using Wireshark among

fifteen peers over WAN network

3) CPU

It has a primary influence on WebRTC video conferencing
especially using mesh topology. Mesh topology uses many
links among users to transfer data. It handles a high load due to
various sources sending and receiving the videos at the same
time, another reason why it has a highload is the process of
encoding and decoding each link in the mesh typology. this
load will impact the CPU performance. Consequently, as much
as the increase in the number of users, the number of links (L)
will increase as well. The CPU limitations affect only the user
with the reduced CPU usage [4]. On the other hand, memory
usage was not effected on the quality of the video and audio,
while the communication was in a real time. As presented in
the diagram (2).

Diagram (2), displays CPU and memory usage among fourteen peers over
LAN network.

4) Bandwidth

WebRTC supports various codecs such as G.711, PCMA,
PCMU, Opus, V8 and so on [25]. In WebNSM, the SDP sends
different CODECS, such as G.711, G.722, Opus, PCMA and
PCMU for audio and VP8, VP9 and H.264 for video. The SDP
answer will choose an appropriate codec based on the engine.
In this implementation, Firefox that relies on Opus as an audio
codec and VP8 as a video codec was used. WebRTC defaults
its codecs to make use of their superior quality in comparison

to other codecs including their adaptability when changes in
the bandwidth occur [25]. Bandwidth consumption was
measured and analysed to find the following:

• Each peer needs a minimum of 1Mb/s bandwidth for
each RTP on the video via LAN and WAN networks

• Each peer needs a minimum of 58 - 63 kb/s
bandwidth for each RTP on the audio via LAN and
WAN networks

Bandwidth consumption can lead to a bottleneck on the client,
which affects the quality of video and audio. Diagrams (3&4)
give more clarifications.

Diagram (3), demonstrates bandwidth consumption between LAN network
among fourteen peers. The unit is kbit/s

Diagram (4), shows bandwidth consumption between WAN network among
ten peers. The unit is kbit/s

5) Mesh topology

In a mesh typology, any conference member can invite another
user to participate/leave at any time without affecting the
remaining participants. Many links can be created among peers
to transfer data, and all peers connect between themselves to
transmit data from different devices simultaneously. Figure (2)
presents the architecture of mesh topology and diagram (5)
shows the number of links among fifteen users.

M
o

n
ito

r

S
e
q

u
e
n

c
e

N
u

m
b

er
 o

f

p
e
e
r

D
u

r
a

tio
n

Q
u

a
lity

 o
f

a
u

d
io

Q
u

a
lity

 o
f

v
id

eo

W
ith

W
ire

sh
a
r
k

1. 2-7 3-4 m Excellent Excellent

2. 8-10 3-4 m Acceptable Acceptable

3. 11-15 3-4 m Unacceptable Unacceptable

6 | P a g e

Figure (2), indicates the architecture of mesh topology

Diagram (5), illustrates the number of connections among fourteen participants
in mesh topology

As shown in diagram (6), each communication between peers
needs to have a separated RTP (Real Time Protocol) for the
audio and video and then transmit them using different UDP
(User Datagram Protocol) port. Therefore, each peer requires at
least four RTPs as follows:

• One RTP port for outgoing video

• One RTP port for outgoing audio

• One RTP port for incoming video

• One RTP port for incoming audio

Diagram (6), displays the number of RTP among fourteen participants in mesh
topology

IV. EVALUATION

It has been proved that WebNSM is able to setup, establish a

session and close a communication among an indefinite

number of peers over LAN or WAN networks. WebNSM is

also able to open one/multiple rooms to offer bi-directional

video conferencing, thus keeping the session productive even

if any peer leaves, controls self/remote streams, overshoots

non-candidates and so on. It is also not affected by the

limitations of CPU, bandwidth and memory. However, the

quality of audio and video is affected by the limitations of

CPU and bandwidth. The performance of CPU and bandwidth

consumption has major issues in audio and video

conferencing, while video conferencing requests the processor

for decoding, encoding and providing the video and audio at

the same time. This can be defined as CPU stress and it

depends on different elements e.g. used codec’s, quality of the

audio, video and their respective sizes. Moreover, the variety

of bandwidth speed among the different users can impact the

quality of video and audio. Mesh topology is the most

complicated topology since it requests a high CPU and high

bandwidth speed. For instance, when a user uses CPU core

Xeon, it cannot perform as another user, which uses CPU core

i5, etc. In other words, as much as the CPU core is high, it will

lead to better communication and allow more peers to join.

According to the referenced restrictions, it can be emphasised

that the CPU plays a leading role in communication and

number of peers over mesh topology, as long a bandwidth

does a key role in the quality of audio and video. In another

meaning, the available CPUs at the used computers (e.g.

Xeon) are not able to encode, decode, send and receive video

conferencing at the same time over more than 55 links via

mesh topology in real implementation. The quality of

experience (QoE) verifies that this testbed environment works

correctly and that it can be used to conduct more extensive

experiments on user expertise in the future while having high

core CPUs.

V. CONCLUSION AND FUTURE WORK

Users in WebRTC need a signalling mechanism to set up a

session, coordinate a communication and connect with each

other. In this paper, a novel scalable WebRTC signalling

mechanism named (WebNSM) has been created and

implemented, which can offer bi-directional video

conferencing for unlimited users, as well as using mesh

topology over different networks such as LAN and WAN

networks. WebNSM guarantees a different performance for

providing a method to manage the routeing by WebRTC

characteristics. In addition, a deep evaluation of the physical

implementation was done over CPU performance, memory

usage, WebNSM performance, QoE, mesh topology, etc.

Nevertheless, using mesh has impacted the quality of audio

and video due to the bandwidth and CPU consumptions in

spite of the fact that WebNSM has not been affected.

Therefore it takes an average of 112 (ms) as a mean time of

delay from the time an offer is sent until returning a response,

even when the network is congested. This application has

calculated the number of links and RTP to comprehend the

number of connections in the mesh. Additionally, this

signalling mechanism can support unlimited number of peers

while having high core CPUs, that it can be supplied in

7 | P a g e

various applications, such as conferencing among users, e-

Learning among teachers and students, telemedicine among

patients, doctors or technicians, etc. In the future: an

implementation of WebNSM based on simplex

(unidirectional) and bi-directional topologies; also attempt to

use high core of CPUs to evaluate the performance.

ACKNOWLEDGMENT

 This research was funded by the Ministry of Higher

Education in the Republic of Iraq, according to the scholarship

number (1469) in (03/04/2013) to sponsor the first author to

pursue his PhD research.

REFERENCES

[1] J. Jang-Jaccard, S. Nepal, B. Celler, and B. Yan, “WebRTC-based
video conferencing service for telehealth,” Computing, vol. 98, no.

1–2, pp. 169–193, 2016.

[2] M. Phankokkruad and P. Jaturawat, “An Evaluation of Technical
Study and Performance for Real-Time Face Detection Using Web

Real-Time Communication,”, no. I4ct, pp. 162–166, 2015.

[3] G. Carullo, M. Tambasco, M. Di Mauro, and M. Longo, “A
Performance Evaluation of WebRTC over LTE,” in 12th Annual

Conference on Wireless On-demand Network Systems and Services

(WONS), pp. 170–175, 2016.
[4] L. O. D. Nedberg, “Quality of Experience of WebRTC based video

communication Eirik Fosser,” Norwegian University of Science and

Technology, 2016.
[5] Sam Dutton, “Getting Started with WebRTC,” 2014.

[6] C. Cola and H. Valean, “On multi-user web conference using

WebRTC,” in18th International Conference on System Theory,
Control and Computing, ICSTCC, pp. 430–433, 2014.

[7] C. Y. Chiang, Y. L. Chen, P. S. Tsai, and S. M. Yuan, “A video

conferencing system based on WebRTC for seniors,” in
Proceedings - 1st International Conference on Trustworthy Systems

and Their Applications, TSA, pp. 51–56, 2014.
[8] I. T. Management, “WebRTC in the Enterprise,” 2016.

[9] H. Rahaman, “A Survey on Real-Time Communication for Web,”

vol. III, no. Vii, pp. 39–45, 2015.
[10] M. Schindler, C. Von Harscher, J. Kinzig, and S. Alekseev,

“Evaluating Framework for Monitoring and Analyzing WebRTC

Peer-to-Peer Applications,”, no. Inc, pp. 171–175, 2016.
[11] M. Deshpande, “Integration of WebRTC with SIP – Current

Trends,” Int. J. Innov. Eng. Technol. Integr., vol. 6, no. 2, pp. 92–

96, 2015.
[12] Schahin Rajab, “Comparing different network topologies for

WebRTC conferencing,” 2015.

[13] S. a S. T. Miner, “Getting Started with,” Packt>, pp. 1–41, 2013.
[14] R. Rai, Socket. IO Real-time Web Application Development.

BIRMINGHAM - MUMBAI: PACKT, 2013.

[15] B. Sredojev, D. Samardzija, and D. Posarac, “WebRTC technology
overview and signaling solution design and implementation,” in

38th International Convention on Information and Communication

Technology, Electronics and Microelectronics, MIPRO-
Proceedings, no. May, pp. 1006–1009, 2015.

[16] C. Notice and A. Notice, “WebRTC to complement IP

Communication Services,” 2016.
[17] N. M. Edan, A. Al-Sherbaz, S. Turner, and S. Ajit, “Performance

evaluation of QoS using SIP & IAX2 VVoIP protocols with

CODECS,” in Proceedings of SAI Computing Conference, SAI, pp.
631–636, 2016.

[18] M. Grinberg, “socketio Documentation,” 2016.

[19] D. C. B. Adam Bergkvist, B. A. Cullen Jennings, Anant Narayanan,
and B. and Taylor, “Real-time Communication Between Browsers,”

W3C, 2017. [Online]. Available: https://w3c.github.io/webrtc-pc/.

[Accessed: 30-Aug-2017].
[20] Ana Pol González, “DEFINITION OF A MENA OPINION SCORE

FOR VP8 OVER REAL-TIME CONNECTIONS,” Universida de

Vigo, 2017.

[21] and M. S. D. Vučić, L. Skorin-Kapov, “The impact of bandwidth

limitations and video resolution size on QoE for WebRTC-based

mobile multi-party video conferencing Faculty of Electrical
Engineering and Computing , University of Zagreb,” in 5th

ISCA/DEGA Workshop on Perceptual Quality of Systems, pp. 59–

63, 2016.
[22] S. Potthast, “Point to Point and Multipoint,” Jisc community, 2016.

[Online]. Available: https://community.jisc.ac.uk/library/janet-

services-documentation/point-point-and-multipoint. [Accessed: 23-
Aug-2017].

[23] K. Fai Ng, M. Yan Ching, Y. Liu, T. Cai, L. Li, and W. Chou, “A

P2P-MCU Approach to Multi-Party Video Conference with
WebRTC,” Int. J. Futur. Comput. Commun., vol. 3, no. 5, pp. 319–

324, 2014.
[24] V. Singh, A. A. Lozano, and J. Ott, “Performance analysis of

receive-side real-time congestion control for WebRTC,” in 20th

International Packet Video Workshop, pp. 1–8,2013.
[25] A. Sandoval Rosas and J. L. Alejos Martínez, “Videoconference

System Based on WebRTC With Access to the PSTN,” 2016.

