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Abstract. In the presence of snow, the bias in the predic-

tion of surface albedo by many climate models remains diffi-

cult to correct due to the difficulties of separating the albedo

parameterizations from those describing snow and vegeta-

tion cover and structure. This can be overcome by extract-

ing the albedo parameterizations in isolation, by executing

them with observed meteorology and information on vege-

tation structure, and by comparing the resulting predictions

to observations. Here, we employ an empirical data set of

forest structure and daily meteorology for three snow cover

seasons and for three case regions in boreal Norway to com-

pute and evaluate predicted albedo to those based on daily

MODIS retrievals. Forest and adjacent open area albedos are

subsequently used to estimate bias in top-of-the-atmosphere

(TOA) radiative forcings (RF) from albedo changes (1α,

Open–Forest) connected to land use and land cover changes

(LULCC).

As expected, given the diversity of approaches by which

snow masking by tall-statured vegetation is parameterized,

the magnitude and sign of the albedo biases varied consid-

erably for forests. Large biases at the open sites were also

detected, which was unexpected given that these sites were

snow-covered throughout most of the analytical time pe-

riod, therefore eliminating potential biases linked to snow-

masking parameterizations. Biases at the open sites were

mostly positive, exacerbating the strength of vegetation

masking effects and hence the simulated LULCC 1α RF.

Despite the large biases in both forest and open area albe-

dos by some schemes in some months and years, the

mean 1α RF bias over the 3-year period (November–May)

was considerably small across models (−2.1± 1.04 Wm−2;

21 ± 11 %); four of six models had normalized mean abso-

lute errors less than 20 %. Identifying systematic sources of

the albedo prediction biases proved challenging, although for

some schemes clear sources were identified.

1 Introduction

Albedo change radiative perturbations due to land use and

land cover change (LULCC) have long been considered some

of the strongest climate forcing mechanisms at global and re-

gional scales (Cess, 1978; Otterman, 1977), yet results from

recent historical LULCC modeling studies reveal an order of

magnitude spread in the temperature response from albedo

change forcings (Brovkin et al., 2006; Lawrence et al., 2012;

Pongratz et al., 2010). This is likely because in regions and

months with snow cover, the interactions between vegetation

and snow significantly complicate the relationship between

the change in forest cover fraction and surface albedo (αs;

de Noblet-Ducoudré et al., 2012). Outcomes of model inter-

comparison studies (LUCID; Boisier et al., 2012) employ-

ing identical LULCC prescriptions suggest that, apart from

the way individual land surface models (LSMs) implement

LULCC in their own land cover map (i.e., differences in bio-

geography), model differences in the way αs is parameter-

ized could be a significant source of this spread (de Noblet-

Ducoudré et al., 2012; Pitman et al., 2009). Recent attri-
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butional analysis by Boisier et al. (2012) suggests that the

contribution from the latter is indeed comparable to the for-

mer and worthy of further investigation, particularly given

the importance of albedo radiative feedbacks when ground or

canopy surfaces are covered with snow (Crook and Forster,

2014; Hall and Qu, 2006).

Simulated αs over snow-covered forests by climate mod-

els is often biased high (Essery, 2013; Loranty et al., 2014;

Roesch, 2006). While most climate models distinguish be-

tween snow intercepted in forest canopies and snow on the

ground, many differ in how they parameterize the fractions

of ground and canopy that are covered with snow for given

masses of lying and intercepted snow (Essery, 2013; Qu and

Hall, 2007). This is likely because, rather than trying to sim-

ulate the complex processes of canopy snow interception

and unloading as is done by many sophisticated, physically

based snow models (Essery et al., 2009, 2013), many cli-

mate models must employ simplified parameterizations to

reduce computational demands. In their assessment of αs

feedbacks simulated by 14 Coupled Model Intercomparison

Project 5 (CMIP5) models, Qu and Hall (2014) found that the

largest intermodel spread in αsoccurred in northern latitude

regions and suspected it to be the reason for the differences

in the large range of local feedbacks. As with their previ-

ous inter-comparison analysis (Qu and Hall, 2007), Qu and

Hall (2014) asserted that parameterizations of snow masking

in many CMIP5 models may still require improvement.

We hypothesize that parameterizations of snow masking

by vegetation can be refined and improved in many climate

models. To this end, we evaluate albedo parameterizations

of six prominent climate models in greater detail in order

to pinpoint major sources of bias and inter-model variabil-

ity. Rather than running the full land model, we extract only

the requisite equations (parameterizations) enabling albedo

prediction using observed forest structure and daily meteo-

rology. Climate models are typically evaluated by looking

at differences between their results and observation. In the

presence of snow, a bias in the simulated albedo may be due

to deviations in the modeled snow cover or to an inaccurate

representation of forest cover (biogeography) in the climate

model. Thus, it is difficult to unravel the single contribu-

tions to the overall error, making it challenging to benchmark

albedo schemes by this approach. By contrast, in this study

the albedo schemes are not embedded in the climate models

but are isolated and driven directly by observation, making

it easier to evaluate their performance. Predicted albedos for

both forest and open areas are compared to daily MODIS

retrievals spanning three snow cover seasons in three case

regions of boreal Norway. Radiative forcings from the con-

version of forests to open lands are then computed, providing

an additional metric for benchmarking errors in the simu-

lated albedo. We compare the performance of the six albedo

schemes to that in which albedo is predicted with a purely

empirical model developed in parallel, concluding with a dis-

cussion about the efforts required to improve albedo predic-

tion accuracy by climate models.

2 Material and methods

2.1 MODIS albedo

We employed Version 006 (v006) MCD43A 1-day daily

Albedo/bidirectional reflectance distribution function

(BRDF) product with a 500 by 500 m spatial resolution

(Wang and Schaaf, 2013; Wang et al., 2012), taking the

direct beam (“black-sky”) αs at local solar noon for visible

(VIS; 0.3–0.7 µm) and near-infrared (NIR; 0.7–5.0 µm)

spectral bands for the time periods spanning January through

May (2007) and November through May (2008–2009). The

v006 product uses multiple clear sky views available over a

16-day period to provide daily αs values that represent the

best BRDF possible with the day of interest emphasized.

This includes as many overpasses as are available per day

(while earlier versions of the algorithm, including the Direct

Broadcast version, were limited to only four observations

per day; Shuai, 2010), enabling it to better capture the daily

albedo with an algorithm that more strongly emphasizes all

contributions from the single day of interest (Wright et al.,

2014).

2.2 Forest structure and meteorology

Structural attributes like leaf area index (LAI), canopy

height, and canopy cover fraction were derived from regional

aerial lidar campaigns undertaken in June of 2009 following

Solberg et al. (2009). The maximum, minimum, and median

values of these attributes connected to each MODIS pixel in-

cluded in the analysis are presented in Table 1.

Daily meteorological observations of mean and maximum

wind speed (m s−1), mean and maximum near-surface air

temperatures (◦C), snow depth (cm), and precipitation (mm)

were taken from measuring stations in the municipalities of

Drevsjø (675 m), Flisa (200 m), and Rena (250 m) located

in eastern Norway (Fig. 1) in the county of Hedmark (Nor-

wegian Meteorological Institute, 2013). Additional meteoro-

logical information not available directly, such as snow den-

sity and snowfall, were computed with empirical models and

the available observations as inputs. For example, precipita-

tion was partitioned into snow and rain following the em-

pirical analysis of Dai (2008) in which rain occurred more

frequently than snow over land when air temperatures ex-

ceeded 1.2 ◦C. Snow density was computed with snow depth,

air temperature, and wind speed based on the empirical work

of Meløysund et al. (2007).

Site-specific air temperatures were adjusted using the

station-measured observations and an environmental lapse

rate of −6.5 ◦C km−1. All three sub-regions lie in the

Köppen–Geiger climate zone “Dsc” (boreal) but experience

variations in snow fall amount and frequency and the tem-
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Table 1. Minimum, maximum, and median tree height (H80), canopy cover fraction, and LAI in the sampled evergreen needleleaf forests of

each study region (sampled June, 2009). H80 is the 80th percentile of laser scanning first echoes, corresponding to canopy surface height in

meters above ground which is correlated to biomass and used as a proxy for tree height.

Study Sample area Tree height, (H80; m) Canopy cover fraction LAI (m−2 m−2)

region (km2)

(Number of ) min max median min max median min max median

MCD43A pixels

Flisa (n= 65) 14.0 3.1 15.8 11.8 25 % 77 % 63 % 0.55 2.35 1.73

Rena (n= 34) 7.3 5.7 13.0 9.8 50 % 80 % 63 % 1.31 1.82 1.52

Drevsjø (n= 36) 7.7 3.2 10.2 7.5 27 % 52 % 40 % 0.43 1.21 0.81

Regional mean 29.0∗ 4.0 13.0 9.7 34 % 69.7 % 55.3 % 0.76 1.79 1.35

∗ Value is column sum.

Figure 1. Study regions showing the location of the open (“Cropland” or “Bog/Wetland”) and coniferous forested sites included in the

analysis. Meteorological station locations are also indicated.

poral extent of the snow cover season (time series of daily

observed meteorology are presented as Fig. S1 in the Sup-

plement).

Local forest management plans were used to identify

forest stands of pure (> 95 % volume, m3 ha−1) evergreen

needleleaf forest cover within a ∼ 5 km radius and ∼ 50 m

altitude range of a weather monitoring station. Evergreen

needleleaf species in the region included Scots Pine (Pi-

nus sylvestris L.) and Norway Spruce (Picea abies (L.) H.

Karst.). Twelve open area sites within the same 5 km prox-

imity to a weather station were selected in order to simulate

forcings associated with regional LULCC (forest to open),

shown in Fig. 1. In total, 135 forested MODIS pixels (ap-

proximately 2900 hectares) and 12 open area pixels (8 crop-

land, 4 wetland/peatland) were included in the sample.

www.biogeosciences.net/12/2195/2015/ Biogeosciences, 12, 2195–2205, 2015
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2.3 Albedo parameterizations in climate models

The albedo parameterizations chosen for the analysis (Ta-

ble 2) were selected because they are widely employed in

climate/earth system models and because they are diverse

with respect to the parameterization of ground masking by

vegetation, which can be classified according to three pre-

vailing methods introduced in Qu and Hall (2007; and later

described in Essery, 2013). Briefly, the first method esti-

mates radiative transfer between the vegetation canopy and

the ground surface; the second method combines the vege-

tation and ground albedos with weights determined by veg-

etation cover; the third method combines the snow-free and

snow albedo with weights determined by snow cover. Vary-

ing degrees of complexity in albedo parameterizations stem

from the way snow albedo metamorphosis effects are treated

and the way vegetation structure is utilized.

We note that we do not run the entire land models offline;

rather, we extract only the equations (parameterizations) re-

quired to calculate the surface albedos of both open terrain

and forests. In some (albeit limited) cases, certain parts of

the albedo parameterizations have been slightly modified for

technical reasons, rendering them not fully identical to those

implemented in the full model (see Sect. S3 in the Supple-

ment).

Direct beam (black-sky) albedos are calculated at local

solar noon to be compatible with the MODIS retrievals.

The albedo parameterizations of JSBACH (Jena Scheme for

Biosphere–Atmosphere Coupling in Hamburg) and the God-

dard Institute for Space Studies (GISS) II model do not dif-

ferentiate between direct and diffuse beam components and

are assumed to represent the total- or “blue-sky” albedo. The

direct beam component, however, typically dominates the

total albedo under clear-sky conditions (Ni and Woodcock,

2000; Wang, 2005; Wang and Zeng, 2009) and were thus

deemed reasonable for purpose of comparison.

2.4 Regression modeling

Non-linear multiple regressions are performed using the for-

est structure and meteorological observations as predictor

variables. The functional form of the models are adapted

from several important physically based parameterizations

found in many current albedo schemes. Equation (1) is the

best performing model:

αs = k1+ k2(1− e
−LAI)+ k3 tanh(d/k4)(

e−k5(LAI)
+

[
1−

1

1+ e−k6T
Max

])
, (1)

where LAI, d , and TMax are leaf area index, snow depth,

and maximum daily (24 h) temperature, respectively. k1 is the

ground albedo (directional hemispherical) without the forest

canopy scaled by a canopy radiative fraction term (1−e−LAI)

and the parameter k2, with k2 representing the maximum

albedo difference at the highest observed LAI values. See

the Supplement (Sect. S4) for a detailed overview and de-

scription of the regression model and its theoretical underpin-

nings, its parameters (Table S5), and its performance statis-

tics (Table S5).

2.5 Radiative forcing

Top-of-atmosphere (TOA) radiative forcings for the con-

version of forest (evergreen needleleaf only) to open land

(1αs, Open–Forest) are computed using a 3-D four spec-

tral band, eight-stream radiative transfer model (Myhre et

al., 2007) based on the discrete ordinate method (Stamnes

et al., 1988). The four spectral bands are divided into the

spectral regions 300–500, 501–850, 851–1500, and 1501–

4000 nm where MODIS VIS albedos are included in the first

two bands and MODIS NIR albedos are included into the lat-

ter two bands. The reported RF is the integration over the four

spectral bands. The radiative transfer code has been com-

pared to detailed line-by-line calculations for various appli-

cations with agreement of the order of 10 % (Myhre et al.,

2009; Randles et al., 2013).

The model is run with a 3 h time step with a horizontal res-

olution of 1◦× 1◦ and a vertical resolution of 40 layers. Me-

teorological data from the ECMWF is used in the radiative

transfer simulations and several atmospheric aerosol types

are included in the model (Myhre et al., 2007). LULCC RF

is estimated by taking the difference in the net shortwave ra-

diative flux at TOA after setting the monthly mean αs of the

entire 1◦× 1◦ grid cell (centered over the domains of case

study region) first to that of open lands then to that of forests.

3 Results

3.1 Albedo

When looking at regional averages in predicted αs presented

in Fig. 2, no single model apart from the regression model

(“REG”) performed consistently well across all months at

both Forest and Open sites and for both spectral bands. Start-

ing with the NIR band (Fig. 2, left column), JSBACH showed

clear positive biases at both Open and Forest sites for most

months. Positive biases in GISS II were more prevalent for

Forest although positive biases were also found at Open sites

for months with partial snow cover (November, April, May).

Large positive biases for the Joint UK Land Environment

Simulator (JULES) 2-stream (“JUL-2”) scheme were lim-

ited to Forest and to winter months of January, February, and

March. With the exception of February, slight negative biases

by JUL-2 at the Open sites were found in all months except

February; this was true also for the JULES All-band scheme

(“JUL-AB”) with the exception of March. The largest differ-

ence between the two JULES schemes occurred for Forest,

where JUL-AB consistently underpredicted αs in all months

except May. Large negative biases in Forest by CLASS were
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Table 2. Albedo parameterizations included in the analysis and their associated land and climate models.

Land model origin of Climate model Snow albedo Vegetation Forest Technical Other supporting

αs parameterizations masking effectb structure documentation references

CLASS CGCM4; CanCM4 prognostic type 2 yes Verseghy (2009) Verseghy et al. (1993)

procedure

CLM4.0 NCAR CCSM4; prognostic type 1 yes Oleson et al. (2010) Dickinson (1983); Flanner and

NCAR CESM; Nor-ESM procedure Zender (2006); Sellers (1985)

GISS II GISS GCM II; prognostic type 3 no Hansen et al. (1983) Matthews (1984)

GISS GCM ModelE procedure

JULESa UKMO HadGEM2 prognostic type 3 yes Best (2009) Marshall (1989); Sellers (1985);

(2-stream) procedure Wiscombe and Warren (1980)

JULESa UKMO HadCM3 diagnostic type 3 yes Best (2009) Essery et al. (2001)

(all-band) procedure

JSBACH MPI-ESM diagnostic type 2 yes Reick et al. (2012) Otto et al. (2011)

procedure

a Formerly MOSES. b Classification based on Qu and Hall (2007).

found in November and January, with smaller negative biases

in February.

Moving on to the VIS band (Fig. 2, right column), most

schemes overpredicted αs during the months January–March

at the Open sites. The largest spread (i.e., standard devi-

ation, SD) at the Open sites occurred during November

(SD= 0.08), when the largest negative bias was found for

CLM4 and positive bias for JSBACH. Like in the NIR band,

results varied more at the Forest sites where biases across

months were more evenly distributed around zero (1 : 1 line).

Again, here we found positive biases in JUL-2 yet negative

biases in JUL-AB during January–April. Positive biases by

JSBACH were mostly confined to November, January, and

February at both Open and Forest sites. Unlike the NIR band

in which positive biases at Open sites by GISS II were lim-

ited to November, April, and May, positive biases occurred

for the VIS band in all months; however, the positive biases

in Forests seen for the NIR band during November, February,

and April were reduced. Like the NIR band, large negative

biases were found for CLASS for November, January, and

February.

In general, Fig. 2 shows that the inter-model spread was

smaller for the VIS band predictions relative to NIR, and

at Open sites relative to Forest sites. Figure 2 also indicates

that the inter-model spread in αs predictions for both bands

and land cover types was larger during November–February

and smaller during March–May. With the exception of JUL-

2 in the NIR band, all models overpredicted November–

May mean 1αs (Fig. 2e and f, Open–Forest) in both spec-

tral bands. Models with negative αs biases at Forest sites and

positive αsbiases at Open sites – such as CLASS and JUL-

AB – led to some of the largest positive 1αs biases. For

some schemes like GISS II and JSBACH, positive αs biases

at both Open and Forest sites offset each other resulting in

low 1αs biases, particularly in the NIR band. Only for the

NIR band (Fig. 2e) did any model underpredict 1αs. Here,

JUL-2 under- and overpredicted αs at Forest and Open sites,

respectively.

Monthly αs biases were often reduced when weighted by

the relative share of monthly insolation during November–

May, as seen in Fig. 2 particularly for the JSBACH and

CLASS schemes, which suggests that a large share of the

bias occurred during winter months.

3.2 Radiative forcing

November–May mean (2007–2009) TOA RF from simulated

LULCC (1α, Open–Forest) are presented in Fig. 3a for each

of the three case study regions. In Rena and Drevsjø, all mod-

els overpredicted 1αs and thus simulated LULCC RF. No

clear patterns emerged regarding relationships between RF

error, model, and study region; RF errors in REG, CLM4, and

CLASS were larger in Rena (green bars) relative to Drevsjø

(red bars) – while RF errors were larger for the JULES mod-

els, JSBACH, and GISS II for Drevsjø relative to Rena. One

would expect a larger spread in the modeled RF for Drevsjø

given the larger inherent variability in vegetation structure in

the forest sample (Table 1) and given the fundamental dif-

ferences in the way each albedo scheme handles vegetation

structure (Sect. S3), yet we found the largest inter-model

spread occurring in Rena (RF SD= 0.075), where the nor-

malized mean errors (NME) ranged from 6 to 58 % for JS-

BACH and CLASS, respectively (Fig. 3b, green right-hand

y axis). For Drevsjø, the inter-model spread was smaller (RF

SD= 0.067), with RF NME ranging from 14 to 54 % for

CLM4 and JUL-AB respectively. One possible explanation

is that Rena experienced more frequent precipitation events,

more fluctuating maximum daily temperature (above and be-

low freezing), and a snowpack that tended to melt more

rapidly in early spring than in Drevsjø (Fig. S1 in the Sup-

plement) – all of which complicated the prediction of ground

and forest canopy αs in the presence of snow.

The inter-model spread was lowest in Flisa (RF

SD= 0.05), with RF NME ranging from 2 % for the Re-
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Figure 2. (a–d) Remotely sensed (MCD43A, y axes) and modeled (x axes) direct-beam albedos (monthly means, 2007–2009) in evergreen

needleleaf forests (a; b) and adjacent open areas (c; d) for both near-infrared and visible bands averaged across all three study regions; (e;

f): November–May mean bias (regional and monthly means, 2007–2009) and insolation-weighted mean bias. (a), (c), and (e) show the VIS

band; (b), (d), and (f) show the NIR band. High solar zenith angles precluded the number of sufficient MODIS retrievals in December; thus

December mean biases were excluded from the November–May mean; MB= 1
N

N∑
i=1

(αModel−αObs.)

gression model to 22 % for CLASS, respectively. In Flisa,

JSBACH and JUL-AB underestimated the strength of the

vegetation masking effect (1αs bias) and thus the simulated

LULCC RF. Together with CLASS, these two schemes also

led to some of the largest RF spreads across sub-regions by

any single model, where RF NME for JUL-AB ranged from

10 to 54 % for Flisa and Drevsjø, respectively; for CLASS

22 to 58 % for Flisa and Rena, respectively; and for JSBACH

from 6 to 32 % for Flisa and Drevsjø, respectively.

For JSBACH, the result of having a positive 1αs bias

in Drevsjø (Table S6; Figs. S25 and S28) and a negative

1αs bias in Flisa (Table S6; Figs. S23 and S26) is a re-

gional mean RF (Fig. 3a, grey bar) that most closely resem-

bled the MODIS-based RF. With MAE (or NME) as a met-

ric, however, JSBACH only ranked third of seven (Fig. 3b,

top). Although not ranked first in all sub-regions, REG led to

the most accurate regional mean RF prediction (MAE/NME,

Fig. 3b, grey).

It is worth reiterating that some schemes such as that of

GISS II severely overpredicted αs at both Open and Forest

sites (Fig. 2), which was not reflected in 1αs or 1αs RF,

thereby giving the impression that the scheme ranked rela-

tively high in accuracy.

4 Discussion

A notable finding of our study is that parameterizations of

open area αs – which is governed mostly by the albedo of

snow from January through early April – contributed as much

Biogeosciences, 12, 2195–2205, 2015 www.biogeosciences.net/12/2195/2015/
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Figure 3. (a) Radiative forcing (RF) from simulated vs. remotely sensed (MCD43A) albedo differences (Open–Forest), 2007–2009

November–May mean (excluding December). (b) mean absolute error (MAE), normalized mean absolute error (NME, and rank, 2007–

2009 November–May mean. Rank values in bold correspond to the regional mean, whereas individual case region ranks are listed over each

bar (colors defined in (a) legend). Right-hand y axis (NME) colors correspond to individual bar colors. MAE= 1
N

N∑
i=1

|RFModel−RFObs.| ;

NME=
N∑
i=1

|RFModel−RFObs.|

(
N∑
i=1

RFObs

)−1

.

to 1αs prediction error as that of forests (Fig. 2). The bias

was mostly positive although there is some evidence that

MODIS may underestimate the albedo of cold dry snow (Jin

et al., 2002; Stroeve et al., 2005; Wang and Zender, 2010),

particularly in VIS bands (Wang and Zender, 2010). Jin et

al. (2002), for example, assert that there may be up to a

10 % negative bias in the MODIS pure dry snow albedo (Jin

et al., 2002), which could partially explain why most mod-

els in our study tended to overestimate αs during the cold-

est months of January and February (Fig. 2). An additional

source of negative MODIS albedo bias could stem from the

spatial heterogeneity of the landscape comprising the actual

pixel signature, which could extend up to 500 m beyond the

specified spatial footprint at high latitudes (Cescatti et al.,

2012; Wang et al., 2012) and thus include the spectral signa-

tures of built structures, other vegetation cover (trees), veg-

etation shadowing (from trees), etc. We note also that Jan-

uary and most of February experience solar zenith angles

> 70◦ for our case study regions; at these angles the atmo-

spheric correction algorithm degrades and the uncertainty in

the MODIS retrievals is increased (Lucht et al., 2000; Schaaf

et al., 2002; Stroeve et al., 2005). Factoring in any poten-

tial negative MODIS snow αs bias would reduce some of the

positive open area biases (Fig. 2) but not all of it, particularly

for CLASS and JSBACH, whose positive open area αs biases

were particularly large during months with snow cover. Snow

αs was reset to a maximum after a fresh snowfall event (Ta-

bles S2 and S3); however, MODIS albedo retrievals were far

www.biogeosciences.net/12/2195/2015/ Biogeosciences, 12, 2195–2205, 2015
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below the prescribed maximum snow albedo values of these

two schemes after fresh snowfall events (Figs. S23–S25 for

JSBACH and Figs. S29–S31 for CLASS), particularly for the

VIS band.

The two schemes with regional mean RF NMEs (Fig. 3b)

above 20 % were the CLASS and JUL-AB schemes. For

CLASS, RF NME > 20 % occurred for all three sub-regions.

The 1αs RF bias of CLASS was due to overpredictions at

open area sites and underpredictions at forested sites. The

latter is due to the parameterization of canopy transmittance

that is based on an extinction coefficient that incorporates

a correction factor of 0.6 and 0.8 for NIR and VIS bands,

respectively (Eqs. S10–S11). Lowering the correction fac-

tor to 0.5 and 0.6 for NIR and VIS bands, respectively, low-

ers the extinction coefficient and increases canopy transmit-

tance, which serves to reduce the negative albedo biases in

forests, particularly at high solar zenith angles (November–

February). The lower extinction coefficient is in line with

more recent observations in boreal evergreen forests (Aubin

et al., 2000; Balster and Marshall, 2000). As mentioned ear-

lier, at the open sites the VIS albedo constant of 0.95 for

fresh snow was too high; the maximum remotely sensed VIS

albedo after a fresh snowfall event was 0.88 (all study re-

gions), and adjusting it to 0.90 would alleviate some of this

bias (disregarding potential MODIS biases).

Although JUL-AB (formerly MOSES v. 2.2) ranked sixth

of seven overall when considering only the regional mean

RF MAE and NME, in two of the three study regions (Flisa

and Rena) it performed quite well, with RF NMEs of < 11

and < 16 % for Flisa and Rena, respectively. The large RF

NME for Drevsjø was a result of a severe negative bias in

the predicted αs of forests (Fig. S10), which resulted in large

positive 1αs biases (Table S7). The explanation is due to the

use of vegetation-specific snow albedo parameters that were

too low for forests in this region – forests that were charac-

terized as having the lowest median tree heights, LAIs, and

canopy cover fractions out of the three forested sub-regions

(Table 1).

Of the existing land model schemes included in this study,

the albedo parameterizations of JUL-2 performed best in the

LULCC RF simulations (Fig. 3), although we note that it un-

derestimated the strength of the vegetation masking effect

(1αs) in the NIR band while overestimating it in the VIS

band (Fig. 2; consistent across all three individual study re-

gions; Table S6), which may have had offsetting effects in

the RF simulations. A closer inspection of the daily αs time

series (Sect. S5.2) reveals that forest albedo ( Figs. S14–

16) may be too sensitive to snow depth (Fig. S1), an impor-

tant variable in the parameterization of snow cover fraction

(Eq. S2). For example, αs predictions were biased positive at

snow depths above 0.6 m (typical in Rena and Drevsjø dur-

ing the winter-spring of 2008 and 2009) while biased neg-

ative at Flisa during 2007 and 2008 for which snow depths

never exceeded 0.4 m. This same sensitivity of forest αs to

snow depth was also found for the GISS II scheme – another

type 3 scheme – resulting in positive αs biases in forests. This

sensitivity to snow depth was not evident for JUL-AB – the

third type 3 scheme. This is because, unlike GISS II and JUL-

2, snow albedo is vegetation-dependent and constrained by

satellite remote sensing (MODIS).

In agreement with findings in Essery (2013), we generally

find that no single type of scheme (as described in Sect. 2.1

and in Qu and Hall, 2007) stood out as performing better

or worse relative to the others. In their latest CMIP5 simu-

lations, Qu and Hall (2014) assert that type 2 schemes – or

those which parameterize albedo as a function of vegetation

cover rather than snow cover – generally tended to overesti-

mate the strength of the snow albedo masking effect (1αs)

due to negative biases in forest αs predictions. For JSBACH –

a type 2 scheme – we did not detect this bias; rather, we found

positive biases in Forest in both bands, particularly during

the snow season which is consistent with findings of Brovkin

et al. (2013) and Hagemann et al. (2013). NIR albedo pre-

dictions in Flisa and Rena during snow-free periods were

also biased high (figures in Sect. S5.4) resulting in under-

estimations of NIR 1αs, which we attributed to a snow-free

vegetation albedo constant that was too high (Table S3). The

positive RF bias seen at Drevsjø (Fig. 3) stemmed from neg-

ative biases in the springtime (March–May) VIS αs in forests

(Fig. S29). This may be attributed to the default use of 1 as

the stem area index (SAI) used in the masking parameteri-

zation (Reick et al., 2012); observational evidence suggests

this may be too high in boreal regions in spring (Lawrence

and Chase, 2007).

While the simulated 1αs RF by GISS II appeared rela-

tively robust (Fig. 3), αs predictions in Forest and Open were

strongly positively biased in both spectral bands. In forests,

this could be attributed to two main factors: (i) a dependence

on snow-free albedo constants that were too high, partic-

ularly when applied at the denser (i.e., high canopy cover

fraction, Table 1) sites of Flisa and Rena; (ii) a strong depen-

dency on snow depth and/or lack of explicit representation of

forest structure in the masking expression which led to over-

predictions in Rena and Drevsjø (Figs. S39 and S40), regions

that experienced snow depths greater than 60 cm for much

of the winter and early spring in 2008 and 2009 (March–

late April). NIR biases at the open sites (Figs. S35–37) were

attributed to the use of snow-free vegetation constants that

were too high (Table S4).

Sources of RF biases in CLM4 were harder to discern, as

the sign of the predicted 1αs bias was not consistent across

study sites and months. 1αs bias was negative and mostly

limited to March and April at Flisa and Rena (Table S6).1αs

bias was positive at Drevsjø and occurred mostly in April and

May due to overpredictions in both NIR and VIS αs in Forest

and underpredictions in both NIR and VIS αs at Open sites

(Figs. S17–S22).

Not surprisingly, the purely empirical αs model presented

here (Eq. 1) calibrated with local forest structure and meteo-

rological observations performed best on average throughout
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the region (i.e., Fig. 3; MAE, NME, and Rank). However, to

our surprise, it did not rank first in all study regions; it ranked

fifth in Rena which was the region with the fewest forest

structure, meteorological, and MODIS albedo retrievals. This

highlights the high-performance dependencies of purely em-

pirically based models on the underlying data sets to which

they are calibrated. Although it is tempting to recommend

its application over existing modeling schemes in boreal re-

gions, rigorous evaluation efforts are needed to assess the de-

gree of transportability and reliability when applied in other

regions with different forest structures and climate regimes

(Bright et al., 2015).

5 Conclusions

LULCC radiative forcings (RF) from changes in simulated

land surface albedo (1αs) as predicted by the albedo param-

eterizations employed by six leading climate models were

evaluated using observed meteorology and forest structure

for a case region in Norway and by comparing them with

MODIS daily albedo retrievals. Compared to RF estimations

based on MODIS albedo, most of the albedo schemes over-

estimated the magnitude of the simulated regional mean RF

(Fig. 3) by overestimating1αs (Fig. 2), although results var-

ied between three sub-regions within the broader case study

region. For instance, in a sub-region characterized as hav-

ing the highest forest productivity and lowest seasonal snow

cover of the three (Flisa), albedo schemes of two land models

(JSBACH and JULES All-band) underestimated 1αs RF.

Efforts to uncover sources of systematic albedo biases

proved challenging as no clear discernible patterns could be

detected across study regions or between the different types

of schemes (Sect. 2.3), although some systematic sources

of bias in forest αs were identified for the albedo schemes

of CLASS, JULES All-band, JSBACH, and GISS II. Se-

vere negative albedo bias in winter months in CLASS – ev-

ident across all three study regions – was attributed to the

parameterization of canopy transmittance. For GISS II, per-

sistent positive αs biases were linked to snow-free vegeta-

tion albedos (both VIS and NIR bands) that were too high

and to a snow cover masking parameterization that did not

explicitly account for differences in forest structure. Biases

in forests in the JULES All-band scheme can be easily alle-

viated by adjusting (in our case increasing) the vegetation-

dependent snow albedo values for “Evergreen Needleleaf”

forest, which, in our study, were based on MODIS latitude

band averages (Gao et al., 2005). Similarly for JSBACH, for-

est biases can be easily reduced by lowering the snow-free

vegetation albedo value in the NIR band.

Despite the albedo biases identified here in both forests

and open areas, the normalized mean absolute error (NME)

of the 3-year regional mean RF from the LULCC simula-

tions was below 20 % for four of the six albedo schemes,

which is remarkably high accuracy for climate models con-

sidering that they must depend on reduced complexity land

surface schemes (relative to 3-D radiative transfer models or

sophisticated snow–ice physics models). Although we have

only evaluated evergreen needleleaf forests, extending this

or similar empirical analyses to other forest types or climate

regimes would give additional insight into the albedo pre-

dictive capacities of the parameterizations employed in the

current generation of climate models.

The Supplement related to this article is available online

at doi:10.5194/bg-12-2195-2015-supplement.

Acknowledgements. We thank Zhuosen Wang and Crystal Schaaf

for the preparation of the MODIS 1-day albedo data set. This work

was performed under the project “Decision Support Models for

Increased Harvest and Climate-motivated Forest Policies” funded

by the Norwegian Research Council, grant no. 210464.

Edited by: V. Brovkin

References

Aubin, I., Beaudet, M., and Messier, C.: Light extinction coeffi-

cients specific to the understory vegetation of the southern boreal

forest, Quebec, Can. J. Forest Res., 30, 168–177, 2000.

Balster, N. J. and Marshall, J. D.: Eight-year responses of light in-

terception, effective leaf area index, and stemwood production in

fertilized stands of interior Douglas-fir (Pseudotsuga menziesii

var. glauca), Can. J. Forest Res., 30, 733–743, 2000.

Best, M.: JULES Technical Documentation, Met Office, Joint Cen-

tre for Hydro-Meteorological Research, Wallingford, UK, 1–36,

2009.

Boisier, J. P., de Noblet-Ducoudré, N., Pitman, A. J., Cruz, F.

T., Delire, C., van den Hurk, B. J. J. M., van der Molen, M.

K., Müller, C., and Voldoire, A.: Attributing the impacts of

land-cover changes in temperate regions on surface temperature

and heat fluxes to specific causes: Results from the first LU-

CID set of simulations, J. Geophys. Res.-Atmos., 117, D12116,

doi:10.1029/2011JD017106, 2012.

Bright, R. M., Antón-Fernández, C., Astrup, R., and Strømman, A.

H.: Empirical models of albedo transitions in managed boreal

forests: analysis of performance and transportability, Can. J. For-

est Res., 45, 195–206, 2015.

Brovkin, V., Claussen, M., Driesschaert, E., Fichefet, T., Kick-

lighter, D., Loutre, M. F., Matthews, H. D., Ramankutty, N.,

Schaeffer, M., and Sokolov, A.: Biogeophysical effects of his-

torical land cover changes simulated by six Earth system models

of intermediate complexity, Clim. Dynam., 26, 587–600, 2006.

Brovkin, V., Boysen, L., Raddatz, T., Gayler, V., Loew, A., and

Claussen, M.: Evaluation of vegetation cover and land-surface

albedo in MPI-ESM CMIP5 simulations, J. Adv. Model. Earth

Syst., 5, 48–57, 2013.

Cescatti, A., Marcolla, B., Santhana Vannan, S. K., Pan, J. Y.,

Román, M. O., Yang, X., Ciais, P., Cook, R. B., Law, B. E.,

www.biogeosciences.net/12/2195/2015/ Biogeosciences, 12, 2195–2205, 2015

http://dx.doi.org/10.5194/bg-12-2195-2015-supplement
http://dx.doi.org/10.1029/2011JD017106


2204 R. M. Bright et al.: On albedo bias in climate models

Matteucci, G., Migliavacca, M., Moors, E., Richardson, A. D.,

Seufert, G., and Schaaf, C. B.: Intercomparison of MODIS

albedo retrievals and in situ measurements across the global

FLUXNET network, Remote Sens. Environ., 121, 323–334,

2012.

Cess, R. D.: Biosphere-Albedo Feedback and Climate Modeling, J.

Atmos. Sci., 35, 1765–1768, 1978.

Crook, J. A. and Forster, P. M.: Comparison of surface albedo feed-

back in climate models and observations, Geophys. Res. Lett.,

41, 1717–1723, doi:10.1002/2014GL059280, 2014.

Dai, A.: Temperature and pressure dependence of the rain-snow

phase transition over land and ocean, Geophys. Res. Lett., 35,

2008.

de Noblet-Ducoudré, N., Boisier, J.-P., Pitman, A., Bonan, G. B.,

Brovkin, V., Cruz, F., Delire, C., Gayler, V., van den Hurk, B. J.

J. M., Lawrence, P. J., van der Molen, M. K., Müller, C., Reick,

C. H., Strengers, B. J., and Voldoire, A.: Determining Robust

Impacts of Land-Use-Induced Land Cover Changes on Surface

Climate over North America and Eurasia: Results from the First

Set of LUCID Experiments, J. Climate, 25, 3261–3281, 2012.

Dickinson, R. E.: Land surface processes and climate-surface albe-

dos and energy balance, Adv. Geophys., 25, 305–353, 1983.

Essery, R.: Large-scale simulations of snow albedo masking by

forests, Geophys. Res. Lett., 40, 5521–5525, 2013.

Essery, R., Best, M., and Cox, P.: MOSES 2.2 Technical documenta-

tion. Hadley Centre Technical Note 30, U.K. Met Office Hadley

Centre, Exeter, UK, 1–31, 2001.

Essery, R., Rutter, N., Pomeroy, J. W., Baxter, R., Stähli, M.,

Gustafsson, D., Barr, A., Bartlett, P., and Elder, K.: SnowMIP2:

An evaluation of forest snow process simulations, B. Am. Meteo-

rol. Soc., 90, 1120–1135, doi:10.1175/2009BAMS2629.1, 2009.

Essery, R., Morin, S., Lejeune, Y., and B Ménard, C.: A compari-

son of 1701 snow models using observations from an alpine site,

Adv. Water Resour., 55, 131–148, 2013.

Flanner, M. G. and Zender, C. S.: Linking snowpack micro-

physics and albedo evolution, J. Geophys. Res., 111, D12208,

doi:10.1029/2005JD006834, 2006.

Gao, F., Schaaf, C. B., Strahler, A., H., Roesch, A., Lucht, W., and

Dickinson, R. E.: MODIS bidirectional reflectance distribution

function and albedo Climate Modeling Grid products and the

variablility of albedo for major global vegetation types, J. Geo-

phys. Res., 110, 1–13, 2005.

Hagemann, S., Loew, A., and Andersson, A.: Combined evalua-

tion of MPI-ESM land surface water and energy fluxes, J. Adv.

Model. Earth Syst., 5, 259–286, 2013.

Hall, A. and Qu, X.: Using the current seasonal cycle to constrain

snow albedo feedback in future climate change, Geophys. Res.

Lett., 33, L03502, doi:10.1029/2005GL025127, 2006.

Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeef,

S., Ruedy, R., and Travis, L.: Efficient three-dimensional global

models for climate studies: Models I and II., Mon. Weather Rev.,

111, 609–662, 1983.

Jin, Y., Schaaf, C. B., Gao, F., Li, X., Strahler, A. H., Zeng, X.,

and Dickinson, R. E.: How does snow impact the albedo of veg-

etated land surfaces as analyzed with MODIS data?, Geophys.

Res. Lett., 29, 12-11–12-14, 2002.

Lawrence, P. J. and Chase, T. N.: Representing a new

MODIS consistent land surface in the Community Land

Model (CLM 3.0), J. Geophys. Res.-Biogeo., 112, G01023,

doi:10.1029/2006JG000168, 2007.

Lawrence, P. J., Feddema, J. J., Bonan, G. B., Meehl, G. A., O’Neill,

B. C., Oleson, K. W., Levis, S., Lawrence, D. M., Kluzek, E.,

Lindsay, K., and Thornton, P. E.: Simulating the Biogeochemi-

cal and Biogeophysical Impacts of Transient Land Cover Change

and Wood Harvest in the Community Climate System Model

(CCSM4) from 1850 to 2100, J. Climate, 25, 3071–3095, 2012.

Loranty, M. M., Berner, L. T., Goetz, S. J., Jin, Y., and Rander-

son, J. T.: Vegetation controls on northern high latitude snow-

albedo feedback: observations and CMIP5 model simulations,

Glob. Change Biol., 20, 594–606, 2014.

Lucht, W., Schaaf, C., Strahler, A. H., and d’Entremont, R.: Remote

Sensing of Albedo Using the BRDF in Relation to Land Surface

Properties., in: Observing Land from Space: Science, Customers

and Technology, edited by: Verstraete, M., Menenti, M., and Pel-

toniemi, J., Adv. Glob. Change Res., Springer Netherlands, 175–

186, 2000.

Marshall, S. E.: A physical parameterization of snow albedo for

use in climate models. NCAR Cooperative Thesis 123, National

Center for Atmospheric Research (NCAR), Boulder, Colorado,

USA, 1989.

Matthews, E.: Prescription of Land-surface boundary conditions in

GISS GCM II: A simple method based on high-resolution vege-

tation data bases, NASA Technical Memorandum 86096, NASA

Goddard Institute for Space Studies, New York, NY, USA, 21

pp., 1984.

Meløysund, V., Leira, B., Høiseth, K. V., and Lisø, K. R.: Predict-

ing snow density using meteorological data, Meteorol. Appl., 14,

413–423, 2007.

Myhre, G., Bellouin, N., Berglen, T. F., Berntsen, T. K., Boucher,

O., Grini, A., Isaksen, I. S. A., Johnsrud, M., Mishchenko, M. I.,

Stordal, F., and Tanré, D.: Comparison of the radiative properties

and direct radiative effect of aerosols from a global aerosol model

and remote sensing data over ocean, Tellus B, 59, 115–129, 2007.

Myhre, G., Kvalevåg, M., Rädel, G., Cook, J., Shine, K. P., Clark,

H., Karcher, F., Markowicz, K., Kardas, A., Wolkenberg, P.,

Balkanski, Y., Ponater, M., Forster, P., Rap, A., and de Leon, R.

R.: Intercomparison of radiative forcing calculations of strato-

spheric water vapour and contrails, Meteorologische Zeitschrift,

18, 585–596, 2009.

Ni, W. and Woodcock, C. E.: Effect of canopy structure and the

presence of snow on the albedo of boreal conifer forests, J. Geo-

phys. Res., 105, 1879–11888, 2000.

Norwegian Meteorological Institute: eKlima – Daily Historical

Meteorology, Norwegian Meteorological Institute, available

at: http://sharki.oslo.dnmi.no/portal/page?_pageid=73,39035,

73_39049&_dad=portal&_schema=PORTAL, last access: 15

September 2013.

Oleson, K., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek,

E., Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, P. E.,

Dai, A., Decker, M., Dickinson, R. E., Feddema, J. J., Heald,

C. L., Hoffman, F., Lamarque, J. F., Mahowald, N., Niu, G.-Y.,

Qian, T., Randerson, J., Running, S. W., Sakaguchi, A. S., Stökli,

R., Wang, A., Yang, Z.-L., Zeng, X., and Zeng, X.: Technical

description of version 4.0 of the Community Land Model (CLM),

National Center for Atmospheric Research, Climate and Global

Dynamics Division, Boulder, CO, USA, 266 pp., 2010.

Biogeosciences, 12, 2195–2205, 2015 www.biogeosciences.net/12/2195/2015/

http://dx.doi.org/10.1002/2014GL059280
http://dx.doi.org/10.1175/2009BAMS2629.1
http://dx.doi.org/10.1029/2005JD006834
http://dx.doi.org/10.1029/2005GL025127
http://dx.doi.org/10.1029/2006JG000168
http://sharki.oslo.dnmi.no/portal/page?_pageid=73,39035,73_39049&_dad=portal&_schema=PORTAL
http://sharki.oslo.dnmi.no/portal/page?_pageid=73,39035,73_39049&_dad=portal&_schema=PORTAL


R. M. Bright et al.: On albedo bias in climate models 2205

Otterman, J.: Anthropogenic impact on the albedo of the earth, Cli-

matic Change, 1, 137–155, 1977.

Otto, J., Raddatz, T., and Claussen, M.: Strength of forest-albedo

feedback in mid-Holocene climate simulations, Clim. Past, 7,

1027–1039, doi:10.5194/cp-7-1027-2011, 2011.

Pitman, A. J., de Noblet-Ducoudré, N., Cruz, F. T., Davin, E. L.,

Bonan, G. B., Brovkin, V., Claussen, M., Delire, C., Ganzeveld,

L., Gayler, V., van den Hurk, B. J. J. M., Lawrence, P. J., van

der Molen, M. K., Müller, C., Reick, C. H., Seneviratne, S. I.,

Strengers, B. J., and Voldoire, A.: Uncertainties in climate re-

sponses to past land cover change: First results from the LU-

CID intercomparison study, Geophys. Res. Lett., 36, L14814,

doi:10.1029/2009GL039076, 2009.

Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: Biogeo-

physical versus biogeochemical climate response to historical an-

thropogenic land cover change, Geophys. Res. Lett., 37, L08702,

doi:10.1029/2010GL043010, 2010.

Qu, X. and Hall, A.: What Controls the Strength of Snow-Albedo

Feedback?, J. Climate, 20, 3971–3981, 2007.

Qu, X. and Hall, A.: On the persistent spread in snow-albedo feed-

back, Clim. Dynam., 42, 69–81, 2014.

Randles, C. A., Kinne, S., Myhre, G., Schulz, M., Stier, P., Fischer,

J., Doppler, L., Highwood, E., Ryder, C., Harris, B., Huttunen,

J., Ma, Y., Pinker, R. T., Mayer, B., Neubauer, D., Hitzenberger,

R., Oreopoulos, L., Lee, D., Pitari, G., Di Genova, G., Quaas, J.,

Rose, F. G., Kato, S., Rumbold, S. T., Vardavas, I., Hatzianas-

tassiou, N., Matsoukas, C., Yu, H., Zhang, F., Zhang, H., and

Lu, P.: Intercomparison of shortwave radiative transfer schemes

in global aerosol modeling: results from the AeroCom Radia-

tive Transfer Experiment, Atmos. Chem. Phys., 13, 2347–2379,

doi:10.5194/acp-13-2347-2013, 2013.

Reick, C. H., Gayler, V., Raddatz, T., and Schnur, R.: JSBACH –

The new land component of ECHAM, Max Planck Insitute for

Meteorology, Hamburg, Germany, 1–167, 2012.

Roesch, A.: Evaluation of surface albedo and snow cover in AR4

coupled climate models, J. Geophys. Res.-Atmos., 111, D15111,

doi:10.1029/2005JD006473, 2006.

Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang,

T., Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P.,

Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale,

M., Doll, C., d’Entremont, R. P., Hu, B., Liang, S., Privette, J. L.,

and Roy, D.: First operational BRDF, albedo nadir reflectance

products from MODIS, Remote Sens. Environ., 83, 135–148,

2002.

Sellers, P. J.: Canopy reflectance, photosynthesis, and transpiration,

Int. J. Remote Sens., 6, 1335–1372, 1985.

Shuai, Y.: Tracking daily land surface albedo and reflectance

anisotropy with MODerate-Resolution Imaging Spectroradiome-

ter (MODIS), PhD, Geography and Environment, Boston Univer-

sity, Boston, 118 pp., 2010.

Solberg, S., Brunner, A., Hanssen, K. H., Lange, H., Næsset, E.,

Rautiainen, M., and Stenberg, P.: Mapping LAI in a Norway

spruce forest using airborne laser scanning, Remote Sens. En-

viron., 113, 2317–2327, 2009.

Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K.: Nu-

merically stable algorithm for discrete-ordinate-method radiative

transfer in multiple scattering and emitting layered media, Appl.

Opt., 27, 2502–2509, 1988.

Stroeve, J., Box, J. E., Gao, F., Liang, S., Nolin, A., and Schaaf,

C.: Accuracy assessment of the MODIS 16-day albedo product

for snow: comparisons with Greenland in situ measurements, Re-

mote Sens. Environ., 94, 46–60, 2005.

Verseghy, D. L.: CLASS – The Canadian land surface scheme (ver-

sion 3.4) – Technical documentation (version 1.1), Environment

Canada, Quebec, Canada, 1–183, 2009.

Verseghy, D. L., McFarlane, N. A., and Lazare, M.: CLASS – A

Canadian land surface scheme for GCMs. II. Vegetation model

and coupled runs, Int. J. Climatol., 13, 347–370, 1993.

Wang, S.: Dynamics of surface albedo of a boreal forest and its

simulation, Ecol. Model., 183, 477–494, 2005.

Wang, X. and Zender, C. S.: MODIS snow albedo bias at high so-

lar zenith angles relative to theory and to in situ observations in

Greenland, Remote Sens. Environ., 114, 563–575, 2010.

Wang, Z. and Schaaf, C.: MCD43 1-day and 16-day daily

Albedo/BRDF dataset. University of Massachusetts, Boston and

Boston University, 23 March, 2013, Boston, 2013.

Wang, Z. and Zeng, X.: Evaluation of Snow Albedo in Land Models

for Weather and Climate Studies, J. Appl. Meteorol. Climatol.,

49, 363–380, 2009.

Wang, Z., Schaaf, C. B., Chopping, M. J., Strahler, A. H., Wang,

J., Román, M. O., Rocha, A. V., Woodcock, C. E., and Shuai,

Y.: Evaluation of Moderate-resolution Imaging Spectroradiome-

ter (MODIS) snow albedo product (MCD43A) over tundra, Re-

mote Sens. Environ., 117, 264–280, 2012.

Wiscombe, W. J. and Warren, S. G.: A model for the spectral albedo

of snow. I. Pure Snow, J. Atmos. Sci., 37, 2712–2733, 1980.

Wright, P., Bergin, M., Dibb, J., Lefer, B., Domine, F., Carman,

T., Carmagnola, C., Dumont, M., Courville, Z., Schaaf, C., and

Wang, Z.: Comparing MODIS daily snow albedo to spectral

albedo field measurements in Central Greenland, Remote Sens.

Environ., 140, 118–129, 2014.

www.biogeosciences.net/12/2195/2015/ Biogeosciences, 12, 2195–2205, 2015

http://dx.doi.org/10.5194/cp-7-1027-2011
http://dx.doi.org/10.1029/2009GL039076
http://dx.doi.org/10.1029/2010GL043010
http://dx.doi.org/10.5194/acp-13-2347-2013
http://dx.doi.org/10.1029/2005JD006473

	Abstract
	Introduction
	Material and methods
	MODIS albedo
	Forest structure and meteorology
	Albedo parameterizations in climate models
	Regression modeling
	Radiative forcing

	Results
	Albedo
	Radiative forcing

	Discussion
	Conclusions
	Acknowledgements
	References

