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ASYMPTOTICS OF SOLUTIONS AND
NUMERICAL SIMULATION OF THE

NONLINEAR HEAT CONDUCTIVITY PROBLEM
WITH ABSORPTION AND VARIABLE DENSITY

Aripov M., Mukimov A.
National University of Uzbekistan, Tashkent, Uzbekistan

e-mail: mirsaidaripov@mail.ru, mukimov_askar@mail.ru

Abstract

In the present work, the asymptotic behavior of the solutions of the nonlinear
variable-density thermal conductivity problem with absorption is obtained. The
critical value parameter is considered. The resulting asymptotics was used as an
initial approximation, numerical calculations were performed. As a difference
scheme, a three-layer difference scheme was used, which, unlike a two-layer
scheme, has greater accuracy.

Keywords: nonlinear heat equation, variable density, asymptotics of solu-
tions, critical value of the parameter, upper solution, lower solution, principle
of comparison of solutions.

Mathematics Subject Classification (2010): 35K61, 65N06.

Introduction
As is well known for the numerical computation of a nonlinear problem, the choice
of the initial approximation is essential, which preserves the properties of the final
speed of propagation, spatial localization, bounded and blow-up solutions, which
guarantees convergence with a given accuracy to the solution of the problem with
minimum number of iterations.

1 Formulation of the problem
Consider the following Cauchy problem in the region Q = [0,∞)×RN

∂u
∂t

= ∇
(
|x|num−1

∣∣∇uk∣∣p−2∇u)− uβ,
|x|num−1

∣∣∇uk∣∣p−2∇u|x→+∞ = 0,
(1)

u(0, x) = u0(x), x ∈ RN . (2)

t and x are, respectively, the temporal and spatial coordinates where m ≥ 1, k ≥
1, p ≥ 2, n ≥ 1 given numerical parameters, characterizing the nonlinear medium,
∇(·) = grad

x
(·).

This problem describes the processes of nonlinear filtering of the diffusion thermal
conductivity, when the thermal conductivity coefficient is a power function of the
derivative in the presence of absorption.
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Under some suitable assumptions, the existence, uniqueness and regularity of a
weak solution to the Cauchy problem (1) - (2) and their variants have been extensively
investigated by many authors (see [1]-[3] and the references therein).

If the initial value u(x, 0) = u0(x) is respectively smooth, there are many papers
on the solvability of the Cauchy problem (1)-(2), we can refer to Wu-Zhao [4], Gmira
[5], Yang-Zhao [6], Zhao [7]-[9], Zhao-Yuan [10], Dibenedetto-Friedman [11], LiHia
[12], Dibenedetto-Herrero [13] and links to them for details.

As is known for obtaining approximate solutions by numerical methods, the main
thing is a correctly selected initial approximation. Namely, it guarantees convergence
to the solution of the problem with minimal iterations.

The authors of work [14] investigated the properties of spatial localization, exis-
tence and non-existence of global solutions for problem (1) - (2) for k = 1. Where
the density function has the form

|x|−n, 1

(1 + |x|)n
.

In [15] given an asymptotic analysis of the behavior of blow-up solutions of the
following equation

ρ(x)ut = (um)xx in Q = R×R+,

where
ρ(x) = |x|−α, e−x2 , e−x.

In [16] authors considered a nonlinear parabolic equation with a source and an
inhomogeneous density of the following form:

ρ(x)
∂u

∂t
= div

(
um−1|Du|p−2Du

)
+ uβ,

where
ρ(x) = |x|−n or ρ(x) = (1 + |x|)−n, n ≥ 0.

They found conditions which the solution of the Cauchy problem explodes in a
finite time at critical parameters β∗ = m+ p− 2 + p/N ,

n∗ =

{ N(m+p−3)+p
m+p−2 where p < N,

p where p ≥ N.

In [17] authors gave estimates of the blow-up speed of the solution of the following
nonlinear parabolic equation

ut − div(um−1|Du|λ−1Du) = f(x)up in QT = Ωx(0, T ), 0 < T <∞,

where f(x) the radial function and for simplicity has the following form f(x) = |x|−α,
−∞ < α < min(N, λ+ 1).

Here are some of them
u(x, t) ≤ γ(T − t)−B,
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where γ > 0, |x| < (T − t)1/H/2, 0 < m+ λ− 1 < p < m+ λ− 1 + (λ+ 1− α)/N ,

H = (p−1)(λ+1)−α(m+λ−2)
p−m−λ+1

,

B = λ+1−α
(p−1)(λ+1)−α(m+λ−2)

(H gives the correct space-time scaling near the blow-up time, B gives the blow-up
rate).

In [18] established conditions of norm of solution with critical exponent q∗ = K+N
Nv+1

for following Cauchy problem

ut − div(um−1|Du|λ−1Du) = −ε|Duv|q∗ + δup in RN × (0, T ),

u(x, 0) = u0(x) ≥ 0.

Here are some of them

if q < q∗ then ‖u(t)‖ ≤ γt−A,

if q = q∗ then ‖u(t)‖ ≤ γ[ln t]−
1

vq−1 .

H = (λ + 1)(vq − 1) − q(m + λ − 2), K = N(m + λ − 2) + λ + 1, δ = 0, ε =
1,m+ λ− 2 > 0.

In [19] the long time asymptotic of the solution were established for the following
problem with critical parameter pc = 1 + 2m/N

ut = −(−∆)m − |u|p−1u in area RN ×R+,

u(x, 0) = u0(x).

Following asymptotic

u(x, t) = ±C0t
−N/2m(ln t)−N/(2m+Q)

[
f(

x

t1/2m
) + o(1)

]
,

where f is the rescaled kernel of the fundamental solution of the linear parabolic
operator.

In [20] were obtained an estimate and the asymptotics of the solutions of self-
similar equations for the problem (1) - (2) for n = 0 and without the absorption
term.

Authors of the work [21] established asymptotics of the solutions and gave global
solvability for the following problem

ρ (x)
∂u

∂t
=

∂

∂x

(∣∣∣∣∂um∂x
∣∣∣∣p−2∂um∂x

)
, (x, t) ∈ R+ × (0, +∞) ,

u(0, x) = u0(x), x ∈ RN .

The authors of the work [22] obtained the asymptotic behavior of problem (1)
- (2) without variable density with an additional source term instead of absorption
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for the second critical exponent of the Fujita type. The asymptotics of self-similar
solutions has the following form

f(ξ) = c(a+ ξ
p
p−1 )−

p−1
β−(k(p−2)+l+m−1) .

Where the value of constant c was found for different conditions relative to β and
numerical calculations were performed based on the above qualitative studies.

In [23] authors were established the long time asymptotic of solutions for the
critical value of parameter for problem (1) - (2) in case m = 1, p = 2, n = 0. They
considered following semi-linear parabolic equation

ut −∆u+ uβ = 0, t > 0, (3)

u(0, x) = u0(x) ≥ 0. (4)

∆ =
∑N

i=1
∂2/∂x2i , β = 1 +

2

N
.

The solution of problem (3) - (4) is “infinity” energy. The initial data is

u0(x) = o{exp(−γ|x|2)}, x→ +∞, γ > 0.

They proved that for problem (3) - (4) the long time asymptotic of the solutions
is the following approximate self-similar solution

u(t, x) = [(T + t) ln(T + t)]−
N
2 g∗

(
x

(T + t)
1
2

)
. (5)

For g∗ function upper and lower bounds were obtained A exp
(
− |ξ|

2

4

)
≤ g∗(ξ) ≤

H exp
(
− |ξ|

2

4

)
,

|ξ|2 =
|x|2

T + t
,

where A, H are constants.
For β 6= 1 + 2

N
, the approximate self-similar differs from (5), which means that

for critical values the asymptotic of the solutions will change.
In [22] was considered following nonlinear heat equation with absorption

ut = ∆(uσ+1)− uβ in area Q = RN × (0,∞), (6)

u(x, 0) = u0(x) for x ∈ RN . (7)

Authors established the long time asymptotic of the solution for the critical ex-
ponent β = β∗ = σ + 1 + 2/N .

The following asymptotic

u(x, t) = ((T + t) ln(T + t))−kF (ξ; a). (8)
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k = N/(Nσ + 2), F (ξ; a) = C0(a
2 − |ξ|2)1/σ+ ,

C0 = [kσ/2N(σ + 1)]1/σ, T > 1,

ξ = x(T + t)−k/N ln (T + t)kσ/2,

where the value of the numerical parameter a is determined from the law of energy
conservation ∫

wM(x, t)dx =

∫
F (ξ; a)dξ = M,

M = C1a
N/kσ, where C1 = πN/2C0B(N/2, 1 + 1/σ)/(N/2).

B and Γ is beta and gamma of Euler function.
They proved that solution (8) is the long time asymptotic of the solution to

problem (6) - (7) by constructing lower and upper solutions. The following lower and
upper solution with variable a

((T + t) log(T + t))−kF (ξ; a−) ≤ u(x, t) ≤ ((T + t) log(T + t))−kF (ξ; a−),

0 < a− < a+.

The main target of this paper is to obtain the main part of the asymptotic behavior
of the solutions of problem (1) - (2), which can be calculated after bringing equation
(1) - (2) into a self-similar form convenient for research. Based on the asymptotics
of the solutions, suitable initial approximations for the iterative process are proposed
depending on the value of the numerical parameters.

2 Reducing the equation to a self-similar form
Consider the solution of equation (1) of the following form

u(t, x) = u(t)$(τ (t) , x), (9)

where
u(t) = (T + (β − 1)t)

1
1−β , $ (τ, x) = f (ξ) , ξ =

ϕ (|x|)
τ 1/p

.

Put (9) in (1) and select τ(t)

τ (t) =
[T + (β − 1)t]

β−(m+k(p−2))
β−1

β − (m+ k(p− 2))
.

For ω(τ(t), x) we get following equation

∂$

∂τ
= ∇

(
|x|n$m−1∣∣∇$k

∣∣p−2∇$)− ($β −$)

τ(m+ k(p− 2)− β)
. (10)

Now put

$ (τ, x) = f (ξ) , ξ =
ϕ (|x|)
τ 1/p

,
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ϕ (x) =
p

p− n
|x|

p−n
p if p > n,

equation (10) transforms to following self-similar equation

ξ1−s d
dξ

(
ξs−1fm−1

∣∣∣dfkdξ ∣∣∣p−2 dfdξ)+ ξ
p
df
dξ

+ (fβ+f)
β−(m+k(p−2) = 0,

s = pN/(p− n), p > n.
(11)

A very interesting point is the behavior of the function ϕ (x) . In the case p = n, the
function has the form:

ϕ (x) = ln |x| .

For ω(τ(t), x) equation has the following form

∂w

∂t
=

∂

∂ϕ

(
wm−1

∣∣∣∣∂w∂ϕ k
∣∣∣∣p−2∂w∂ϕ

)
+

(
wm−1

∣∣∣∣∂w∂ϕ k
∣∣∣∣p−2∂w∂ϕ

)
− wβ.

3 Asymptotics of solutions of self-similar problems
The next stage of the research is to study the asymptotics of self-similar solutions to
problem (11), which allowed to obtain numerical results.

We show that the function f(ξ) =
(
a− bξ

p
p−1

)
+

p−1
m+k(p−2)−1 which obtained on the

based of the standard equation method [24] is the asymptotic behavior of the self-
similar problem (11).

Theorem 1. A finite solution of the problem (1) - (2) has an the following asymptotic
behavior

f(ξ)∼f̄ (ξ) .

Proof. We will seek a solution to equation (11) in the following form

f = f̄ (ξ)w(η), (12)

where
η = − ln

(
a− bξ

p
p−1

)
,

then taking into account (12) we obtain

f ′ (ξ) = −bpξ
1
p−1

(
a− bξ

p
p−1

) p−1
m+k(p−2)−1

−1
(

w

m+ k(p− 2)− 1
− w′

p− 1

)
,

(fm)′ (ξ) = −bmpξ
1
p−1

(
a− bξ

p
p−1

) m(p−1)
m+k(p−2)−1

−1
wm−1

(
w

m+ k(p− 2)− 1
− w′

p− 1

)
,

157



Volume 2, Issue 3 (2019)

(
fk
)′

(ξ) = −bkpξ
1
p−1

(
a− bξ

p
p−1

) k(p−1)
m+k(p−2)−1

−1
wk−1

(
w

m+ k(p− 2)− 1
− w′

p− 1

)
,

substituting (12) into (11) for w(η) we obtain the following equation(
z1(η)
z2(η)

(p−1)
bp
− p−1

m+k(p−2)−1

)
w(k−1)(p−2)+m−1

∣∣∣ w
m+k(p−2)−1 −

w′

p−1

∣∣∣p−2 (wr − w′

p−1

)
+

+ d
dη
w(k−1)(p−2)+m−1

∣∣∣ w
m+k(p−2)−1 −

w′

p−1

∣∣∣p−2 (wr − w′

p−1

)
+ p−1

bp−1ppkp−2

(
w

m+k(p−2)−1 −
w′

p−1

)
+

+ (p−1)ω
bpppkp−2

z1(η)
z2(η)

ωβ−1e
β(p−1)−p+m+kp−2k

m+k(p−2)−1
+1

2k−m−k+β ,

(13)
where

z1 (η) = e−η, z2 (η) =
(
a− e−η

)/
b.

Note that the study of the solutions of the last equation is equivalent to the study
of those solutions of equation (1), each of which in some interval [η0, +∞) satisfies
inequalities:

w (η) > 0,
w (η)

m+ k(p− 2)− 1
− w′ (η)

p− 1
6= 0.

First we show that the solutions of w (η) of equation (13) have a finite limit of w0 at
η → +∞ . Introduce the notation

x (η) = w(k−1)(p−2)+m−1
∣∣∣∣ w

m+ k(p− 2)− 1
− w′

p− 1

∣∣∣∣p−2(wr − w′

p− 1

)
.

Then equation (13) has the following form

x′ = −
(
z1(η)
z2(η)

(p−1)
bp
− p−1

m+k(p−2)−1

)
x− p−1

bp−1ppkp−2

(
w

m+k(p−2)−1 −
w′

p−1

)
−

− (p−1)ω
bpppkp−2

z1(η)
z2(η)

ωβ−1e
β(p−1)−p+m+kp−2k

m+k(p−2)−1
+1

2k−m−k+β .

To analyze the solutions of the last equation we introduce an auxiliary function

φ (τ, η) = −
(
z1(η)
z2(η)

(p−1)
bp
− p−1

m+k(p−2)−1

)
τ − p−1

bp−1ppkp−2

(
w

m+k(p−2)−1 −
w′

p−1

)
−

− (p−1)ω
bpppkp−2

z1(η)
z2(η)

ωβ−1e
β(p−1)−p+m+kp−2k

m+k(p−2)−1
+1

2k−m−k+β .

Where τ is a real number. From here it is easy to see that for each value τ the
function φ (τ, η) retains the sign on some interval [η1, +∞) ⊂ [η0, +∞) and for all
η ∈ [η1, +∞) one of the inequalities is satisfied

x′ (η) > 0, x′ (η) < 0.

And so for function x (η) exist is a limit at η ∈ [η1, +∞) . The expression for x (η)
follows that

lim
η→∞

x′(η) = − lim
η→∞
{
(
z1(η)
z2(η)

(p−1)
bp
− p−1

m+k(p−2)−1

)
x− p−1

bp−1ppkp−2

(
w

m+k(p−2)−1 −
w′

p−1

)
−

− (p−1)ω
bpppkp−2

z1(η)
z2(η)

ωβ−1e
β(p−1)−p+m+kp−2k

m+k(p−2)−1
+1

2k−m−k+β } = 0.

(14)
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Let us now make the limit transition.

lim
η→+∞

z1 (η)→ 0, lim
η→+∞

φ2 (η)→ a

b
, w′ = 0.

Then from (14) for we obtain the following algebraic equation

w(k−1)(p−2)+m−1+p−2 1

(m+ k(p− 2)− 1)p−1
− 1

bp−1ppkp−2
= 0,

where

b = (m+ k(p− 2)− 1)

(
1

ppkp−2

) 1
p−1

,

the given expression for b is w = 1 and by virtue of (12)

f (ξ)∼f̄ (ξ) .

The theorem is proved.

4 Numerical analysis of solutions
It is shown in [25]-[28] that conservative difference schemes of through-counting ob-
tained by the balance method can be successfully used for approximate calculation of
generalized solutions of nonlinear heat equation. As noted in [28], three-layer implicit
schemes are more effective in nonstationary nonlinear heat conduction problems with
discontinuities at the temperature wave front or sharply varying initial data, since
the presence of temperature waves is usually a source of monotonicity, and two-layer
schemes are nonmonotonic [27].

The authors of [29] solved numerically the problem (1)-(2) at m = σ + 1, k =
0, p = 2 using a three-layer difference scheme.

For the numerical solution it is proposed to use a three-layer difference scheme,
which has a higher accuracy.

In Ω̄ we construct the spatial grid ω̄h with steps h:

xi = ih, h > 0, i = 0, 1, ..., n, hn = b

and temporary grid with τ

tj = jτ, τ > 0, j = 0, 1, ...,m, τm = T .

Replace problem (1)-(2) implicit three-layer difference scheme and obtain the differ-
ence task with error O(h2 + τ 2):

3
2τ

(yj+1
i − yji )− 1

2τ
(yji − y

j−1
i ) = 1

h2

[ ∣∣xi+xi+1

2

∣∣nai+1(y
j+1)(yj+1

i+1 − y
j+1
i )−

−
∣∣xi−1+xi

2

∣∣nai(yj+1)(yj+1
i − yj+1

i−1 )

]
−(yj+1

i )β i = 1, 2, .., n− 1; j = 1, ..m− 1,
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y0i = u0 (xi) i = 0, 1, ..n,

yj0 = ϕ1 (tj) j = 1, 2, ..m,

yjn = ϕ2 (tj) j = 1, 2, ..m,

where

ai+1 =
1

2

(yj+1
i

)m−1∣∣∣∣∣(yj+1
i+1 )

k − (yj+1
i )

k

h

∣∣∣∣∣
p−2

+
(
yj+1
i+1

)m−1∣∣∣∣∣(yj+1
i )

k − (yj+1
i−1 )

k

h

∣∣∣∣∣
p−2 ,

ai =
1

2

(yj+1
i−1
)m−1∣∣∣∣∣(yj+1

i )
k − (yj+1

i−1 )
k

h

∣∣∣∣∣
p−2

+
(
yj+1
i

)m−1∣∣∣∣∣(yj+1
i−1 )

k − (yj+1
i−2 )

k

h

∣∣∣∣∣
p−2 .

This nonlinear system of equations was solved by the iteration method in combi-
nation with the Thomas method and for its linearization the representation was used
in particular

(uj+1
i )β ≈ (uj+1

i )β + β(uj+1
i )β−1(uj+1

i − uj+1
i ).

Then the linearized system of equations has the following form

s

A
i

s+1
ȳi−1−

s

C
i

s+1
ȳi +

s

B
i

s+1
ȳi+1 = −

s

F
i
,

where

A
i

= 2τ
h2

∣∣xi−1+xi
2

∣∣nai(yj+1), Bi = 2τ
h2

∣∣xi+xi+1

2

∣∣nai+1(y
j+1),

Ci = Ai +Bi + 3 + 2τβ(uj+1
i )β−1, Fi = 4uji − u

j−1
i − 2τ(uj+1

i )β(1− β).

The values from the upper solution were taken as a zero approximation. The values
of the function u on the first layer were determined by an explicit difference scheme
with a time step (for t = T ).

The ending condition of the iteration:

|uk − uk| ≤ ε.

Note. In all numerical calculations we assumed ε = 10−3.
The results of numerical experiments show fast convergence of the iterative process

due to the successful choice of the initial approximation. Below are some results of
numerical experiments for different values of numerical parameters. The following
solutions were used as an initial approximation

Case p > n

u0(t, x) = ū(t)f(ξ), u(t) = (T + (β − 1)t)
1

1−β , f(ξ) =
(
a− bξ

p
p−1

)
+

p−1
m+k(p−2)−1

,

ξ = ϕ(x)

τ1/p
, ϕ (x) = p

p−n |x|
p−n
p ,τ (t) = [T+(β−1)t]

β−(m+k(p−2))
β−1

β−(m+k(p−2)) .
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β = 5, p = 3,m = 2, n = 2, k = 2. β = 5, p = 3,m = 2, n = 2, k = 3.

β = 5, p = 4,m = 2, n = 2, k = 2. β = 5, p = 3,m = 2, n = 2, k = 3.

β = 5, p = 3,m = 2, n = 2, k = 2.

Case p = n

As mentioned above, in the case of p = n the function ϕ (x) will change . The
asymptotics will be the same as in the case of p>n except for the function ϕ (x) . In
this case it will be equal to ϕ (x) = ln |x| .
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β = 5, p = 3,m = 2, n = 3, k = 2. β = 5, p = 4,m = 4, n = 4, k = 2.

β = 6, p = 3,m = 2, n = 3, k = 4.

Conclusions
The search for new effects of the variable density problem is a very important and
interesting study. This extends the application of this research. The variable density
function may be different in certain cases. We found this function at a critical value,
when the denominator vanishes. Using the founded asymptotics of the solution we
obtained more accurate solutions using a three-layer difference scheme.In the future,
we are faced with the task of finding the boundaries(conditions) of a variable density
function in which the solution of the problem (1)-(2) explodes in a finite time.
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