Desynchronization and pattern formation in a noisy feedforward oscillators network
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We consider a one-dimensional directional array of diffusively coupled oscillators. They are per-
turbed by the injection of small additive noise, typically orders of magnitude smaller than the
oscillation amplitude, and the system is studied in a region of the parameters that would yield
deterministic synchronization. Non-normal directed couplings seed a coherent amplification of the
perturbation: this latter manifests as a modulation, transversal to the limit cycle, which gains in
potency node after node. If the lattice extends long enough, the initial synchrony gets eventually
lost, and the system moves toward a non-trivial attractor, which can be analytically characterized
as an asymptotic splay state. The noise assisted instability, ultimately vehiculated and amplified by
the non-normal nature of the imposed couplings, eventually destabilizes also this second attractor.
This phenomenon yields spatiotemporal patterns, which cannot be anticipated by a conventional

linear stability analysis.

PACS numbers:
I. INTRODUCTION

Understanding the origin and functional significance of
self-organized patterns of activity, is a challenging ques-
tion of broad applied and fundamental importance [1, 2].
In many realms of investigation, the system under inspec-
tion is composed by individual excitable units, which ex-
ecute periodic oscillations [3]. Often, coupling together
an ensemble made of identical oscillators can eventually
yield a fully synchronized solution [4]. This amounts to
operate the system in unison, the oscillations displayed
on different sites of the collection being perfectly coor-
dinated, with no phase delay. For many applications
of interest, as, e.g. the study of collective oscillations
in neuroscience, distinct deterministic oscillators occupy
the nodes of a heterogeneous network, which defines the
embedding structural support [5, 6]. Diffusive couplings
between adjacent mesoscopic units are customarily as-
sumed, a paradigmatic choice which proves adequate in
many cases [7], from modeling the electrical synapses to
problems related to the energy management in power
plants. Moreover, also feedforward connectivity is be-
lieved to play a significant role in a neuroscience context
[8].

Instabilities may be triggered by the punctual injec-
tion of a heterogeneous perturbation [9], a tiny source
of stochastic disturbance which, under specific condi-
tions, amplifies and eventually breaks the oscillators’
synchrony [10]. The instabilities instigated by random
fluctuations are often patterns precursors [11, 12]. The
imposed perturbation materializes in fact in patchy mo-
tifs of the concentration amount, characterized by a vast
gallery of shapes and geometries. An archetypal model
of self-sustained oscillations is the celebrated Complex
Ginzburg-Landau equation (CGLE), often evoked as a
pillar of non-linear phenomena, from superconductiv-

ity to superfluidity and Bose-Einstein condensation, via
strings in field theory and neuroscience [13]. The CGLE,
defined on ordinary or graph-like supports, admits a
time-dependent uniform synchronized solution, of the
limit cycle type. Deviations from a periodic waveform,
sustained by nonlinearities, yield a prototypical modula-
tional instability characterized by spectral-sidebands and
the breakup of the waveform into a train of pulses. This is
the so-called Benjamin-Feir (BF) instability, named after
the researchers who first identified the phenomenon work-
ing with periodic surface gravity waves (Stokes waves)
on deepwater [14]. Typically the condition for the onset
of the deterministic instability can be straightforwardly
worked out through a traditional linear stability analy-
sis, which constraints the reaction parameters involved
in the formulation of the problem [1, 15-17].

Starting from these premises we are here interested in
studying the stochastic analog of the BF instability in
an open feed-forward topology. In the framework that
we shall set to explore, the complex state variable of the
CGLE is disturbed by a small exogenous perturbation,
which configures as additive white noise, possibly orders
of magnitude smaller than the unperturbed oscillation
amplitude. More specifically, we are interested in as-
sessing the role played by the injected stochastic drive,
when the system is operated in a parameters region for
which the synchronous limit cycle proves stable under
deterministic evolution. As we shall argue, synchronous
solutions, deemed deterministically stable, can turn un-
stable by agitating the system with an arbitrarily small
perturbation. In the case of the CGLE, here assumed
as a reference model, we will unfold, and thoroughly
characterize, a generalized class of convective instabili-
ties reminiscent of the BF one. To achieve the sought
effect we shall accommodate for non-normal [18], diffu-
sive couplings between individual oscillators. In a recent



series of papers [19, 20], we showed that giant stochastic
oscillations, with tunable frequencies, can be obtained,
by replicating a minimal model for quasi-cycle along a
directed chain of coupled oscillators. Here, the directed
link between adjacent oscillators will fuel a self-consistent
amplification of the stochastic disturbance, always yield-
ing — for a sufficiently long chain — a loss of synchronic-
ity. Taken all together, our findings constitute a practical
example of convective instability [21], and point to the
subtle interplay between noise and topology, capable of
changing qualitatively the system dynamics. This brings
evidence of the eventual failure of purely deterministic
approaches to real-life problems.

The paper is organized as follows: in the next section,
we will introduce the model to be probed. In particu-
lar, we will discuss its synchronized and splay states, the
latter being solutions that display a constant phase differ-
ence between adjacent network sites. We shall then turn
to analyze the effect of stochasticity, with reference to the
amplification mechanism, as alluded to above. Stochastic
non-normal patterns are consequently reported to occur,
notwithstanding the stability of the homogeneous solu-
tion under traditional linear analysis. Finally, we will
sum up and draw our conclusions.

II. DETERMINISTIC GINZBURG-LANDAU
OSCILLATORS: SYNCHRONIZED AND SPLAY
STATES

Our model consists of €2 diffusively and unidirection-
ally coupled Ginzburg-Landau oscillators. Each oscilla-
tor is described by the complex variable W} (1 < j < Q).
The oscillators in this directionally coupled chain (see
Fig. 1) obey the following ordinary differential equations

dWy

T = W1 — (1 + iCQ)‘W1|2W1 (1&)
and, for 7 > 1
dw; ; 2 :
g =W (brics) Wy "W+ (1+ie)) K (Wj—1-Wj) (1b)
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FIG. 1: Schematic representation of our system. Each node
carries an oscillator and is unidirectionally coupled to its suc-
cessive neighbour. Parameter K modulates the coupling.

where c¢1, co are real parameters and K denotes the cou-
pling strength. It is obvious that changing the sign of K
and at the same time inverting the boundary conditions
is equivalent to reversing the information flow along the
chain: therefore in the rest of this paper K is assumed to

be positive. The system is also symmetric under the fol-
lowing transformation: W; — W, (c1,ca) — —(c1,¢2)
which allows us to restrict our focus on half of the (¢1, ¢2)
parameter plane. Two types of solution are of interest,
the synchronized and the splay ones. The synchronized
state (usually denoted as homogeneous state, in the vast
literature of spatially coupled oscillators) corresponds to
the solution

W; =exp(—icot) , j=1,---,Q. (2)
By direct inspection of Eq. (1a) and (1b) one can check
that any dependence on the spatial coupling K and on
the parameter ¢; disappears, and that this solution exists
for any value of c,.

The splay states are a family of uniformly rotating so-
lutions with finite constant-in-time phase differences be-
tween consecutive nodes. These states can be charac-
terized making use of the general polar representation
W, = p;exp(if;) and first imposing the stationarity con-
dition p; = 0 for j > 1. Moreover, by introducing the
constant-in-time phase differences ¢; = 6; — 6,1, the
stationary conditions applied to Eq. (1b) yield the recur-
rence equations

pj:\/<1+K[”glf<¢j>—1D (3a)

0=ca(l - ) + K [”;19<¢j> - ] (3b)

J

where

[(¢;) = cos ¢ + c1sing; (4a)

9(¢;) = c1cos¢; — sin ;. (4b)

The initial condition for this recurrence equations
stems from Eq. (1a), i.e. p; = 1 and 6; = —cot. Notice
that the stationary solution on the first node coincides
with the synchronized state. We avoid reporting explicit
calculations, but it can be easily shown that for the set of
parameters considered in this paper (e.g., see the caption
of Fig. 2) the recurrence equations equipped with this
initial condition admit a unique stable nonhomogeneous
solution, which spatially converges to the splay state

poe = V1+ K (f(doo) — 1) (5a)
boo = 2 Atan [Hcl&‘l (5b)
Cy — C1

The special case ¢o, = £7 occurs in the limit co — ¢;.
In practice, one finds that the spatially asymptotic splay
state is rapidly approached along the chain (see Fig. 2)
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FIG. 2: SPLAY STATE REPRESENTATION The radius of the
limit cycles over the chain p; is depicted by the red solid line
(circles), while the blue line (squares) stands for the phase dif-
ference (mod 27) between two successive nodes. As expected,
they converge to the asymptotic values poo, ¢oo (dashed black
lines). The parameters here are ¢c1 = —5, co =4 and K = 4.

The rate of convergence depends on the parameters K,
c1 and ¢y, however, for the sake of space, we do not report
any detailed investigation on this point.

It is important to point out that the existence condi-
tion for the splay state is that po is real, i.e. that the ar-
gument of the square root in Eq. (5a) is non-negative. As
an example, in Fig. 3 we show the region in the (¢, ¢a)-
plane where the splay state exists for K = 4: the colour
code corresponds to different positive values of po,, while
the black region indicates where the splay state does not
exist.

As a final remark, we want to point out that there exist
an entire family of solutions asymptotically approaching
along the chain the splay state (see Eq. (3)). In these
solutions the synchronous state extends to an arbitrary
large initial portion of the chain, namely p; = 1 and
¢; =0for j =2,---,j. For j > j constant-in-time phase
differences become finite and the solution converges to
the asymptotic splay state (5) for large j. As we shall
discuss later, the existence of this entire family of splay
states impacts on the way noise destabilizes the homo-
geneous synchronized state determining a typical spatio-
temporal pattern organization for the stochastic system.

A. Stability of synchronized and splay states

In order to investigate the stability of the synchronous
and of the splay states we can perform a standard lin-
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FIG. 3: SPLAY STATE EXISTENCE: the color represents the
value of po (see Eq.(5a)), while the black zone refers to the
region where the splay state does not exist. The solid lines
correspond to the isocurves of poo. Here K = 4.

ear stability analysis. We first introduce small per-
turbations dp;,06; of the limit cycles, W; = (p; +
dpj)exp(i(8; + 66;)) for 1 < j < Q. Linearizing and
retaining the first order in the pertubations leads to an
equation that can be put in the general matrix form
v = J(p, 0)6v (we adopt the shorthand notation (p, ¢) =
(plv ¢17 P2, ¢27 Ty PR, ¢Q))’ where dv = 5(p7 ¢) is the
vector of perturbations and J is the Jacobian matrix asso-
ciated to dynamics (1). Due to the unidirectional nature
of the coupling K, J exhibits a lower tridiagonal block
structure. Hence, to assess the stability of any state it
is enough to compute the eigenvalues A\, and Ay, for
1 <5 < Q of the diagonal 2 x 2 blocks

-2 0
A= (6a)
—2(32 0
and
(1-3p2 - K) Kpj-19(¢;)
A= (6b)
7(2c2pj + K"Jp;lg((,zsj)) —KE= f(¢5)
for 2 <j <.

The eigenvalues of the first block A; are A\, =—2 and
Ao, =0, the latter reflecting marginal stability towards
global phase rotations. A given limit cycle solution is
stable only if the complex eigenvalues of all the other
blocks have a negative real part, i.e. R(A,,) < 0 and
R(Ng,) <0 for2<j<Q.

The synchronized state, where p; =1, ¢; =0 Vj > 1,
is stable independently of K for 1 4+ cyco > 0, while for
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FIG. 4: SYNCHRONIZED STATE STABILITY: On this panel we
display the value of K[, (see Eq. (7)) beyond which the
synchronized state is stable. In the black region 1+ cica > 0
and the synchronized state is always stable. The solid lines
correspond to the isocurves of the heat map.

14 c1¢2 < 0 only if the following condition holds:

2(1 4 c1c2)

K>Kl, =-
1+¢2

Therefore, for each couple (¢1, c2) we can find a minimum
coupling value Kf,{m such that the synchronized state is
stable. The resulting stability map is shown in Fig. 4.
Notice that the condition 1 4 c¢1co < 0 is sufficient for
the onset of the instability, when the CGLE is defined on
a continuous spatial support [16]. In fact, this is known
as the condition of the Benjamin-Feir instability for the

CGLE [14, 16].

Stability analysis is more complicated for the splay
state. Making use of the recurrence relations (3) we can
first compute p; and 6; to evaluate the Jacobian blocks
A (see Eq. (6b)). Then we can assess the stability of the
splay state in the plane (c1,c2) by computing the Jaco-
bian matrix eigenvalues. An example of the outcome of
this procedure is shown in Fig. 5, where the parameters
have been set to the values ¢; = —5, co =4 and K = 4.
Here all eigenvalues for j > 1 have a negative real part
so that the splay state is linearly stable. Notice the fast
convergence of the eigenvalues to their asymptotic state
values.

The analysis of the synchronized and splay states of the
directed chain of coupled CGL oscillators is summarized
in Fig. 6 for the case K = 4. The different regions of this
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FIG. 5: SPLAY STATE LINEAR STABILITY ANALYSIS The green
curve (triangles) represents the real part of the largest eigen-
value for each node j while the yellow line (diamonds) the cor-
responding imaginary part. The parameters here are ¢c; = —5,
c2 =4 and K = 4. In this example, the splay state is charac-
terized by j = 1.

FIG. 6: Diagram of the existence and stability of the synchro-
nized and of the splay states for K = 4: in region A, whose
boudaries are fixed by the condition pos = 0, only the syn-
chronized state exists and is stable; in region B both states
exist, but only the synchronized one is stable; in region C
both states are stable, while in region D the splay state only
is stable.

diagram are described in the caption; the red cross lo-
cates the point in the diagram which defines our working
condition as selected in the forthcoming sections when in-
vestigating the stochastic version of the directed chain of
coupled CGL oscillators. More details on linear stability
analysis are given in Appendix A.



III. EFFECTS OF STOCHASTICITY

A. Linear amplification mechanism

The stochastic version of the deterministic model (1)
reads
dW; . 2 :
ar :Wj—(1+202)|Wj‘ Wj+(1+lcl)K(Wj,1—Wj)+0’77j(t)
(8)
where o is the noise amplitude, n; = R(n;) + iS(n;) is
a complex additive noise with zero mean and correlators
(R (OR(E)) = (S, (OS () (#)) = 0,8(t—¢"). In
what follows the numerical investigations of the stochas-
tic dynamics (8) has been performed for the parameter
values (c1, c2, K) = (—5,4,4) (see the red cross in Fig. 6),
where both the synchronized and the splay state of the
deterministic dynamics are linearly stable. We want to
investigate the effects of a small additive noise on the
deterministic evolution (1) [22-24]. In practice, we have
always taken o = 107°, a value which is five orders of
magnitude smaller than the oscillations amplitude of the
synchronized state. As shown in Appendix B, Eq. (8)
can be rewritten for the polar components of the com-
plex variable W}, while the corresponding noise compo-
nents remain delta-correlated and — at least near the limit
cycle solutions — additive. In practice, we have stud-
ied the effects of the noise-induced fluctuations around
these states. We know from the previous section that
both deterministic states are indeed stable limit cycles
with a complex eigenvalues Jacobian. This guarantees
the presence of stochastic oscillations, also called quasi-
cycles [25, 26], on the top of the deterministic stable
states. Then, we can proceed to the Fourier analysis of
our system linearized around each limit cycle. We denote
by év and & the Fourier transforms of the perturbations
vector 0v and of the polar white noise { = (€,,&p), re-

spectively. We can readily obtain §v;= 1231 @ﬁl(w)é,
where ®j; = —Jj; — iwdj;. To pursue the analysis of the
oscillations we compute the power spectrum density ma-
trix of the fluctuations in the vicinity of the attractor [27]

2Q

(091(w)67(w)=Pr; (@)=Y _ 5 (@)(@1,) ().

k=1

9)

Its diagonal entries are the power spectrum of transver-
sal (j odd) and longitudinal (j even) oscillations around
both solutions. We first focus on the transversal, radial,
fluctuations around the synchronized state. In Fig. 7(a)
we depict the power spectrum of several nodes. The solid
line stands for the analytical power spectrum computed
from Eq. (9) while symbols correspond to direct numer-
ical simulations of Eq. (8), using the Euler-Maruyama
algorithm (dt = 0.001). The power spectrum of the first
node peaked at zero frequency (circle, black line) is the
one of white noise. As we proceed along the chain, the
peak of the power spectrum progressively shifts towards
higher frequencies. The profiles around the peak become

narrower (thus singling out a well-defined oscillation fre-
quency ), while fluctuations are amplified along the chain.
This amplification can be well appreciated by direct in-
spection of Fig. 7(b). Such amplification and modula-
tion proceed along the chain as long as the linear ap-
proximations hold. Out of this approximation, nonlinear
effects should take over and stop the amplification pro-
cess. Note that an analogous phenomenon was already
discussed in [20] for noisy fluctuations around a single
fixed point. Since the structure of the Jacobian remains
essentially the same for the splay state, here we face
a qualitatively identical situation. A similar amplifica-
tion mechanism takes place for longitudinal fluctuations
around both stable states, as exemplified in the inset of
Fig. 7(a). However, longitudinal oscillations are typically
characterized by a broader spectrum, possibly due to the
softer nature of the phase direction with respect to the ra-
dial one for Ginzburg-Landau potentials. To summarize
our findings, noisy fluctuations around both attractors
are amplified and modulated as one proceeds along the
chain to yield sharper and stronger oscillations. While
nonlinear effects would eventually arrest this amplifica-
tion process, the linear mechanism is typically enough to
overcome the attractor linear stability itself. These fea-
tures are mainly due to the unidirectional structure of the
Jacobian, which is highly non-normal. It is well known
that non-normality amplifies transient dynamics [28-30]
and may lead to convective instability [21]. Here the
presence of noise makes this amplification perpetual [19].

B. Pattern formation

Why is this so important? Let’s imagine the following
scenario where both solutions exist and are stable. We
then seed the following initial conditions p;(t = 0) = 1 for
j<1land ¢;(t=0)=0forj >1. What we expect from
a naive linear stability analysis is that, for small noise am-
plitudes, the system will remain in the vicinity of the syn-
chronized state, with fluctuations of the order the noise
amplitude o. On the contrary, our analysis reveals that
the amplification mechanism here discussed will drive the
system to explore larger portions of the available phase
space progressively, until it eventually reaches the splay
state. This is illustrated in Fig. 8, where we show the
radial time series of successive nodes. The time series
of the first nodes are plotted in red: they remain settled
on the synchronized state, the amplification on these first
nodes not being strong enough to escape from its basin of
attraction. On the 11*" node (blue line) fluctuations are
now strong enough to escape and reach the second attrac-
tor, settling on the splay state radius p;,,. Nodes to the
right converge to successive radii p; with j > j + 1. The
attractor values p;, each represented by a dashed line, is
found thanks to the recurrence relations (3). They are
in good agreement with the time series simulations per-



FIG. 7: (a) Normalized power spectra of different nodes along
the chain: the solid lines stands for the theoretical calculation
while the symbols correspond to numerically computed power
spectra using the Euler-Maruyama algorithm. The displayed
agreement confirms the validity of the analytic calculations.
In the inset: normalized power spectra for longitudinal fluctu-
ations. (b) Trajectories of p;. The amplification phenomenon
can be clearly appreciated. (c¢) Phase portrait of (X;(t), Y;(¢))
where X; and Yj respectively stand for the real and the imag-
inary part of the complex variable W;. Oscillations extend
along the radial direction and progressively alter the unper-
turbed limit cycle profile. The parameters here are ¢; = —5,
c2 =4, 0 = 107° and K = 4. Each color designs a specfic
node: 1 black (circles), 2 blue (squares), 3 green (up-pointing
triangles), 8 red (diamonds), 9 violet (down-pointing trian-
gles).

formed by a Euler-Maruyama algorithm. This could not
be expected from a traditional linear stability analysis.

By direct inspection of Fig. 8 one can realize that the
transition for the splay to the synchronized state takes
place as a sort of zipping mechanism backward in time.
The rightmost nodes display larger oscillations and are
the first to escape the synchronized state (e.g, violet line
in Fig. 8). Moreover, it is worth stressing that this pro-
cess, forward in time, can be viewed as a series of syn-
chronous jumps to consecutive values of p; (e.g., see the
green and blue lines in Fig. 8). This zipping process con-
tinues backward in time up to node j.

A direct consequence of this mechanism is the forma-
tion of spatiotemporal patterns [23, 31, 32] as shown in
Fig. 9. Our system is initially prepared on the synchro-
nized state and exposed to a noise of amplitude o = 107°.
After some time we see that the rightmost nodes easily
reach the second attractor. However, as we already dis-
cussed, the same amplification and modulation mecha-
nism holds on the splay state. The fluctuations, there-
fore, keep on being amplified along the chain allowing

FIG. 8: Time evolution for selected amplitude p;(¢). Each
solid line refers to the time series of p;(t). Each color defines
a specific group, in red are depicted all the nodes that remain
on the synchronized attractor (from the first to the 10" node
(circles)). The 11*" node (blue line (squares)) is the leftmost
able to escape from the homogenous attractor. The successive
nodes (12" green (up-pointing triangles) and 13" violet (dia-
monds)) converge progressively to the asymptotic value poo of
the splay state. The horizontal black dashed lines correspond
to the non homogeneous attractor displayed in Fig. 2. The
parameters here are ¢; = =5, co =4, 0 = 107° and K = 4.

the rightmost nodes of our system to travel erratically in
phase space. This is exemplified by the blurred part of
Fig. 9. Here the mechanism of desynchronization is quite
obvious, being the combination of two ingredients: noise
and non-normality. While noise is needed to inject some
dynamics in the otherwise stable limit cycle, the non-
normality is essential to amplify these fluctuations. This
is what makes the system deviate from the synchronized
to the splay state and then enter an erratic dynamics.

IV. CONCLUSION

Noise is often unavoidable and, as such, it should be
accommodated for in realistic models of complex natural
phenomena. A particularly interesting setting is faced
when the stochastic perturbation, being it of endogenous
or exogenous origin, resonates with the degree of inherent
non-normality. This situation, as displayed by the exam-
ined system, yields a self-consistent amplification of the
noise component at short times. The resulting growth
of the perturbation can drive a symmetry-breaking in-
stability, for a choice of the parameters that would in-
stead result in a stable deterministic evolution. In or-
der to dig into this question, we have here examined a
directed chain of diffusively coupled, Ginzburg-Landau
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FIG. 9: Typical spatiotemporal pattern of our system, the
‘space’ (nodes) is the y—axis while time is in abscissa. One
can easily recognize the transient in which all the nodes are
in the synchronized state. The orange plateau stands for the
splay state (node 10 — 30) and precedes the blurred region,
where system erratically jumps from one state to another.

The parameters here are ¢; = =5, c2 = 4, 0 = 107° and
K =4.
oscillators. Oscillators are shaken by a fluctuating ex-

ternal drive, of arbitrarily small strength. The system
is initiated in a region of parameters where the syn-
chronous solution proves stable, under the deterministic
scenario. Working in this setting, we provided analyti-
cal and numerical evidence for a noise-induced instabil-
ity which follows the self-consistent amplification of the
imposed disturbance across the chain. The limit cycles
get modulated along the transversal direction: almost
regular, radial oscillations are displayed, which gain in
potency node after node. When the transversal modu-
lation gets large enough, oscillators escape the basin of
attraction of the synchronized solution, visiting a non-

trivial attractor, that we have analytically characterized.
The interaction between the two attractors yields com-
plex emerging patterns reminiscent of the deterministic
Benjamin-Feir instability. The combination of noise and
asymmetric couplings can radically alter the limit cycle
dynamics: bistability and associated patterns rise, as the
noisy signal is dynamically processed, along with the uni-
directionally coupled chain. It is worth mentioning that
an analogous behavior, due to the forward amplification
mechanism, is also expected when the (arbitrarily small)
noise is only injected in the leftmost node and not on all
degrees of freedom as in our current setup. Indeed the
exponential nature of the amplification phenomenon en-
sures that the leftmost source of perturbation becomes
largely predominant. Shifting to the right the leftmost
injection point along the chain only changes the pattern
layout, thus extending the synchronized region at the ex-
pense of the splay state. Traditional (deterministic) lin-
ear stability analysis is unable to grasp the essence of
the phenomenon, an observation which we find particu-
larly relevant given the recent reports on the ubiquity of
non-normality in real systems, from communication net-
works to foodwebs [33]. More refined approaches, such as
convective Lyapunov exponents [34-37] should, however,
be able to predict a convective instability at the purely
deterministic level. Resilience to synchronization might
prove a valuable asset, exploited to oppose the onset of
pathological states, as, e.g. epileptic seizures in brain dy-
namics. Future investigations are planned to shed light
onto these families of noise-instigated instabilities, as-
sisted by the non-normal topology of the underlying sup-
port, beyond the simplistic case study here considered.
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Appendix A: Linear stability analysis

We now give more details on the linear stability anal-
ysis. Consider small perturbations ép;(t) < 1 and
00;(t) < 1 of the limit cycle solutions, W; = (p; +
6p;)e’%i+9%)  Linearizing we obtain to first order in the
perturbations

Spr = —20p; (A1)
50, = —2c201 (A2)
and for j > 1
5p; = 6p; [1—3p7 — K| +6pj—1K f(o;)
+ (007 — 06;-1) K pj—19(6;) (A3)

-~ K
p;jlg(%‘) + 5Pj—1;jg(¢j)

= (05 = 06;1) K22 1(9)

J

(5éj = 0pj | —2cop; + K

(A4)

where the p; and ¢; need to be evaluated on either the
synchronized or the splay state attractor. Obviously
zeroth order terms stemming from the linearization
procedure vanish by construction when evaluated on
these two attractors.

Rewriting the linearized equations in a matrix form
highlights their simple block structure, due to the uni-
directional input from one node to the next. We in-
troduce the 2Q0 dimensional perturbation vector dv =
(6p1,601,0p2,0s,...,5pa,60q)T and write

ov=J6v (A5)
where the Jacobian J is a 20 x 2Q lower tridiagonal
block matrix, composed of 2 x 2 blocks that describe
the in-node linearized dynamics (A matrices in the fol-
lowing) or the (linearized) interaction with the previous
node (B matrices).

For instance, in the case of the synchronized state one
has

Jy = 0 By Ay O (A6)
0 0 By Ay
where
-2 0



describes the stability of the first uncoupled Landau-
Stuart node, while

—(2+K) K01 K —KCl

Ay = , Bn =
—(202 —|—K61) —-K K01 K
(A8)

originate from the other nodes (j > 1).
Using simple block matrices results one can show that

det (Jg — Maq) = det (A1 — ALy) [det (Ay — )\IQ)]Qil
(A9)

(where I, is the h x h identity matrix) so that the eigen-

values of Jg are given by the ones of A; and the ones of

Ay (with multiplicity Q — 1).

We easily verify that A; has eigenvalues A\, = —2 and

Ag = 0 and consequently is stable. We are therefore in-

terested in the eigenvalues Ay of Ay that give

Ny =—1-K+\/1-2Keies — K2 (A10)

The real part of the largest eigenvalue /\E has two zeros

for K =0 and K = Kﬁm with
2(1
e, = M) )
1+¢t

We can determine the stability condition R [Af;] < 0
by the sign of KX, and of the small K expansion of
equation (A10),

)\E ~ *K(l + 6162) <0, (A12)
which gives the sign of the K derivative of R [)\m near
K = 0. Note that they are both controlled by the sign
of 1 + cyca, so that one immediately obtains the homo-
geneous state stability condition given in the main text.

The splay states give rise to slightly more complicated

Jacobian matrices J g). The first § blocks are identical to
the ones of J g, while the following ones are obtained by
evaluating the linearized equation along the splay state
part of the attractor. For instance, for j = 1 we have

A, 0 0 O
B, A, 0 O
Jg) _ 0 Bs A3 O . (A13)
0 0 B, A, ...
with
(1-3p7 - K) Kp;j_19(9;)
A —

- (202Pj + K= 9(¢j)) K= f(65)
(A14)

and
Kf(¢;) —Kpjg(e;)
B, = ,
T\ Egey) K f(e)

where functions g and f are defined in the main text in
equations (4). Obviusly, for j > j we have

(A15)

(173pgo 7K) Kpoog(¢OO)
— (202p00 + K9(¢c))  —K[f(d0)
(A16)
and
B, ~ B, = (A17)
K (o0 K f(600)

Once again we have

det (ij) - Mm) = det (A, — AL) [det (A — o))~

N

[T [det(A; - ML)

j=j+1

(A18)

so that to estimate the eigenvalues of J (5?) we also need
to compute the eigenvalues of the matrices A, evaluated
on the splay attractor values p; and ¢; obtained from the
recurrence equations (3).

Appendix B: Nature of the noise

In this appendix we shall demonstrate that the additive
stochastic corrections we introduced in our system (see
equation (8)) remains of the same kind in polar form. We
first write the ordinary differential equations for the real
and imaginary part of W; = X; +14Y}. After few lines of
algebra we end up with

% =X; + (X7 +77) (=X + e2Y))

FE (X1 = X+ (Y= Yj)

+U77JX (B1)
=Y+ (V) (e - V)

HE (Yo = Yj 4 a1 (X1 = Xj))

er]}/ (B2)

Writing in polar form W;=p; exp(i6;) implies that p;=
,/ij + Yj2 and ¢;=Atan (;—’) In terms of O.D.E.s it

means that
) dp] - ) dX]

dp; dYj
Pitee =M



do; ay; dx;
=X,y B3b
it =@~ a (B3b)

We now want to obtain the Langevin equation for p; and
6;, this leads to

dp;

5 =P e K (=0T pipiaf(85)

+o (X;n +Ym)) (B4)

Pj

d
piditj = —copj + K (—c1p5 + pipj—19(0;))
+o (Xjm; = Yin) (B5)

where the auxiliary functions f and g have been intro-
duced in equations (4). The sum of two Gaussian vari-
ables is itself a Gaussian variable, whose average value
is the sum of the two previous average values while its
variance is the quadratic sum of the variances. Therefore
we can introduce two new Gaussian delta correlated and

10

zero mean white noise variables 5;’ and §JQ such that their
standard deviations are

Spo = /X242 = p; (B6)

This leads to the final Langevin equations in polar form

d .
e A pj— p? + K (—pj +pj—1f(9;5)) +U§f (B7)

dt
46 9 Pi—1 9 .0
ditj =—cpj + K (—01 + jpj g(¢])) + Efj (B8)

which display a multiplicative but delta correlated zero-
average noisy term. In our power spectrum analysis, con-
ducted expanding near the limit cycle solutions, this mul-
tiplicative component can be safely approximated by its
limit cycle value, making the dominant noise component
additive.



