
PY57CH23_Ton ARjats.cls July 29, 2019 15:31 

 

 

This is a post-peer-review, pre-copyedit version of an article published in Annual review of phytopaythologie.The final authenticated version is 

available online at: http://dx.doi.org/10.1146/annurev-phyto-082718-095959 
 
 

 

 

 

 

 

 

 

 

Annual Review of Phytopathology 

Surviving in a Hostile World: 
Plant Strategies to Resist Pests 
and Diseases 

Samuel W. Wilkinson,1,2 Melissa H. Magerøy,2 

Ana López Sánchez,1,3 Lisa M. Smith,1 Leonardo Furci,1 

T.E. Anne Cotton,1 Paal Krokene,2 and Jurriaan Ton1
 

1 Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, 

Sheffield, S10 2TN, United Kingdom; email: j.ton@sheffield.ac.uk 

2 Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, 

Norwegian Institute for Bioeconomy Research, 1431 Å s, Norway 
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Abstract 

As primary producers, plants are under constant pressure to defend them- 

selves against potentially deadly pathogens and herbivores. In this review, we 

describe short- and long-term strategies that enable plants to cope with these 

stresses. Apart from internal immunological strategies that involve physio- 

logical and (epi)genetic modifications at the cellular level, plants also employ 

external strategies that rely on recruitment of beneficial organisms. We dis- 

cuss these strategies along a gradient of increasing timescales ranging from 

rapid immune responses that are initiated within seconds to (epi)genetic 

adaptations that occur over multiple plant generations. We cover the lat- 

est insights into the mechanistic and evolutionary underpinnings of these 

strategies and present explanatory models. Finally, we discuss how knowl- 

edge from short-lived model species can be translated to economically and 

ecologically important perennials to exploit adaptive plant strategies and 
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INTRODUCTION 

Our planet is inhabited by a wide range of different plant species, from short-lived desert an- 

giosperms to long-lived coniferous species that dominate boreal forests. Although variable in phe- 

notype, generation time, and geographical range, all plants are primary producers. Consequently, 

they face constant pressure from opportunistic attackers, such as viruses, bacteria, fungi, nema- 

todes, insects, and large herbivores. Despite this pressure, land plants have continued to thrive 

for 500 million years (95), which would not have been possible without sophisticated defense 

strategies. 

All plants have an innate immune system, which provides instant protection against most at- 

tackers (33, 62). Plants can also acquire resistance after the perception of specific environmental 

stimuli (110). This acquired resistance (AR) is typically long-lasting and can even be transmitted 

to following generations through changes in DNA methylation and associated chromatin density 

(81, 84, 128). As is discussed below, there is increasing evidence that these epigenetic processes 

can influence genetic mutations and the rate by which new defense genes evolve. In addition to 

these internal strategies, plants are capable of orchestrating multitrophic ecological interactions 

for their protection (138). These external strategies involve above- and belowground recruitment 

of beneficial insects and microbes. Recruitment of beneficial microbes can lead to the formation 

of disease-suppressive microbiomes that offer long-term protection to individual plants and their 

progeny (11, 58). 

In this review, we provide a broad overview of short- and long-term plant strategies to cope with 

biotic stress (Figure 1). We discuss the relative importance of these strategies and their underlying 

mechanisms. Although most of this knowledge is based on the model plant Arabidopsis thaliana 

(hereafter, referred to as Arabidopsis), we draw comparisons with non-model perennial species and 

discuss the importance of studying defense strategies in a broader range of commercially and 

ecologically relevant plant species. 

 

INTERNAL STRATEGIES 

The Innate Immune System 

Preexisting constitutive defense structures, such as secondary cell walls, trichomes, and thorns, 

provide the first layer of protection against attackers. Although these structures are efficient against 

nonadapted opportunistic aggressors, they can also be costly and are typically ineffective against 

more specialized attackers. Consequently, plants have evolved a regulatory system for more effi- 

cient exploitation of defense resources: the plant innate immune system (33, 62). This genetically 

controlled system regulates the perception of attack and subsequent activation of innate defenses 

and is subject to an evolutionary arms race with virulence strategies of pathogens and herbivores (4, 

62). We briefly review the two major pillars of the plant innate immune system: pattern-triggered 

immunity (PTI) and effector-triggered immunity (ETI), both of which provide instant protection 

over relatively short timespans ranging from hours to days. 

 
Pattern-triggered immunity. PTI protects plants against most potential attackers and involves 

multiple defense layers that are induced after recognition of specific molecular patterns (62, 127). 

This recognition is mediated by pattern recognition receptors (PRRs), which are receptor ki- 

nases and receptor-like proteins that are often localized in the plant cell membrane (17, 161). 

PRRs detect attackers via molecular patterns. Some PRRs detect pathogen-/microbe-/herbivore- 

associated molecular patterns (PAMPs, MAMPs, and HAMPs), which indicate the presence of 

chemical signatures that are not from the host plant itself (non-self ) (7, 162). PRRs also detect 
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Short- and long-term strategies by which plants adapt to stress by pests and diseases. Shown at the bottom are internal strategies, which 
are controlled by plant immunological pathways involving physiological, molecular, and (epi)genetic mechanisms. Shown at the top are 
external strategies, which involve interactions with beneficial organisms that form symbioses with plants. Mechanisms underpinning the 
internal and external strategies are shown below or above, respectively, in the colored triangles. All strategies are aligned against a 
timescale (middle), which varies depending on generation time and habitat of the plant. 

 
damage-associated molecular patterns (DAMPs), which indicate the presence of host-derived 

chemical signatures from damaged cells (damaged-self ) (17, 53). 

Regulation of PTI is controlled by a complex signaling web that varies between plant species 

and the molecular patterns perceived (14, 35). Despite this variation, there are common signal- 

ing components. For instance, perception of PTI-eliciting molecular patterns induces fluxes of 

defense hormones, which regulate defenses that are effective against different groups of attackers 

(109). Jasmonic acid ( JA)-dependent defenses are generally more effective against necrotrophic 

pathogens and herbivores, whereas salicylic acid (SA)-dependent defenses are mostly effective 

against biotrophic pathogens (50). Defenses contributing to PTI are cell wall reinforcements (87), 

production of pathogenesis-related (PR) proteins (143), and accumulation of secondary metabo- 

lites such as terpenes and tryptophan-derived metabolites (108). 

A subset of specialized attackers has evolved strategies to suppress PTI. Virulent pathogens can 

suppress PTI via effector proteins, metabolites, and/or small RNAs (sRNAs), which can be injected 

into host cells (135, 150). This effector-triggered susceptibility can give rise to an evolutionary 

arms race with the host plant (62). 

 
Effector-triggered immunity. To counter immune-suppressing effectors from (hemi)biotrophic 

pathogens, plants have evolved resistance genes (R genes). Most R genes encode nucleotide binding 
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site–leucine-rich repeat (NLR) receptor proteins, which directly or indirectly detect pathogen 

effector activity (1, 36, 70, 127). Activation of NLR receptors elicits ETI, which often leads to a 

form of programmed cell death at locally infected tissues, the hypersensitive response (HR). The 

HR is very effective against biotrophic pathogens that rely on living plant cells for their growth 

(36, 50) but can also come with costs. For instance, HR can facilitate infection by necrotrophic 

pathogens (67, 82). Another limitation of ETI is its narrow range of effectiveness. Each R protein 

recognizes a limited number of effectors, thereby providing protection against one or a small 

number of pathogen isolates. This reliance on single R genes allows pathogens to rapidly overcome 

ETI, as a single mutation can give rise to a virulent pathotype (62). 

Attackers capable of suppressing ETI and/or PTI are still faced with a residual level of basal 

resistance when infecting a susceptible host. This resistance contributes to slowing disease pro- 

gression. Like PTI, basal resistance is effective against a broad spectrum of attackers. The next 

section describes how plants can augment the effectiveness of their basal defense arsenal via AR. 

 

Acquired Resistance 

Enhanced resistance to pests and/or pathogens following exposure to specific stimuli is known as 

induced or acquired resistance (AR). AR is an example of phenotypic plasticity because it allows 

plants with the same genotype to have different resistance phenotypes. The classic example is 

systemic AR (SAR). This whole-plant resistance response to localized pathogen attack was first 

reported in tobacco in 1961 (118). It soon became apparent that SAR is a long-lasting resistance 

response, which can still be detected at 42 days after induction (19). Over subsequent decades, a 

range of biotic and abiotic stimuli have been reported to elicit AR in taxonomically distant plant 

species and against a wide spectrum of pests and pathogens. For instance, colonization of roots by 

beneficial rhizobacteria or mycorrhizal fungi can result in induced systemic resistance (ISR) and 

mycorrhiza-induced resistance (MIR), respectively (25, 110). Furthermore, a multitude of natural 

and synthetic chemicals have been reported to elicit AR (148). 

AR is generally based on two nonexclusive mechanisms: prolonged upregulation of inducible 

defenses and defense priming (Figure 2). Following exposure to a resistance-inducing stimulus, 

inducible defenses can remain upregulated, providing AR against subsequent attack (Figure 2a). 
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Time 

Figure 2 
 

Mechanisms of acquired resistance (AR). Graphical models show levels of plant defense activity against time for the different 
mechanisms of AR. (a) Prolonged upregulation of inducible defenses. (b) Priming of inducible defenses. (c) Combination of prolonged 
upregulation and priming of inducible defenses. Light gray arrows (1) represent different AR-eliciting treatments (e.g., localized attack 
by a pathogen, β-aminobutyric acid). Dark gray arrows (2) represent defense elicitation by pest or pathogen. Red lines represent plants 
expressing AR. Blue dashed lines represent naive plants that do not express AR. 
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Alternatively, the resistance-inducing stimulus may prime the plant immune system, providing 

resistance through faster and/or stronger upregulation of inducible defenses after subsequent 

pathogen/herbivore attack (Figure 2b). The optimal strategy depends on the cost–benefit balance 

of the resistance in a given environment (22) (see the sidebar titled Acquired Resistance: A Costly 

Business?). Here, we outline both mechanisms in more detail and explain how their cost–benefit 

balance depends on plant life-history strategies. 

 
Prolonged upregulation of inducible defenses. Examples of prolonged upregulation of stress- 

inducible defenses (Figure 2a) include benzoxazinoids and glucosinolates in Poaceae and Bras- 

sicaceae, respectively. Although these defense metabolites are produced constitutively, they can 

accumulate to higher levels at the site of herbivore feeding. For instance, leaf benzoxazinoid con- 

centrations can remain elevated for seven days after feeding by moth larvae, resulting in increased 

resistance to secondary attack at the same location (86). Furthermore, glucosinolates can remain 

locally upregulated in Brassicaceae roots for eight weeks after herbivore attack (15). The forma- 

tion of anatomical defense features in response to pathogen infection can also be regarded as a 

prolonged upregulation of inducible defenses. Methyl jasmonate (MeJA) application results in in- 

creased trichome density in newly formed leaves of tomato (Solanum lycopersicum) for up to 21 days 

after treatment (16). Furthermore, in spruce, treatment with MeJA, wounding, and fungal infec- 

tion induces traumatic resin ducts (48, 89), which enhance resistance by increasing the reservoir 

of antiherbivory resin and remain functional for several years (48). 

Although prolonged upregulation of inducible defenses provides resistance, it can also be costly 

to maintain. The fitness cost of a given investment may vary between short-lived annuals and 

long-lived perennials. For Arabidopsis, a two-week upregulation of chemical defenses and trichome 

density could equate to 25% of the plant’s life span and thus be relatively costly, whereas this 

type of investment would be less costly for large long-lived tree species over a lifespan of tens to 

hundreds of years. Nevertheless, keeping costly defenses upregulated for much of a plant’s lifespan 

is maladaptive for any plant species. This is why plants have evolved an alternative AR strategy 

that is based on a more cost-efficient mechanism: priming of inducible defenses (43, 91). 

 
Priming of inducible defenses. Priming enables a faster, stronger, and/or more sustained up- 

regulation of inducible defenses after pathogen attack (Figure 2b) (31, 32, 91, 105). A variety 

of cues can elicit priming, including natural and synthetic chemicals, localized pathogen attack, 
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ACQUIRED RESISTANCE: A COSTLY BUSINESS? 

Acquired resistance (AR) is often associated with costs. For instance, allocation costs can arise from the redirection 

of resources from growth or reproduction to defense (99). Allocation costs are particularly pertinent when AR is 

based on a prolonged upregulation of inducible defense, which can cause severe reductions in growth and seed 

production (142). Defense priming also comes with allocation costs, which can make it unfavorable under stress- 

free conditions (43, 142, 147). Opportunity costs occur when the allocation of resources to defense occurs at a 

sensitive life stage, resulting in reduced ability to thrive at later developmental stages (40). The loss of interactions 

with beneficial symbionts (39, 52) and increased susceptibility to other attackers due to signaling cross-talk (67, 84, 

109) are examples of ecological costs. In some cases, priming can incur loss-of-specificity costs, whereby the primed 

defense state mediates an augmented defense response to an inappropriate stimulus (9, 61). However, despite these 

examples of costs, the benefits of protection often outweigh the costs, making AR a valuable strategy for plants to 

survive in hostile environments (43). 
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herbivore-induced plant volatiles, and beneficial microbes (23, 63, 132–134, 141). Different mech- 

anisms of priming have been proposed (21, 30–32). For example, inactive mitogen-activated pro- 

tein kinases (MAPKs), which accumulate in plants after priming treatment with the SA homolog 

benzothiadiazole (BTH), facilitate augmented induction of SA-dependent defenses upon subse- 

quent challenge (9). Priming can also be based on increased accumulation of glucosylated phyto- 

hormones (105). Increased concentrations of SA glucosides have been reported in primed tobacco 

and Arabidopsis following localized pathogen attack (74, 104, 126). Additionally, the resistance- 

inducing effects of the chemical priming agent β-aminobutyric acid (BABA) are reduced in Ara- 

bidopsis plants impaired in SA glucoside biosynthesis (104). 

Over recent years, increasing evidence has suggested that defense gene priming involves reg- 

ulation by epigenetic mechanisms (see the sidebar titled Epigenetics: What’s in a Name?) (30, 32, 

105). Biochemical modifications to DNA and DNA-associated proteins that control the density 

of chromatin have the potential to mediate long-term changes in defense gene responsiveness 

without major physiological costs (21, 30). In the following sections, we discuss these epigenetic 

mechanisms and review the evidence for epigenetic inheritance of priming. 

 
Epigenetic mechanisms of defense priming. Genomic DNA in the nucleus is tightly wrapped 

around histone protein octamers called nucleosomes, which form the basic unit of eukaryotic chro- 

   matin. The density of chromatin regulates to what extent the DNA is available for the transcrip- 
Heterochromatin: 

tightly packed 
chromatin, associated 
with transcriptional 
repression 

Euchromatin: lightly 

packed chromatin, 
associated with active 
transcription 

 
 

tional machinery. For this reason, tightly packed (condensed) heterochromatin is often associated 

with silenced genetic areas, whereas lightly packed euchromatin is more associated with transcrip- 

tionally active areas (10). Chromatin density is controlled by methylation and acetylation of his- 

tone tail residues and the presence of specific histone variants inside nucleosomes (37). Jaskiewicz 

and coworkers (61) were the first to report that SAR-related priming of WRKY gene promoters 

in Arabidopsis is associated with increased methylation and acetylation at lysine residues 4 and 9 of 

histone H3 (H3K4me3 and H3K9ac, respectively). These marks typically indicate reduced chro- 

matin density. Similar results were reported by López and associates (80) in BTH-primed wild- 

type plants and constitutively primed mutants of Arabidopsis. Recently, Schillheim and coworkers 

(121) used formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative PCR to 
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EPIGENETICS: WHAT’S IN A NAME? 

Waddington (146) introduced the term epigenetics in 1942 to describe phenotype-altering interactions between 

genes and their products that cannot be explained by genetic inheritance. Since then, epigenetics has commonly 

been used to describe nongenetic changes that are transmittable through meiotic and/or mitotic divisions and that 

influence phenotypes at cellular and/or whole-organism levels. Advances in molecular biology have provided mech- 

anisms to Waddington’s definition but have also created ambiguity. First, small RNAs (sRNAs) that modify gene 

expression via (post)transcriptional mechanisms are commonly referred to as an epigenetic mechanism but can 

equally be considered a genetic mechanism because sRNAs are encoded by the organism’s genotype. Second, hi- 

stone modifications, sRNA production, and DNA methylation typically co-occur, making it difficult to separate 

cause and effect. Third, the heritability of nongenetic changes remains unclear. Although histone modifications are 

stable over mitosis, they are not necessarily stable over meiosis. There is, however, ample evidence that changes 

in DNA methylation are inherited faithfully over meiosis, making methylation the prime candidate for germline 

transmission of metastable epigenetic traits. Despite ongoing debate about the exact definition of epigenetics, there 

is a consensus that the combined effects of histone modifications, sRNAs, and DNA (de)methylation are responsible 

for most epigenetic phenomena, providing organisms with increased phenotypic plasticity. 
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more directly demonstrate that chemical priming of the WRKY6 gene promoter is associated with 

chromatin decondensation. Together, these studies suggest that histone modifications and related 

changes in chromatin density cis-regulate priming of defense genes. 

In addition to histone modifications, there is increasing evidence that DNA methylation reg- 

ulates priming. Unmethylated DNA is often associated with open chromatin (euchromatin), 

whereas methylated DNA is more likely to be associated with closed chromatin (heterochromatin) 

(111). DNA methylation in plants mostly occurs at the fifth carbon of cytosine in three DNA se- 

quence contexts: CG, CHG, and CHH (where H indicates any base except guanine). Maintenance 

of DNA methylation in these contexts is achieved by different DNA methyltransferases. In Ara- 

bidopsis, METHYLTRANSFERASE1 (MET1) and the CHROMOMETHYLASE-class methyl- 

transferase (CMT) CMT3 are largely responsible for the maintenance of CG and CHG methyla- 

tion, respectively (77, 120). Asymmetric CHH DNA methylation is maintained by RNA-directed 

DNA methylation (RdDM) and CMT2, a methyltransferase that is dependent on the activity 

of the chromatin remodeler DECREASED DNA METHYLATION1 (DDM1) (92, 156). The 

three types of DNA methylation are not evenly distributed across the genome. CG methylation 

is found mostly at gene bodies and heterochromatic transposable elements (TEs) (see the side- 

bar titled A Whistle-Stop Tour of Transposable Elements), whereas CHG and CHH methylation 

mostly occurs at intergenic regions and TEs in both heterochromatic and euchromatic regions 

(29). It should be noted, however, that these methylation patterns are based on Arabidopsis and the 

distribution of DNA methylation varies across different plant species and families (100). 

The first evidence for the involvement of DNA methylation in defense gene priming came from 

López and associates (80), who demonstrated that SA-dependent WRKY and PR genes are consti- 

tutively primed in RdDM-deficient Arabidopsis mutants. Since then, various studies have confirmed 

that DNA methylation is inversely correlated with basal resistance to biotrophic pathogens and re- 

sponsiveness/expression of SA-dependent genes (81, 84, 155). Furthermore, independent groups 

have reported that infection of Arabidopsis with Pseudomonas syringae alters genome-wide DNA 

methylation (44, 106, 128). 

The exact mechanisms by which DNA methylation controls defense gene expression are com- 

plex. For instance, transcriptome analysis of downy mildew–infected Arabidopsis identified numer- 

ous defense-related genes that are transcriptionally primed in the CHH-hypomethylated RdDM 

mutant nrpe1–11 and/or repressed in the hypermethylated DNA demethylase mutant ros1–4 (81). 
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A WHISTLE-STOP TOUR OF TRANSPOSABLE ELEMENTS 

Transposable elements (TEs, or transposons) can be broadly classified into DNA transposons and RNA trans- 

posons. DNA transposons (class 2 TEs) move within a genome via single- or double-stranded DNA intermediates 

and are characterized by terminal inverted repeats. The six superfamilies of DNA elements transpose via either 

a classic cut-and-paste mechanism of excision followed by reinsertion (Ac/Ds/hAT, MuDR/Mutator/Mu/MULE, 

En/Spm/dSpm/CACTA, Tc1/Mariner/Stowaway, and PIF/Harbinger/Tourist superfamilies) or rolling circle replica- 

tion (Helitron superfamily). The more prevalent RNA transposons (class 1 TEs) replicate via a copy-and-paste 

mechanism involving an RNA intermediate. RNA transposons are grouped by the presence of long-terminal re- 

peats (LTRs), such as retrotransposons of the Copia and Gypsy superfamilies, or absence of LTRs, as in the long 

and short interspersed nuclear elements (LINEs and SINEs). Both DNA and RNA transposons can be classified as 

autonomous elements, which encode all required proteins to replicate and transpose, or nonautonomous elements, 

which require proteins encoded by the same subfamily or family of autonomous elements for transposition. For 

more comprehensive reviews describing the TE superfamilies, we refer the reader to References 152 and 160. 

http://www.annualreviews.org/
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Interestingly, the majority of these defense genes were not targeted by NRPE1- and/or ROS1- 

dependent DNA (de)methylation, suggesting that their responsiveness is trans-regulated by DNA 

methylation (81). More recently, Cambiagno and coworkers (24) reported that P. syringae infec- 

tion of Arabidopsis results in both the transient expression of pericentromeric TEs and the ac- 

cumulation of RdDM-related sRNAs that  map to both TEs  and defense genes. Although the  

TEs were resilenced over time, the complementary defense genes remained active (24). Cam- 

biagno and coworkers proposed that this antagonistic response is caused by sRNA competition, 

whereby sRNAs are allocated away from the defense-related genes toward the TEs (24). Apart 

from this competition model, TE-derived sRNAs could also positively regulate the priming of 

distant defense genes. Recent evidence has shown that sRNAs can trans-activate defense-related 

genes through interaction with ARGONAUTE 1 (AGO1) and the SWI/SNF chromatin remod- 

eling complex (79). Further support for trans-regulation of defense gene priming came from a 

recent study of Arabidopsis epigenetic recombinant inbred lines (epiRILs), which identified four 

hypomethylated epigenetic quantitative trait loci (epiQTLs) that control quantitative resistance 

against downy mildew (49). Transcriptome analysis revealed that the most resistant epiRILs were 

constitutively primed to activate defense-related genes. However, a comprehensive comparison of 

gene transcription and DNA methylation failed to identify defense-regulatory genes within the 

pericentromeric epiQTLs that were simultaneously primed and hypomethylated, suggesting that 

the hypomethylated epiQTLs trans-regulate genome-wide priming of defense genes. 

We hypothesize that stress-induced DNA hypomethylation at pericentromeric TEs provides 
a blueprint for genome-wide defense gene priming. In addition to cis-regulation of defense genes 

by nearby TEs (Figure 3a), DNA methylation at pericentromeric TEs can regulate the respon- 

siveness of distant defense genes via trans-acting mechanisms. Methylated TEs could control the 

induction of nearby regulatory genes (e.g., transcription factors), which in turn mediate aug- 

mented induction of downstream defense genes during secondary stress exposure (Figure 3b). 

Alternatively, disease-induced hypomethylation of pericentromeric TEs could affect the forma- 

tion of long-range heterochromatic interactions, releasing the repression of distant defense genes 

(Figure 3c). Finally, TE-derived sRNAs complementary to distant defense genes could trans- 

regulate defense gene priming. This can be achieved by disease-induced suppression of RNA poly- 

merase IV-dependent RdDM gene silencing (Figure 3d) (155). Alternatively, RNA polymerase 

II-derived 21/22-nt sRNAs from disease-induced TEs could augment distant defense gene in- 

duction via their association with AGO1 and the SWI/SNF complex (Figure 3e) (79), or they 

could augment full-length transcription of distant defense genes with intronic TEs by alternative 

polyadenylation (Figure 3f ) (136). 

 
Transgenerational Acquired Resistance 

The first indication that plants are capable of rapid transgenerational adaptation to biotic stress 

came from the finding that caterpillar-infested wild radish produces progeny that are more resis- 

tant to the same herbivore (2). In following years, other studies reported that isogenic progeny 

from herbivore-, wounding-, or JA-treated plants develop different morphological traits, such as 

leaf trichome density, specific leaf area, petal area, and seed production (56, 66, 144). Further- 

more, independent groups have shown that progeny from plants exposed to pathogens, herbi- 

vores, and/or chemical priming agents express transgenerational acquired resistance (TAR), which 

is associated with priming of defense-related genes (64, 84, 114, 123). Because patterns of DNA 

methylation can remain stable over meiosis (101), subsequent research has focused on the role 

of DNA methylation in TAR. In Arabidopsis, mutations in DNA methylation machinery mimic 

TAR in terms of resistance and priming of defense genes (81, 84, 85), pointing to a mechanism 
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Figure 3 (Figure appears on preceding page) 
 

Mechanistic models of the regulation of defense gene priming by DNA methylation at transposable elements (TEs). (a) Cis-regulation 
by nearby TEs. Primary exposure to biotic stress induces defense gene expression and simultaneous DNA demethylation and 
chromatin decondensation at a nearby TE in the defense gene promoter. The open chromatin structure enables augmented defense 
gene induction after secondary stress exposure. (b) Trans-regulation of defense genes through intermediate regulatory genes. Primary 
stress induces a transient increase in the expression of a defense regulatory gene (e.g., transcription factor encoding gene), which 
controls the induction of defense genes located elsewhere in the genome. Simultaneous DNA demethylation and chromatin 
decondensation at a TE in the promoter of the regulatory gene enable augmented induction of this gene after secondary stress 
exposure. This in turn enables augmented defense gene induction. (c) Trans-regulation by long-range chromatin interactions. Primary 
stress induces DNA demethylation at a heterochromatic TE that forms a long-range heterochromatic connection with a distant 
defense gene promoter. The resultant chromatin decondensation at the TE disrupts the long-range heterochromatic interaction, 
enabling augmented induction of the distant defense gene after secondary stress exposure. (d) Trans-regulation by small interfering 
RNAs (siRNAs) from canonical RNA-directed DNA methylation (RdDM). Primary stress represses RNA polymerase IV (Pol IV)–, RNA-
DEPENDENT  RNA  POLYMERASE  2   (RDR2)–,  and   ARGONAUTE   4   (AGO4)–dependent  RdDM,  reducing   the   production of 24-
nt-long siRNAs from a TE containing complementary DNA sequences with distant defense gene promoters. This allows for 
augmented induction of the distant defense gene after secondary stress exposure, as the gene is no longer repressed by RdDM. 

(e) Trans-regulation by siRNAs from noncanonical RdDM. Primary stress results in transcriptional reactivation of functional TEs that 
contain complementary DNA sequences to distant defense gene promoters. Subsequent resilencing of the TEs by Pol II– and 

RDR6-dependent RdDM results in the production of 21/22-nt-long siRNAs that are loaded onto AGO1 and interact with the 
SWI/SNF chromatin remodeling complex at distant defense gene promoters. The increased recruitment of Pol II and associated 
chromatin remodeling to the distant defense gene promoters enables augmented induction after secondary stress exposure. 

( f ) Combination of cis- and trans-regulation by local and distal TEs, respectively. The defense gene contains an intronic TE with an 
alternative polyadenylation site. Initially, when the intronic TE is in a demethylated and euchromatic state, the alternative 
polyadenylation site is in use, resulting in the majority of the defense gene transcripts being truncated and nonfunctional. Primary stress 
leads to demethylation and transcription of a distant TE that is partially complementary to the intronic TE. The siRNAs derived from 
the stress-inducible TE induce noncanonical RdDM at both TEs. The resulting heterochromatization at the intronic TE prevents the 
use of the alternative polyadenylation site in an EDM2/EDM3/IBM2-dependent manner, allowing for full-length transcription of the 
functional defense gene upon secondary stress exposure. 

 
by which disease-induced DNA hypomethylation is transmitted to following generations to con- 

trol TAR. This hypothesis is supported by Furci et al. (49), who identified hypomethylated DNA 

regions that control quantitative disease resistance and that are stable over multiple generations. 

Furthermore, mutation of the DNA demethylase gene ROS1 not only affects basal resistance to 

biotrophic pathogens (155) but also prevents TAR in progeny from diseased plants (81). Hence, 

DNA demethylation is essential for the elicitation, transmission, and/or expression of TAR. An- 

other recent study revealed that TAR in Arabidopsis is associated with global shifts in DNA methy- 

lation at CG contexts in gene bodies, which were more pronounced after three generations than 

one generation of disease stress (128). However, the genes carrying these differentially methylated 

cytosines (DMCs) were not enriched for defense-related functions and there was little overlap in 

DMCs between independent experiments. Because the role of gene body methylation in gene ex- 

pression remains unclear (13), it was concluded that the observed changes in DNA methylation 

mark TAR but do not necessarily cause TAR (128). 

Although the exact mechanisms underpinning TAR require further study, there is little doubt 

about the epigenetic nature of the phenomenon (see the sidebar titled Epigenetics: What’s in a 

Name?). First, TAR can still be apparent in isogenic progeny after multiple stress-free generations, 

indicating that TAR is transmittable through the germline and not a consequence of a physiolog- 

ical maternal effect (84, 113, 128). Second, TAR is reversible and its transgenerational durability 

seems to depend on the level of parental stress. For instance, TAR triggered by localized infec- 

tion with avirulent P. syringae disappears after one stress-free generation (123). By contrast, TAR 

is still apparent after two stress-free generations when elicited by repeated inoculations with a 

virulent strain of the same pathogen (128). The reversibility of TAR also suggests that it is associ- 

ated with ecological costs (see the sidebar titled Acquired Resistance: A Costly Business?). Indeed, 
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Luna et al. (84) reported that TAR-expressing progeny from P. syringae–inoculated Arabidopsis are 

more susceptible to the necrotrophic fungus Alternaria brassicicola. Further research is needed to 

clarify the ecological drivers of TAR and determine to what extent TAR provides a selective ad- 

vantage to plants in a changing environment. 

 

Genetic Adaptation of the Innate Immune System 

TEs are increasingly considered as important regulators of gene transcription and evolution (45, 

78). As outlined above, several studies have reported that disease and associated defense activa- 

tion induces TE hypomethylation (24, 44, 106, 155), which in turn can influence transcription 

of defense genes via cis- or trans-acting mechanisms (Figure 3). Furthermore, this hypomethyla- 

tion can lead to transcriptional activation and mobilization of TEs, which, in turn, can generate 

genetic variation (45). Indeed, a recent study used a hypomethylated epiRIL population of Ara- 

bidopsis to increase the occurrence of TE reactivation and found that the histone variant H2A.Z 

guides preferential integration of reactivated TEs within environmentally responsive genes (113). 

Thus, stress-induced epigenetic variation at TEs may accelerate genetic adaptation to biotic stress 

(122). In the following section, we review the evidence that stress-inducible TEs have been domes- 

ticated to act as regulatory elements of defense gene expression. On the basis of the high incidence 

of TEs within R-gene clusters (112), we furthermore propose a model by which disease-induced 

TE hypomethylation accelerates R-gene duplication and mutation, thereby providing plants with 

increased genetic diversity to resist pathogens. 

 
Regulation of defense genes by domesticated transposable elements. Hayashi & Yoshida (51) 

demonstrated that Renovator, a long-terminal repeat (LTR) retrotransposon, acts as a regulatory 

promoter element of the rice blast resistance gene Pit. Because the 5 and 3 LTRs of Renovator 

had not accumulated mutations, it was concluded that this transposition had occurred relatively 

recently (51). Similarly, the rice blast resistance locus Pigm, which controls broad-spectrum resis- 

tance without major yield penalties, is under cis-regulation by two promoter-localized TEs (38). In 

Arabidopsis, it was shown that a solitary LTR (soloLTR), which is derived from the PTI-inducible 

retrotransposon ATCOPIA93, controls pathogen-induced expression of the nearby RECOGNI- 

TION OF PERONOSPORA PARASITICA 4 (RPP4) resistance gene (157). TEs can also exert cis- 

regulatory effects from within genes. For example, the ratio of coding to noncoding transcripts 

of the Arabidopsis RPP7 R gene is influenced by a COPIA-type retrotransposon in the gene’s first 

intron (136). Together, these examples illustrate how stress-inducible TEs, which have undergone 

recent transpositions, have acquired a role in regulating the expression of nearby defense genes. 

It is noteworthy that TEs with a transcriptional enhancer element can exert regulatory activity 

on defense genes from more than tens of kilobases away (149), possibly via the trans-regulatory 

mechanisms outlined in Figure 3. On the basis of the evidence presented in this section, we con- 

clude that prolonged periods of disease can expand the regulatory potential of the plant immune 

system through increased transposition and domestication of TEs in defense gene regulation. 

 
Accelerated evolution of R genes under prolonged biotic stress. R genes are primarily known 

for their role in gene-for-gene resistance (ETI). As such, they are subject to a coevolutionary 

arms race with effector genes from biotrophic pathogens (62). Because microbes have shorter 

generation times than plants, one could wonder how R genes keep pace in this evolutionary arms 

race. This dichotomy can be explained by the emerging evidence that R genes evolve faster than 

other plant genes. 
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Figure 4 

Model of accelerated evolution of resistance (R) genes under prolonged biotic stress. Stress induces localized hypomethylation at the 
site of a class 1 transposable element (TE), which is located near an R gene that controls effector-triggered immunity (ETI) against 
pathogen isolate A. The resulting euchromatization induces transcription and transposition of the TE, causing duplication of the TE 
within the R-gene cluster. Prolonged exposure to biotic stress increases homologous recombination rates. Nonallelic homologous 
recombination between repetitive regions of the TEs flanking the R gene causes gene duplication within the cluster. In the absence of 
stress exposure, the TEs are resilenced by DNA methylation, which spreads to the neighboring R genes, causing increased G:C A:T 
mutation rates. Because only one R-gene copy is required to provide resistance against pathogen isolate A, the other copy can 
accumulate mutations over multiple generations and eventually acquire a new resistance function, such as ETI against pathogen isolate 
B or enhanced basal resistance through constitutive priming of salicylic acid–dependent defense. 

 
 

R genes are often assembled in gene clusters (158), and some R genes, like Rp1 genes in grasses, 

show unusually high variation in copy numbers within the same species (42, 125). This enhanced 

duplication rate can in part be attributed to the high incidence of retrotransposons within R-gene 

clusters (65, 122), as retrotransposons can increase gene duplication through nonallelic homolo- 

gous recombination (116). Furthermore, because TE transposition rates, homologous recombina- 

tion, and G:C→A:T point mutations are influenced by chromatin density and DNA methylation 

(102, 137, 153), it is tempting to speculate that there is a causal link between disease, epigenetic 

change, and R-gene evolution. Indeed, Siedl & Thomma (122) recently suggested that plants and 

pathogenic microbes contain rapidly coevolving genomic regions that are enriched with both TEs 

and genes regulating virulence or disease resistance. 

The evidence reviewed above points to a model by which prolonged exposure to biotic stress 

accelerates R-gene evolution (Figure 4). Disease-induced hypomethylation within R-gene clusters 

leads to transcriptional reactivation and transposition of the associated TEs. The resulting pro- 

liferation of repetitive TE sequences facilitates tandem R-gene duplication through gene capture, 

TE R gene R gene 

ggg R gggeee nnne R 

R gene TE 

TE R gene TE 

TE 

 

 
TE R gene 



PY57CH23_Ton ARjats.cls July 29, 2019 15:31 

 

 

 
23.12 Wilkinson et al. 



PY57CH23_Ton ARjats.cls July 29, 2019 15:31 

 

 

 
 

retroduplication, reversed ends duplication, and nonallelic homologous recombination (103, 116, 

124). Functional redundancy allows for subsequent diversification of duplicated R genes via 

nonsynonymous mutations (103). Considering that methylated cytosines are subject to higher 

G:C→A:T mutation rates (102, 124), the occurrence of nonsynonymous mutations will be en- 

hanced by the spreading of DNA methylation from nearby TEs. Because exposure to biotic stress 

is also known to increase homologous recombination frequency (18, 64, 69, 83, 94), the R-gene di- 

versification rate will be enhanced further by homologous recombination between highly similar 

sequences (47, 93). Collectively, this cascade of (epi)genetic changes in response to biotic stress en- 

ables plants to diversify their R-gene arsenal and expand associated immune functions (Figure 4). 

 

 
Rhizosphere: 
the narrow region of 
root-surrounding soil 
that is influenced by 
root exudation 
chemicals and 
associated 
microorganisms 

It is important to note that the contribution of R genes to resistance extends beyond ETI. Pre-    

vious studies have shown that genetic variation in basal resistance is linked to polymorphisms in 

R genes. Genetic analysis of basal resistance against P. syringae across Arabidopsis accessions linked 

variation in gene responsiveness to SA to a highly polymorphic R-gene cluster on chromosome 

4 (3). This work confirmed previous reports that mutations in the SUPPRESSOR OF npr1–1, 

CONSTITUTIVE 1 (SNC1) gene within this R-gene cluster influence SA-dependent basal resis- 

tance (76, 159). Furthermore, the Arabidopsis bal mutant, which shows enhanced expression of mul- 

tiple R genes within the SNC1 R-gene cluster, has a higher level of SA-dependent basal resistance 

(130). Obtained from a backcross with the hypomethylated ddm1–2 mutant, the bal mutant phe- 

notype was initially assumed to have an epigenetic basis. However, subsequent research revealed 

that bal is caused by genetic duplication within the SNC1 R-gene cluster (154). Even more strik- 

ingly, a screen for suppressor/revertant mutations of the bal phenotype revealed a 20-fold higher 

frequency than expected from average mutation rates (130), all of which was caused by missense 

mutations in the duplicated SNC1 gene (154). The example of the bal mutant provides experi- 

mental evidence in support of our model of R-gene evolution (Figure 4) because it demonstrates 

that DNA hypomethylation can lead to R-gene duplication, followed by diversification through 

hypermutation (154). 

 
EXTERNAL STRATEGIES 

Plants constantly interact with beneficial organisms, such as insect pollinators, animal seed dis- 

persers, nitrogen-fixing bacteria, and nutrient-providing fungi (20, 90). These organisms can assist 

plants in their battle against pests and pathogens. In this section, we explore how plants enhance 

their survival by enlisting beneficial organisms for their defense. This includes both short-term 

strategies, such as recruitment of natural enemies of attacking herbivores, and long-term strate- 

gies, such as shaping rhizosphere and soil microbiomes (Figure 5). 

 
Indirect Induced Defense 

In response to feeding or egg deposition by herbivores, plants often emit herbivore-induced plant 

volatiles (HIPVs) (27, 96, 115, 140). HIPVs can mediate tritrophic interactions by attracting 

predators and/or parasitoids of the attacking herbivore (Figure 5) (41, 115, 138, 140). The recruit- 

ment of natural enemies of plant attackers by HIPVs is commonly referred to as indirect induced 

defense because plants are not directly antagonizing their attackers (96). Indirect induced de- 

fense is controlled by the plant innate immune system, as HIPVs are induced by defense-eliciting 

molecular patterns (DAMPs and HAMPs). Accordingly, this plant defense strategy operates over 

relatively short timescales (138). 

Many early reports about indirect induced defense involved maize. In response to feeding by 

caterpillars, maize releases a rich blend of volatiles that can recruit parasitoid wasps (139, 140) 
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Figure 5 

External strategies by which plants resist pests and diseases. Volatile-based strategies that involve tritrophic interactions are shown on 
the left in orange shading. In response to egg deposition and/or feeding by herbivores, plants release herbivore-induced plant volatiles 
(HIPVs) that can recruit herbivore enemies, such as (a) parasitoid wasps and (b) entomopathogenic nematodes. These beneficial 
organisms kill the herbivore and so reduce damage to the host plant. Strategies involving recruitment of disease-suppressing microbial 
communities are shown to the right in green shading. ●1    Biotic stress changes the quantity and composition of root exudates, resulting 
in ●2    increased recruitment of beneficial microbes. ●3    The recruited microbes can antagonize soilborne pathogens and/or trigger an 
acquired resistance [AR; ISR/MIR] response in the host plant (red dashed line), leading to augmented defense expression upon pathogen/ 
herbivore attack (purple dashed line and purple shading). The conditioned microbiome (yellow shading) can spread to and protect 
neighboring plants including nearby progeny (as indicated by the small plant). (c) Plants may also shape their phyllosphere microbiome 
and transfer the associated microbes to their progeny via seeds. Abbreviations: ISR, induced systemic resistance; MIR, mycorrhiza- 
induced resistance. 

 

(Figure 5a). Maize can also recruit natural enemies of belowground herbivores (Figure 5b). In 

selected maize varieties, feeding by larvae of the western corn rootworm induces emission of the 

sesquiterpene (E)-β-caryophyllene, which can attract entomopathogenic nematodes that infect 

western corn rootworm larvae (115). Although most studies of indirect induced defense have 
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focused on angiosperm crop species, there are examples of this defense strategy from across the 

plant kingdom, including long-living tree species. Following egg deposition in Scots pine nee- 

dles by the common pine sawfly, there is a systemic increase in emission of the sesquiterpene 

(E)-β-farnesene, which in turn recruits a hymenopteran egg parasitoid (55, 97, 98). Furthermore, 

black poplar foliage responds to feeding by gypsy moth larvae by releasing HIPVs that recruit 

endoparasitic wasps (28). Thus, the exploitation of HIPVs in indirect induced defense appears to 

be conserved across the plant kingdom, indicating that it is an early evolutionary trait (96). How- 

ever, debate continues surrounding whether HIPVs have evolved specifically to recruit herbivore 

enemies or to serve other functions, such as acting as airborne signals in plant–plant communi- 

cation (138). In addition to herbivore enemies, plants can also recruit beneficial microorganisms 

from their environment. In the next section, we describe how plants recruit these microbes to help 

their survival in a hostile world (Figure 5). 

 
Shaping the Plant-Associated Microbiome 

The rhizosphere, phyllosphere, and spermosphere of plants are heavily colonized by commensal 

and mutualistic microbes (75, 145). These plant-associated microbiomes can help suppress bi- 

otic stress via different mechanisms, including antibiosis, nutrient competition, and induction of 

AR. Consequently, changes in the plant-associated microbiome can improve long-term survival 

of plants and even their progeny. 

 
Rhizosphere. Plants control their rhizosphere microbiome through root exudates (34, 107, 119), 

which change the chemical composition of the rhizosphere to attract and support beneficial mi- 

crobes, such as plant growth–promoting rhizobacteria (PGPR) and mycorrhizal fungi (Figure 5) 

(59, 129). Pests and diseases are known to alter root exudation composition, which can result in 

changes in soil- and root-associated microbiomes (11, 46, 68). Although the exact mechanisms 

driving these stress-induced changes remain unclear, key defense signaling chemicals, including 

SA, JA, and benzoxaxinoids, have been shown to influence microbial communities in the rhizo- 

sphere (26, 58, 73). Microbes recruited to roots of pathogen- or herbivore-infested plants can 

contribute to defense via both direct mechanisms, such as biocidal activity against the attackers 

(46, 68), and indirect mechanisms, such as competition for nutrients or induction of AR (11, 151) 

(Figure 5). 

Stress-induced changes in root exudation can also benefit the progeny of the attacked plant. 

This transgenerational effect acts through soil conditioning, during which plant-beneficial mi- 

crobiota are vertically transmitted from parent to offspring via the soil (Figure 5). For instance, 

a recent study by Berendsen and coworkers (11) demonstrated that soil conditioned by downy 

mildew–infected Arabidopsis developed growth- and resistance-inducing activity, whereas soil 

from healthy Arabidopsis did not. Such soil legacy effects are also thought to contribute to the 

development of disease-suppressive soils in agriculture. A classic example comes from the take-all 

decline phenomenon, where years of continuous monoculture of barley or wheat under disease 

pressure by the take-all fungus (Gaeumannomyces graminis var. tritici) leads to the development of 

disease-suppressive soil (72). This activity has been attributed to changes in bacterial communi- 

ties, including fluorescent Pseudomonas spp. that control soilborne pathogens through production 

of antifungal metabolites (72). 

It should be noted that most plant–soil feedback experiments report negative effects of se- 

quential monocultures because of the buildup of soilborne diseases (54, 71). Hence, the delete- 

rious effect of vertical transmission of soil pathogens usually exceeds the beneficial effect from 

the transmission of biocontrol microbes. However, although this trend is apparent for grasses and 
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forbs, this is not the case for trees (71). This highlights that defense strategies of long-lived plant 

species may differ substantially from those employed by the more commonly studied annuals. 

 
Phyllosphere. In the context of disease suppression, microbial communities in the phyllosphere 

have received less attention than those in the rhizosphere (145). There is, nevertheless, growing 

evidence that phyllosphere communities can contribute to disease suppression in plants (12, 60, 

117). There is further circumstantial evidence that plants are capable of shaping their phyllosphere 

microbiome after biotic stress exposure. For instance, it has been shown that pathogen infection 

alters bacterial phyllosphere communities (131). Furthermore, genetic studies have linked mi- 

crobial community structure on Arabidopsis and maize leaves to plant defense-related loci (6, 57). 

If plants indeed shape their phyllosphere microbiome to aid in their defense, one could specu- 

late that vertical transmission of disease-suppressing microbes may also occur. Although plausible 

pathways exist, for example, via seeds (Figure 5) or leaf litter (145), further studies are needed to 

confirm vertical transmission of disease-suppressing phyllosphere microbes. 

 
CONCLUSIONS 

We have outlined internal and external strategies by which plants adapt to biotic stress (Figure 1). 

Because of the diversity in life forms and life histories, the timescale and cost–benefit balance of 

these strategies vary across the plant kingdom. Over the lifetime of a tree, biotic stress conditions 

likely vary considerably. One could therefore argue that epigenetic inheritance of TAR may be of 

little benefit to a tree, particularly if the resistance is acquired early in life. Conversely, for annual 

angiosperms like Arabidopsis, there is less time between generations, making it more likely that 

biotic stress affecting the parent will also pose a threat to its progeny. Therefore, TAR may be 

more beneficial in annual angiosperms. Regardless of whether this hypothesis is right or wrong, 

comparisons between species are essential to determine to what extent knowledge from short-lived 

annuals is transferable across the plant kingdom. There is an urgent need for such comparative 

studies to prepare global agriculture and forestry for global change. 

With ever-increasing global interconnectedness and our rapidly changing climate, the distri- 

bution of pests and pathogens is expanding (8). Reliance on a limited number of crop and tree 

species for food and wood products makes our production systems vulnerable to these shifts in 

pest and pathogen ranges, as is dramatically illustrated by the recent spread of ash dieback disease 

across Europe. Diversification of species used in our production systems is essential. Understand- 

ing the strategies by which different plants adapt to biotic stress will aid with the selection of new 

crop and tree varieties. 

Apart from the burden of low genetic diversity, agriculture and forestry remain heavily reliant 

on pesticides. Because of stringent regulations on pesticide usage, the evolution of pesticide resis- 

tance, and public concerns about environmental sustainability and chemical residues, this reliance 

will need to change. It is widely believed that an integrated approach to plant protection can im- 

prove the environmental sustainability of the global bioeconomy. The plant defense strategies 

outlined in this review seem promising for exploitation in such an integrated approach. However, 

more research is needed to understand the underpinning mechanisms, ecoevolutionary drivers, 

and complementarity of these strategies. For instance, if agriculture places greater priority on im- 

proving soil quality for pest and disease management, research should focus on identifying the 

root exudation and rhizosphere chemicals that recruit and shape disease-suppressing microbial 

communities. This information will help to direct the selection of new crop varieties and/or in- 

tercropping species that excel in exploiting the soil microbiome for protection (5). To maximize 

the benefits of AR, plant varieties should be selected that maintain defense priming over time 
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frames that are useful in agriculture or forestry. Expanding our knowledge about the effects of 

priming on disease epidemiology in monocultures and mixed plant populations will also help us 

take full advantage of AR. On a molecular level, more research on the epigenetic mechanisms of 

defense priming is needed to fully exploit long-lasting (T)AR in pest and disease management. For 

instance, a better understanding of the epigenetic underpinnings of TAR can aid the generation 

and selection of epiRILs that are constitutively primed for defense. In Arabidopsis, this approach 

allows the selection of lines that express quantitative disease resistance without affecting plant 

growth (49). Whether this approach is suitable for crops depends on a variety of factors, including 

the stability of the resistance and potential nontarget effects. Finally, the introduction of new tech- 

nologies and practices to improve agricultural sustainability requires consideration of consumer 

opinions. This is particularly relevant in the context of ongoing public resistance to genetically 

modified crops in Europe (88). 

In summary, our understanding of how plants resist pests and diseases has drastically increased 

over recent decades, largely due to the adoption of model plant species. Moving forward, we need 

to increase our understanding of how a diverse range of species survive in a hostile world if we are 

to establish resource production systems that will remain resilient on our ever-changing planet. 
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SUMMARY POINTS 

1. To resist pests and diseases, plants employ internal and external strategies that are based 

on plant immunological pathways and can involve interactions with beneficial organisms. 

These strategies occur over varying timescales ranging from innate immune responses 

within seconds to (epi)genetic and symbiotic adaptations that occur over multiple plant 

generations. 

2. The two pillars of the plant innate immune system, PTI and ETI, provide instant pro- 

tection against the majority of potential pests and pathogens. 

3. AR can provide relatively long-term protection against biotic stress and is based on two 

nonexclusive mechanisms: prolonged upregulation of inducible defenses and defense 

priming. In some cases, priming can be transmitted to following generations. 

4. Exposure to biotic stress reduces DNA methylation at TEs, which can prime defense 

genes via cis- and trans-regulatory mechanisms. 

5. Biotic stress can accelerate R-gene evolution through epigenetic and genetic mech- 

anisms. Stress-induced DNA hypomethylation and transcriptional activation of TEs 

within R-gene clusters can enhance gene duplication, facilitating R-gene diversification 

through homologous recombination and point mutation at methylated cytosines. 

6. Attack by pests and/or pathogens induces the release of plant metabolites that recruit 

and support beneficial organisms, which can help plants and their progeny resist pests 

and diseases. 

FUTURE ISSUES 

1. To elucidate the mechanisms by which DNA hypomethylation at TEs primes defense 

gene expression and provides (T)AR, integrated studies of biotic stress–induced changes 

http://www.annualreviews.org/
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