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Abstract

In this work the Carleman’s formula for the matrix upper half-plane is ob-
tained.

Keywords: Carleman’s formula, Shilov’s boundary, Cauchy kernel, matrix
upper half-plane, matrix unit disc.

Mathematics Subject Classification (2010): 32A25 (primary); 32A26
(secondary).

Introduction
Integral representations of holomorphic functions play an important role in the classi-
cal theory of functions of one complex variable and in the multidimensional complex
analysis. They solve the classic problem of recovery in the points of the D holo-
morphic function quite well, be having when approaching the boundary ∂D, from its
values on ∂D or Shilov boundary S. Naturally, with this classical problem can be
considered the following problem recover holomorphic function in D from its values
on a setM ⊂ ∂D, which does not contain S. Of course,M will be a set of uniqueness
for the class of holomorphic functions. The first result in this direction got T. Car-
leman in 1926 for the special domain D ⊂ C. His idea of introducing a “quenching”
function in the Cauchy integral formula Goluzin and Krylov developed in 1933 for
simply connected flat domains (see [3]). Their method involved the construction of
an auxiliary holomorphic function depending on the set M, it was possible to simply
connected domains D ⊂ C but, in general case it is generally impossible for multiply
connected domains in C, or for domains in Cn, n > 1.

1 Preliminaries
Matrix unit disc (classical domain of the first type according to the classification of
Cartan) is defined as a set

τ = {Z ∈ C[m×m] : ZZ∗ < I} ,

where Z∗ = Z
′ is adjoint and transpose matrix of Z, and ZZ∗ < I (I is the identity

[m×m]-matrix) means that the Hermitian matrix I −ZZ∗ is positively defined, i.e.
all its eigenvalues are positive. The boundary of τ consist of

∂τ = {Z ∈ C[m×m] : det(I − ZZ∗) = 0, ZZ∗ ≤ I} ,
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i.e. consist of the set of matrices Z, for which the matrix I −ZZ∗ is a nonnegatively
defined, but not positively defined Hermitian matrix (its eigenvalues are non-negative
and at least one of them is zero). The boundary includes the set

S(τ) = {Z ∈ C[m×m] : ZZ∗ = I} ,

which is called skeleton of τ (note that S(τ) is the Shilov boundary for τ). It is
clear that S(τ) the set of all unitary [m ×m]-matrix (the set of unitary matrices of
order m is usually referred to the U(m)). It should be noted that the set of matrices
{Z : det(I−ZZ∗) = 0} contains a limited component, distinguished by the condition
ZZ∗ ≤ I, and unlimited for ZZ∗ ≥ I. These components intersect in the skeleton
S(τ).

2 Carleman’s formula
Let τ be a matrix unit disc, and S(τ) is its skeleton (the Shilov boundary), the set
M ⊂ S(τ) and µ(M) > 0, where µ is normalized Lebesgue measure on S(τ).

We parametrize S(τ) in the following way: U = eiφu, 0 ≤ φ ≤ 2π, u ∈ SU(m),
where SU(m) is a group of special unitary matrices, i.e. detU = 1. Since detU =
eimφ detu = eimφ, the set {U : U = λu, |λ| = 1}, u ∈ SU(m) intersects the set of
elements of the group SU(m) at exactly m roots of unity eimφ = 1.

Lemma 1 (see. [1]). Haar’s measure dµ of the manifold S(τ) can be written as

dµ = h(u)dφdµ0(u),

where dµ0 is normalized Lebesgue measure on SU(m), and h is a smooth positive
function on SU(m).

We introduce the set

M0,u =
{
U : U ∈M, U = λu, λ = eiφ , 0 ≤ φ ≤ 2π

}
, u ∈ SU(m),

M
′

0 = {u : u ∈ SU(m) , m1M0,u > 0} ,

where m1 is Lebesgue measure.
According to Fubini’s theorem µ0(M

′
0) > 0. Let

ψ0(U) =
1

2πi

∫
M0,u

η + λ

η − λ
dη

η
, φ0 = expψ0.

Lemma 2 (see [2]). Let f ∈ H1(τ) (H1(τ)− is Hardy’s class). Then the following
formula

f(0) =
m∫

M
′
0

dµ1

lim
j→∞

∫
M

f(U)

[
φ0(U)

φ0(0)

]j
dµU

is true.
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Let ϕA(Z) be an automorphism of τ, which transforms point A to 0. Let

µA(K) = µ1(ϕA
−1)(K)), MA,ω = {U : U ∈M, U =

= ϕA
−1
(
λϕA

−1(ω)
)
}, |λ| = 1, ω ∈ SA = ϕA(SU(m)),

M
′

A = {ω : ω ∈ SA , m1MA,ω > 0},

ψA(U) =
1

2πi

∫
MA,ω

η + λ

η − λ
dη

η
, ϕA = expψA

(ψA depends on U , because λ and ω are functions of U).
Theorem 1 (see. [2]). Let f ∈ H1(τ). Then for any point A ∈ τ the following

Carleman’s formula holds

f(A) =
m∫

M
′
A

dµA
lim
j→∞

∫
M

f(U)

[
ϕA(U)

ϕA(A)

]j
H(A,U)dµU , (1)

where H(A,U) is Cauchy kernel for the matrix unit disk.
Matrix semi half-plane is a domain (see [1].)

D = {W ∈ C[m×m] : ImW > 0},

where W = ‖wjk‖ , (j, k = 1, . . . ,m) is square matrix of order m, whose elements are
complex numbers of the C, here ImW is defined as

ImW =
1

2i
(W −W ∗),

where W ∗ is a conjugate and transpose matrix of W . Obviously the matrix ImW
is Hermitian: its elements hjk = 1

2i
(wjk − w̄kj) satisfy the conditions h̄jk = hkj, and,

in particular, hjj = Imwjj are real. The inequality H > 0 for Hermitian matrix H
means that it is positively defined, i.e. all its eigenvalues are positive.

The boundary ∂D of the domain D is matrixW for which ImW is non-negatively
but not positively defined Hermitian matrix (its eigenvalues are non-negative and at
least one of them is zero). Since the vanishing eigenvalues of the Hermitian matrix
is expressed as a real analytic equation, then ∂D consists of pieces of real analytic
surfaces of dimension 2m2 − 1.

On the ∂D we define a set

Γ = {W ∈ C[m×m] : ImW = 0},

which is called a skeleton of the domain D. It consists of all Hermitian matrices of
order m. Hermit’s condition expressed via m2 independent equations, so the real
dimension of Γ is m2.

Let Φ is the transformation

W = Φ(Z) = i(I + Z)(I − Z)−1, (2)
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which biholomorphically maps τ to D, while S(τ) goes to Γ (see [1]).
With the transformation Φ and automorphism ΦA of the matrix unit disk, which

transforms the point A ∈ τ in 0 (0 is a zero matrix of order m), we define following
transformation

ΨB = Φ ◦ ΦA ◦ Φ−1, B = Φ(A),

which is the automorphism of the domain D, transforming point B of D to the point
iI.

Let U̇ – element of the volume in S(τ), a V̇ – element of the volume in Γ. In [4,
§3.1] is proved the following relation between U̇ and V̇ under the mapping Φ:

U̇ = 2m
2

(det(V 2 + I))−mV̇ , (3)

where V ∈ Γ. Since V ∗ = V and

det(V 2 + I) = det(V − iI) det(V + iI) =

= det(V + iI) det(V + iI) = |det(V + iI)|2 ,
(3) can be written as

U̇ = 2m
2 |det(V + iI)|−2m V̇ . (4)

The class of holomorphic functions in D we denote as A(D).
For consideration of multidimensional analogues of Carleman’s formulas it is de-

sirable to extend the class of functions for which these formulas are true in the upper
matrix half plane D. Let f ∈ A(D). Note that f(i(I + Z)(I − Z)−1) ∈ H1(τ) if and
only if ([5], page 147)

f(W )det−2(W + iI) ∈ H1(D). (5)

Theorem 2. If the function f ∈ A(D) satisfies the condition (5) and the set
M̃ ∈ ∂D has positive Lebesgue measure, then the following Carleman’s formula is
true,

f(W ) =
detm(W + iI)

im2 × lim
j→∞

∫
M̃

f(V )

[
ϕ̃(V )

ϕ̃(W )

]j
dµV

detm(V ∗ −W ) detm(V + iI)
, (6)

where the limit is uniform on compact subsets of ∂D, and V ∈ M̃.
Proof. Let F (Z) = f(i(I + Z)(I − Z)−1), then f(Z) ∈ H1(τ) and by Theorem 1

for it Carleman’s formula holds

F (Z) = lim
j→∞

∫
M

F (U)

[
ϕ(U)

ϕ(Z)

]j
dµU

detm(I − ZU∗)
,

where M is image of M̃ under the mapping Z = (W + iI)(W − iI)−1, of the matrix
upper half plane to the matrix unit disc.

Next, we consider the inverse mapping of (2)

Z = (W + iI)−1(W − iI), U = (V + iI)−1(V − iI),
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and make the following calculations:

I − ZU∗ = I − (W + iI)−1(W − iI)(V ∗ + iI)(V ∗ − iI)−1 =

= (W + iI)−1 [(W + iI)(V ∗ − iI)− (W − iI)(V ∗ + iI)] (V ∗ − iI)−1 =

= (W + iI)−1 [WV ∗ − iW + iV ∗ + I −WV ∗ − iW − iV ∗ − I] (V ∗ − iI)−1 =

= 2i(W + iI)−1 [V ∗ −W ] (V ∗ − iI)−1,

and the condition (4) holds

dµU = 2m
2 |det(V + iI)|−2m dµV .

Calculations show, that

dµU
detm(I − ZU∗)

=
detm(W + iI) detm(V ∗ − iI)

(2i)m2 detm(V ∗ −W )
· 2m

2
dµV

|detm(V + iI)|2
=

=
detm(W + iI)

im2 detm(V ∗ −W ) detm(V + iI)
dµV .

Next, ϕ plays the role of ϕ̃ for the set of M . According to M. A. Lavryentyev’s
theorem the set M has also positive Lebesgue measure such that the harmonic mea-
sure of M goes into harmonic measure of M̃ , therefore, ϕ goes to ϕ̃, and we get the
formula (6).

Remark. If instead of square matrices of orderm we consider symmetric matrices
of orderm, the domain τ turns into a classic domain of type 2, according to the Cartan
classification. In this case the considered domain D is called the “Siegel matrix half-
plane”. Theorem 2 for this domain has the following form

Theorem 3. If the function f ∈ A(D) satisfies the condition (5) and the set
M̃ ∈ ∂D has positive Lebesgue measure, then the following formula is true

f(W ) =
det

m+1
2 (W + iI)

i(
m+1

2 )
2 ×

lim
j→∞

∫
M̃

f(V )

[
ϕ̃(V )

ϕ̃(W )

]j
dµV

det
m+1

2 (V ∗ −W ) det
m+1

2 (V + iI)
, (7)

where the limit is uniform on compact subsets of ∂D.
From the proved formula (6), in particular, for m = 1 the known Carleman’s

formula for the upper half-plane is deduced.
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