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29 Abstract 
30 

31 Background and aims Layered profiles of designed soils may provide long-term benefits 
 

32 for green roofs, provided the vegetation can exploit resources in the different layers. We 
 

33 aimed to quantify Sedum root foraging for water and nutrients in designed soils of 
 

34 different texture and layering. 
 

 

35 Methods In a controlled pot experiment we quantified the root foraging ability of the 
 

36 species Sedum album (L.) and S. rupestre (L.) in response to substrate structure (fine, 
 

37 coarse, layered or mixed), vertical fertiliser placement (top or bottom half of pot) and 
 

38 watering (5, 10 or 20 mm week-1). 
 

 

39 Results Water availability was the main driver of plant growth, followed by substrate 
 

40 structure, while fertiliser placement only had marginal effects on plant growth. Root 
 

41 foraging ability was low to moderate, as also reflected in the low proportion of biomass 
 

42 allocated to roots (5-13%). Increased watering reduced the proportion of root length and 
 

43 root biomass in deeper layers. 
 

 

44 Conclusions Both S. album and S. rupestre had a low ability to exploit water and nutrients 
 

45 by precise root foraging in substrates of different texture and layering. Allocation of 
 

46 biomass to roots was low and showed limited flexibility even under water-deficient 
 

47 conditions. 

 

48 
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51 Introduction 
 

 

52 Stormwater management through retention and detention on green roofs can be targeted 
 

53 through the combinations of vegetation and soils used in the roof construction. The soils 
 

54 are highly designed, usually lightweight and porous, to meet specific criteria for long- 
 

55 term functions. The role of the vegetation is to evaporate the stored water between rainfall 
 

56 events and this is the limiting factor for stormwater management by green roofs in many 
 

57 climates (Johannessen et al. 2017). While standard Sedum-based extensive green roofs 
 

58 often function well across large climate gradients (Johannessen et al. 2017), vegetation 
 

59 with higher water use or higher resistance and resilience to specific environmental 
 

60 conditions is sought to improve green roof functions, multifunctionality and stormwater 
 

61 retention. Unfortunately, the use of non-succulent vegetation often entails a risk of 
 

62 mortality and failure due to drought episodes (Johannessen et al. 2017; Monterusso et al. 
 

63 2005; Nagase and Dunnett 2010). Therefore, further investigations of how green roofs 
 

64 with Sedum species can be designed, could be useful to increase the role of green roofs 
 

65 in stormwater management for the drier and wetter ends of the humidity gradient. 

 

66 
 

 

67 In coastal climates, Sedum may suffer winter damage as both shoots and roots are 
 

68 sensitive to prolonged wet conditions. One solution may be to use a coarse substrate on 
 

69 top to reduce moisture around shoots and a layered structure with a finer substrate deeper 
 

70 in the profile that is actually able to retain some water. Layered configurations may also 
 

71 be of wider interest, as high substrate temperature is a considerable problem for roof 
 

72 vegetation under dry Mediterranean conditions (Savi et al. 2016), but can be manipulated 
 

73 by substrate depths  (Reyes  et  al.  2016)  and to  some extent by substrate  composition 
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74 (Sandoval et al. 2017). Further, roots are less frost-tolerant than shoots and hence benefit 
 

75 from substrates which they can forage into depths which are better frost insulated (Boivin 
 

76 et al. 2001) and layered structures may better handle both water amounts and 
 

77 contaminants (Wang et al. 2017). The feasibility of layered configurations is likely to 
 

78 depend on the root foraging patterns of the vegetation and whether they are able to exploit 
 

79 resources in vertical substrate layers. Despite their importance on green roofs, very little 
 

80 is known about Sedum root systems and how the roots interact with the substrate and 
 

81 environmental conditions to affect plant performance and green roof functions. A better 
 

82 understanding of root foraging capacity and root growth patterns and knowledge of how 
 

83 to manipulate these are steps towards more reliable Sedum based green roofs under 
 

84 contrasting climatic conditions. 

 

85 
 

 

86 Plant root growth is governed by a set of plastic traits including branching patterns, root 
 

87 diameter, specific root length and rooting depth, enabling roots to forage for resources 
 

88 like water and nutrients (Hodge 2009). Root foraging is resource-demanding, so there is 
 

89 clearly a trade-off with other plant functions and a link between foraging strategy, fitness 
 

90 components and evolution (Jansen et al. 2009; Kembel and Cahill 2005; Weiser et al. 
 

91 2016). 

 

92 
 

93 Ecological limits to plastic responses like root foraging are expected when abiotic factors 
 

94 have strong effects on plant fitness (Valladares et al. 2007). Stress-tolerant vegetation that 
 

95 typically inhabit soils of small volume and low water-holding capacity, where abiotic 
 

96 conditions including drought are of overriding importance, often have a low ability for 
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97 precise root foraging (Grime 2007; Grime and Mackey 2002) and may depend more on 
 

98 reducing water loss to survive adverse periods. Succulent leaves and different degrees of 
 

99 crassulacean acid metabolism (CAM) are parts of an adaptive suite of traits under such 
 

100 conditions. Succulents often also have a low allocation of biomass to roots (Poorter et al. 
 

101 2012; von Willert et al. 1991), shallow root systems with wide lateral spread (Schenk and 
 

102 Jackson 2002) and rely on opportunistic water acquisition during wet periods and storage 
 

103 between rain events. Roots of some succulents are also found to rapidly restore function 
 

104 on rewetting and to have a low loss of water to drying soil (Nobel and Huang 1992; Nobel 
 

105 and North 1996). Models of photosynthetic carbon gain also predict a low proportion of 
 

106 root biomass and shallow rooting for systems with pulsed water availability, across plant 
 

107 phenotypes (Schwinning and Ehleringer 2001). However, much of this knowledge is 
 

108 based on studies of desert succulents. Sedum species used on green roofs are usually from 
 

109 less extreme environments, where one would expect more flexible strategies for resource 
 

110 acquisition, as reflected in their facultative photosynthetic C3-CAM metabolism (Winter 
 

111 and Holtum 2014). Although spatial patterns of soil nutrients trigger morphological root 
 

112 foraging responses in many species (Kembel and Cahill 2005), such responses have, to 
 

113 the best of our knowledge, not been investigated in Sedum species. More knowledge on 
 

114 this part could give input to how to place fertilisers to direct rooting patterns on green 
 

115 roofs. Interestingly, strong root foraging for Cd and Zn have been found for Zn/Cd 
 

116 hyperaccumulating genotypes of Sedum alfredii (Liu et al. 2010). 

 
117  

 

 

118 To obtain relevant knowledge for use in green roof systems, we addressed some of these 
 

119 questions in an experiment under greenhouse conditions. The objective of the study was 
 

120 to evaluate the extent to which Sedum species are able to exploit water and nutrients by 
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121 root foraging in substrates of different composition and layering. We tested the 
 

122 hypotheses that i) Sedum species actively forage for soil resources, resulting in a higher 
 

123 root density in substrate layers with more nutrients or higher water retention capacity, and 
 

124 ii) Root placement is determined by the water availability of the substrate layers, so 
 

125 foraging in layers with high water-holding capacity is weakened when water availability 
 

126 is increased through watering. As a consequence, more root biomass and root length 
 

127 would be allocated to deeper layers in a layered substrate when fertiliser or water-holding 
 

128 material is placed at the bottom. In sum, these tests can also inform whether substrate 
 

129 modifications that can improve shoot survival would have negative impact on the root 
 

130 foraging for resources. 

 

131  
 

132 Materials and methods 
 

 

133 The interactive effects of substrate texture, layering, irrigation, and fertiliser placement 
 

134 on root foraging were tested for the species Sedum album (L.) and S. rupestre (L.) in a 
 

135 greenhouse pot experiment during June-September 2016. 

 

136  
 

137 Substrate texture 
 

 

138 We used four substrate compositions: a fine substrate, a coarse substrate, a mixed 
 

139 substrate as a 1:1 combination of fine and coarse material, and a layered substrate with 
 

140 the coarse mixture on top of the fine mixture (Fig. S1). All four substrates were based on 
 

141 different fractions of pumice that were initially sieved to fine (0-2 mm), intermediate (2- 
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142 5 mm) and coarse (5-10 mm) fractions and then combined to a fine (40% fine + 34% 
 

143 intermediate fractions) and a coarse (26% intermediate + 48% coarse fractions) base 
 

144 mixture. These base mixtures were combined with 9% sieved mature and nutrient-poor 
 

145 compost and 17% gravel (3-5 mm). All proportions are by volume, and all final substrates 
 

146 were blended for 2 minutes in a concrete mixer. We used 11 cm tall square pots (10 cm 
 

147 by 10 cm) filled to 9 cm with substrate. This corresponds well with the recommended 
 

148 thicknesses of extensive green roof substrates and these small pots were used to simulate 
 

149 the rapid fluctuations in water content on green roofs. Total pore volume was 42 and 46 % 
 

150 and maximum water capacity 0.5 and 0.33 kg water per L substrate for the fine and coarse 
 

151 components, respectively. Substrate pH measured in a 1:5 solution with distilled water 
 

152 ranged from 7.5 to 7.6. 

 

153  
 

154 Watering and fertiliser placement 
 

 

155 Fertiliser placement and watering regime were varied while keeping the other of the two 
 

156 factors constant. For the watering regime comparison, all pots had fertiliser evenly mixed 
 

157 throughout the substrate depth. All pots received 1.0 g of granular Multicote 4 slow- 
 

158 release fertiliser (15-7-15 + Micronutrients, Haifa Chemicals Ltd.), designed to release 
 

159 nutrients over a 4 month period at 21 ºC. The pots received three irrigation regimes, with 
 

160 weekly individual watering from the top applying 50, 100 or 200 mL per pot using tap 
 

161 water of low conductivity (0.15 mS cm-1), corresponding to 5, 10 or 20 mm water depth 
 

162 per week. For the fertiliser placement experiment, the fertiliser was mixed into the 
 

163 substrate either in the top or bottom halves of the pots, or evenly into the substrate of the 
 

164 whole pot. Fertiliser placement was only manipulated for pots receiving the 100 mL week-
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165 1 watering regime. Pots were placed in random positions on a net frame on a greenhouse 
 

166 table for unrestricted drainage. 
 

 

167 Vertical water distribution was documented in pots without plants, by weighing and 
 

168 drying samples of substrate of the middle upper and middle lower parts of pots for each 
 

169 substrate combination. Pots were tilted to remove water laying on the inside of the pot 
 

170 and samples taken 10 minutes after water addition. Water content of the substrates was 
 

171 0.2 g/g before testing and samples were dried at 105 ºC for 24 h before weighing. Pots 
 

172 retained almost all the water at 5 mm. Pots were saturated at about 5 (coarse), 10 
 

173 (layered and mixed) and 20 mm (fine) for the respective substrates. (Fig. S2). The fine 
 

174 substrate consistently retained more water in the upper part than the other substrate, in 
 

175 addition to retaining more in total. The mixed and layered pots retained about the same 
 

176 amount of water with a similar partitioning, except the layered substrate retained more 
 

177 in the bottom half for the 5 mm treatment. In coarse substrates, 50 % or more of 
 

178 retained water was retained in the lower half of the pot. 

 
179  

 

180 Plants received only natural irradiance and during the experiment they experienced mean 
 

181 diurnal temperature of 18.7 °C (95% confidence interval 18.4-19.2 °C). Mean diurnal 
 

182 minimum air temperature of 15.8 and maximum of 25.1°C gave a night drop of 10.3°C 
 

183 on average. Temperature extremes were maximum 34.8 and minimum 12.2°C. Over the 
 

184 experimental period, the plants experienced an approximate 1031 growing degree-days 
 

185 over a base temperature of 10 ºC. 
 

 

186 Reference evapotranspiration (ET0) was estimated using the Penman-Monteith equation 
 

187 (FAO-56) and summed over weekly intervals according to the watering schedule. 
 

188 Estimated cumulative weekly ET0 was well above 5 mm, except for the last week of the 



11  

189 experiment, and above 10 mm for the first 7 weeks (Fig. S3). It was never above 20 mm 
 

190 per week. The study site in SW Norway is characterised by a cool, wet maritime climate 
 

191 (Köppen-Geiger, Cfb). During the past 20 years, the summer period (May-August) has 
 

192 had 19% of weeks with less than 5 mm, 29% with less than 10 mm and 47% with less 
 

193 than 20 mm of accumulated precipitation. Hence, the given watering treatments 
 

194 correspond well with the drier parts of the growing season in the region, also 
 

195 representative of the original locations of the plant material. 

 

196  
 

197 Plant material 
 

 

198 Small plug plants of Sedum album (L.) and S. rupestre (L.) propagated from cuttings were 
 

199 used in the experiment originating from populations in Southern Norway. S. album is part 
 

200 of the Leucosedum clade within the Crassulaceae (van Ham and ’t Hart 1998), while S. 
 

201 rupestre belongs to the Rupestria series, often raised to the rank of a separate genus, 
 

202 Petrosedum (Mort et al. 2001) and more closely related to Sempervivum than to S. album. 
 

203 Thus, these two species span some of the variation within the polyphyletic ‘Sedum’ genus. 
 

 

204 The plants were established in 4 cm deep pyramidal plugs of a coarse material similar to 
 

205 the substrates used in the experiment for 8 weeks until the experiment and the plugs were 
 

206 rooted. Shoots of transplants were 30-40 mm long and had a biomass of 42 ± 8 (SD) mg 
 

207 for S. album and 71 ± 10 mg for S. rupestre. Root fractions of the total biomass were 0.1 
 

208 and 0.2 respectively. To ease transplantation, the experimental pots were watered daily 
 

209 for a week after planting before the experimental treatments started. 

 

210  
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211 Harvests 
 

 

212 At harvest after 12 weeks, shoots were cut at the surface, dried for 48 h at 70 °C and 
 

213 weighed. The pot substrate was cut in half at the interface of the coarse and fine mixtures 
 

214 or at the same depth for the other substrates. Roots were washed out of each pot half, 
 

215 scanned using a calibrated dual-light flatbed scanner (Epson Perfection V700 Photo 
 

216 Scanner, Epson America Inc., CA, USA) and analysed for total root length and root 
 

217 diameter using the WinRhizo software (Regent Instruments Inc., Québec, Canada). After 
 

218 scanning, root biomass was dried and weighed as for shoots. Care was taken to analyse 
 

219 roots only and not buried parts of stems. 
 

 

220 A foraging index was calculated for each pot as the difference in root length (FIRL) or 
 

221 root biomass (FIBM) between the upper and the lower half of the pot, divided by the total 
 

222 root length or total root biomass per pot. A high value of FIRL or FIBM (i.e. values close 
 

223 to 1.0 (or -1.0)) indicates a strong bias towards root development in the upper (or lower) 
 

224 half of the pot, while a value close to zero indicates that root development is similar 
 

225 throughout the substrate depth. The root fraction of the total biomass (Rf) was calculated 
 

226 as the ratio of root biomass to total biomass per pot. 
 

 

227 To check root distribution within pots, the soil from frozen pots with S. album was cut in 
 

228 three horizontal layers, and each layer cut in 16 even sized cubes. Roots were washed 
 

229 from these cubes and root biomass determined. This was done for the mixed substrate and 
 

230 10 mm watering only (Fig. S4). 

 

231  
 

232 Experimental design and statistical analyses 
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P 

233 We used a design with two species by four substrate structures by three watering regimes 
 

234 or fertiliser placements by four replicates, giving 96 pots per experiment and 160 pots in 
 

235 total, with 32 pots common to both experiments. The effects of watering and fertiliser 
 

236 placement were analysed separately in 3-way ANOVA models using the general linear 
 

237 model option in Minitab 17 (Minitab Ltd., Coventry, UK), with species, substrate 
 

238 structure and the water or fertiliser treatments as fixed factors. Model diagnostics were 
 

239 evaluated using QQ plots of residuals and plots of residuals against predicted values. Two 
 

240 outliers for root length and root biomass were identified by their strongly deviating length 
 

241 to biomass ratios and were replaced with treatment means. Partial effect sizes were 
 

242 estimated as ω 2 (Olejnik and Algina 2003). ANOVA results and effect sizes were used 
 

243 to identify important results, where only significant effects with a considerable effect 
 

244 sizes were considered major effects. 

 

245  
 

246 Results 
 

 

247 Overall growth patterns 
 

 

248 Starting with about the same transplant biomass, the species had average relative growth 
 

249 rates over 12 weeks of between 0.046 and 0.060 g g-1 day-1 for S. album and 0.032 and 
 

250 0.052 g g-1 day-1 for S. rupestre. The corresponding mean increase in total biomass was 
 

251 between 2.0 and 7.0 g per plant and between 1.1 and 5.5 g per plant, respectively. Both 
 

252 species had an allocation of biomass to roots of 5-13% of total biomass (Fig. 1). Specific 
 

253 root length varied between 200 and 265 m g-1 and root length per shoot biomass varied 
 

254 between 10 and 24 m g-1. Both estimates were affected by substrate structure, but did not 
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255 differ between species (Table 1, Fig. 2). Growth was vegetative during the whole 
 

256 experiment. 

 

257  
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258 Table 1. Effects of watering regime or vertical fertiliser placement on growth responses of two Sedum species (S. album and S. rupestre) to 

259 substrate structure and layering. F and P values from ANOVA models are shown with effect sizes, estimated as partial ω2. Error df = 72, 

260 total df = 95. Major effects evaluated by the P values and the effect sizes are indicated in bold. 
 

Total root length  Shoot biomass Root biomass 
  (LN)  

 Root fraction (Rf) 
   

Specific root length 
   

Source df F P 
2 

ωP  F P 
2 

ωP F P 
2 

ωP F P 
2 

ωP F P 
2 

ωP 

Effects of watering 

Species 1 64.46 0.000 0.40  75.33 0.000 0.44 32.34 0.000 0.25 3.47 0.066 0.03 2.56 0.114 0.02 

Structure 3 8.08 0.000 0.18  31.02 0.000 0.49 6.95 0.000 0.16 20.29 0.000 0.38 11.22 0.000 0.25 

Water 2 45.27 0.000 0.48  187.43 0.000 0.79 59.65 0.000 0.55 2.79 0.068 0.04 13.70 0.000 0.21 

Sp*Str 3 4.07 0.010 0.09  3.43 0.021 0.07 3.13 0.031 0.06 1.43 0.241 0.01 0.53 0.660 -0.02 

Sp*W 2 0.05 0.950 -0.02  0.28 0.754 -0.01 1.46 0.238 0.01 0.54 0.586 -0.01 1.06 0.353 0.00 

St*W 6 1.93 0.088 0.06  4.60 0.001 0.19 0.82 0.556 -0.01 1.26 0.287 0.02 1.53 0.180 0.03 

Sp*St*W 6 1.09 0.376 0.01  0.88 0.511 -0.01 1.16 0.336 0.01 1.50 0.190 0.03 1.15 0.340 0.01 

R2 adj   66    86   65   42   39  

Effects of fertiliser placement 

Spec 1 49.24 0.000 0.34  190.40 0.000 0.67 55.89 0.000 0.37 3.96 0.050 0.03 0.00 0.981 -0.01 

Structure 3 0.62 0.605 -0.01  61.60 0.000 0.66 4.83 0.004 0.11 16.00 0.000 0.32 2.14 0.102 0.03 

Fertiliser 2 0.52 0.597 -0.01  1.95 0.149 0.02 0.24 0.787 -0.02 0.14 0.867 -0.02 0.13 0.882 -0.02 

Sp*St 3 1.72 0.170 0.02  0.58 0.629 -0.01 3.23 0.027 0.07 3.72 0.015 0.08 1.27 0.290 0.01 

Sp*F 2 0.37 0.693 -0.01  3.65 0.031 0.05 1.40 0.253 0.01 0.49 0.614 -0.01 0.85 0.434 0.00 

St*F 6 1.39 0.229 0.02  8.72 0.000 0.33 2.68 0.021 0.10 4.11 0.001 0.16 0.99 0.437 0.00 

Sp*St*F 6 1.75 0.121 0.05  2.69 0.021 0.10 1.52 0.184 0.03 0.83 0.547 -0.01 0.61 0.723 -0.03 

R2 adj   36    82   47   43   0  

261  

262  

263  

264  

265  

266  
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Foraging index root length 
  (FIRL)  

Foraging index root 
  biomass (FIBM)  

Root length per shoot 
  biomass  

Root diameter bottom 
   

Root diameter top 
   

 df F P 
2 

ωP F P 
2 

ωP F P 
2 

ωP F P 
2 

ωP F P 
2 

ωP 

Effects of watering 

Species 1 30.52 0.000 0.24 29.10 0.000 0.23 0.12 0.732 -0.01 3.84 0.054 0.03 0.27 0.607 -0.01 

Structure 3 2.40 0.075 0.04 1.65 0.186 0.02 21.42 0.000 0.39 4.22 0.008 0.09 1.42 0.243 0.01 

Water 2 12.32 0.000 0.19 20.81 0.000 0.29 21.18 0.000 0.30 3.59 0.033 0.05 0.15 0.861 -0.02 

Sp*St 3 0.59 0.621 -0.01 0.34 0.796 -0.02 1.41 0.246 0.01 0.23 0.873 -0.02 0.15 0.929 -0.03 

Sp*W 2 1.03 0.361 0.00 0.31 0.736 -0.01 1.13 0.328 0.00 3.59 0.033 0.05 2.90 0.061 0.04 

St*W 6 1.74 0.123 0.04 3.23 0.007 0.12 1.86 0.099 0.05 1.91 0.090 0.05 0.86 0.526 -0.01 

Sp*St*W 6 0.56 0.758 -0.03 0.39 0.883 -0.04 0.33 0.920 -0.04 0.80 0.571 -0.01 1.71 0.131 0.04 

R2 adj.   38   44   52   21   4  

Effects of fertiliser placement 

Spec 1 0.86 0.357 0.00 17.19 0.000 0.15 1.02 0.316 0.00 2.95 0.090 0.02 1.33 0.253 0.00 

Structure 3 3.39 0.022 0.07 8.12 0.000 0.18 12.00 0.000 0.26 5.48 0.002 0.12 2.00 0.121 0.03 

Fertiliser 2 4.69 0.012 0.07 35.82 0.000 0.42 0.55 0.579 -0.01 2.05 0.136 0.02 0.44 0.643 -0.01 

Sp*St 3 0.51 0.674 -0.02 1.73 0.169 0.02 0.31 0.820 -0.02 0.77 0.516 -0.01 1.64 0.188 0.02 

Sp*F 2 1.05 0.354 0.00 1.30 0.279 0.01 0.47 0.628 -0.01 2.63 0.079 0.03 1.64 0.202 0.01 

St*F 6 0.38 0.888 -0.04 0.78 0.586 -0.01 1.16 0.338 0.01 2.41 0.036 0.08 2.57 0.026 0.09 

Sp*St*F 6 0.38 0.887 -0.04 1.33 0.254 0.02 0.65 0.693 -0.02 0.23 0.964 -0.05 1.35 0.245 0.02 

R2 adj.   6   54   23   16   16  

267  

 
268  
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269 Effects of watering regime 
 

 

270 Both substrate structure and watering had large effects on plant growth, while interactions 
 

271 between them were few (Table 1). Shoot and root biomass and total root length increased 
 

272 with watering (Fig. 3), while the root fraction of the total biomass was not affected. Both 
 

273 the specific root length and root length per shoot biomass decreased with watering  (Fig. 
 

274 4) and the root length per shoot biomass was considerably lower in the fine substrate (Fig. 
 

275 2). 
 

 

276 Although the interactive effect of watering and substrate structure and layering on shoot 
 

277 biomass was significant (Table 1), the responses to watering followed similar patterns in 
 

278 all substrates, only with a slightly stronger response to watering in the fine (S. album) and 
 

279 fine and mixed (S. rupestre) substrates (Fig. 3). The two species had different growth 
 

280 responses to substrate structure, but these differences were not affected by watering 
 

281 (species by structure vs. species by structure by water interactions, Table 1). Sedum album 
 

282 was less able to exploit the deeper layers of the layered substrate, expressing similar shoot 
 

283 biomass and root length as for the coarse mix (Fig. 3). 

 

284  
 

285 Effects of fertiliser placement 
 

 

286 Overall,  fertiliser placement had weaker  effects  on plant growth  than  watering and no 
 

287 effects on shoot and root biomass, total root length and root fraction were found (Table 
 

288 1, Fig. 3). The effect of fertiliser placement on shoot biomass differed between substrates 
 

289 (Table 1), primarily as a consequence of a more positive effect of fertiliser placement near 
 

290 the top  of the substrate in  the fine substrate.  There were no major differences  in shoot 
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291 biomass  in  response  to  fertiliser  placement  between  species  (despite  the significant 
 

292 species by fertiliser interaction, Table 1). Top fertilisation also gave higher root biomass 
 

293 in the fine and mixed substrates; while an even fertiliser distribution gave more root 
 

294 biomass  in  the  layered  substrate.  The  interaction  between  structure  and  fertiliser 
 

295 placement  for  the  root  fraction  (Table  1)  was  due  to  higher  Rf   for  even  fertiliser 
 

296 distribution in the layered substrate and lower Rf for even fertiliser distribution in the 
 

297 mixed structure (not shown). In summary, combining fertiliser and the fine substrate in 
 

298 the bottom layer did not increase root biomass or root length there compared to the other 
 

299 configurations. 

 
300  

 

301 Effect of substrate structure 
 

302 Layered, mixed and fine substrates all gave higher shoot and root biomass than the coarse 
 

303 substrate, and the fine substrate gave higher shoot biomass than layered and mixed 
 

304 substrates (Table 1, Fig. 3). Combined, this meant that plants growing in mixed, layered 
 

305 and coarse substrates had a higher proportion of their total biomass (Rf) allocated to roots 
 

306 than plants in the fine substrate (Fig. 2). Plants in the fine substrate also had considerably 
 

307 lower root length per shoot biomass. The specific root length was higher in the coarse and 
 

308 mixed than in  the layered and fine substrates,  accompanied by slightly thinner roots  in 
 

309 the coarse and mixed substrates (Table 1, 0.36-0.37 mm compared with 0.38-0.39  mm). 
 

310 Substrate structure had no effect on root diameter in the upper half of the pot, but the 
 

311 layered substrate gave thicker roots in the bottom half of the pot than the coarse and mixed 
 

312 substrates for both the water and fertiliser experiments (Table 1). The layered substrate 
 

313 gave a root diameter increase in the lower part of the pots, from 0.33-0.34 to 0.37 mm for 
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314 S. album and from 0.34 -0.35 to 0.38 mm for S. rupestre, but these differences are small 
 

315 as also reflected in the small effect sizes (Table 1). 

 
316  

 

317 Root foraging 
 

318 Increased watering reduced  the allocation of root  length  and root biomass  to the lower 
 

319 part of the pots (Fig. 5, Table 1). This effect differed between substrates, with a more 
 

320 negative effect of watering on biomass allocation to the lower part of pots in the layered 
 

321 and  mixed  substrates (Fig.  5).  In  contrast,  the response in  root length   allocation  to 
 

322 watering was not affected by the substrate composition (Table 1). 
 

 

323 Although fertiliser placement had a significant effect on the foraging index of root length 
 

324 (FIRL),  this  effect  was  marginal  (Table 1,  Fig.  5). This  corresponds  with  the weak 
 

325 responses of root length to fertiliser placement and substrates. Root biomass, however, 
 

326 followed the placement of the fertiliser to a larger extent than root length (Fig. 5, Table 
 

327 1). Placement of fertiliser in the bottom half of pots increased the allocation of root 
 

328 biomass in this part (and lowered the FIBM). This effect was not dependent on substrate 
 

329 structure (Table 1). 

 
330  

 

331 Both foraging indexes showed a positive relationship with shoot biomass in the water 
 

332 dataset  for both  species,  while there were no such relationships  in the fertilizer dataset 
 

333 (not shown). Breaking down these relationships on treatments and species, there were no 
 

334 consistent patterns. 

 
335  

 

 

336 Discussion 
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337 Our main hypothesis was that Sedum roots show active foraging for water and nutrients. 
 

338 As we  found significant  responses in  root foraging to  both  watering and   fertilisation 
 

339 treatments, this hypothesis was not rejected. However, although we found some flexibility 
 

340 in root allocation patterns, the ability for precise root foraging was low to moderate, as 
 

341 also reflected in the low proportion of biomass allocated to roots. Hence, these Sedum 
 

342 species had only a limited ability to exploit resources like water and nutrients by precise 
 

343 root foraging in  substrates  of different  composition  and layering  within the 3-months 
 

344 timeframe of this experiment. Water was the factor driving plant growth, followed by 
 

345 substrate structure, while fertiliser placement had only a marginal effect on plant growth. 

 

346  
 

347 Overall effects of substrate structure 
 

 

348 Across treatments, substrate structure affected many components of plant growth. The 
 

349 main distinction was between the fine substrate and the others, where fine substrate gave 
 

350 a higher shoot biomass, a lower root fraction and more shoot biomass per unit root length. 
 

351 This  finding  is  in  line  with  the  better  water-holding  capacity of  the  fine substrate, 
 

352 providing water for a longer period between the weekly watering (Fig. S2). The coarse 
 

353 substrate also differed from the layered and mixed substrates for some responses, in 
 

354 principle reflecting the same mechanisms, but at the other end of the  humidity gradient. 
 

355 Except for the 5 mm watering, the coarse pots retained about half the amount of water as 
 

356 the  mixed  and  layered  pots  (Fig.  S2).  Positive  relationships  between water-holding 
 

357 capacity of the substrate and plant performance have been documented in several studies. 
 

358 It has been shown that thicker substrates (Durhman et al. 2007; Ondoño et al. 2016), 
 

359 substrates with finer particles (Raimondo et al. 2015), substrates with water-holding 
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360 additives (Savi et al. 2014) and substrates with more organic matter (Nagase and Dunnett 
 

361 2011) improve plant growth and/or survival across different environmental conditions. 
 

362 The results for the fine substrate fit well with these findings. 
 

 

363 The layered substrate improved plant performance compared with the coarse substrate. 
 

364 Based on standardised tests, the coarse substrate was able to hold 330 g of water, the 
 

365 layered substrate 420 g and the fine substrate 500 g per litre of substrate. The realised 
 

366 water retention was considerably lower with about 50, 100 and 200 g per pot of about 0.5 
 

367 L (Fig. S2), the difference caused by different compaction and the time allowed for water 
 

368 absorption. Considering the strong response to watering and the differences in biomass 
 

369 between the layered and the fine substrate, it is noteworthy that this substantial  increase 
 

370 in available water in the layered compared with the coarse substrate was not fully 
 

371 exploited. 
 

 

372 With the low proportion of root biomass, Sedum contributions to carbon sequestration 
 

373 will primarily be through aboveground biomass. Our estimates of the biomass fraction in 
 

374 roots is  lower than found by Getter  et  al  (2009),  but clearly there are large differences 
 

375 between succulent species where the deciduous Phedimus species had a higher potential 
 

376 for C binding in roots (Getter et al 2009). Long-term effects need to take root turnover 
 

377 and degradation into account.  Considerably better alternatives than  Sedum based  roofs 
 

378 exists for carbon sequestration, like more diverse green roofs and ground based solutions 
 

379 (Whittinghill et al. 2014). 
 

380 Effects on root foraging 
 

 

381 The  effect  of  substrate  structure  differed  between  watering  and  fertiliser placement 
 

382 treatments and affected primarily shoot biomass and the root fraction of the total biomass. 
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383 However, we found no interactions between substrate structure and fertiliser placement 
 

384 on the foraging indexes FIRL or FIBM and only a weak interaction between substrate 
 

385 structure  and watering level  for  FIBM.  Although the hypothesis  of  that  the effect of 
 

386 substrate composition on root foraging would depend on fertiliser placement and/or 
 

387 watering level could not be rejected, there was no solid support for it. Accordingly, we 
 

388 found no strong support for the prediction that more root biomass and root length would 
 

389 be allocated to deeper layers in a layered substrate when fertiliser or fine material is placed 
 

390 at bottom. Fertiliser placement in the bottom half of the pots increased root biomass there, 
 

391 but this effect was independent of substrate structure. Fine material both holds more water 
 

392 and has the potential to retain more nutrients than the coarse material.  Interactions 
 

393 between water and nutrients have been found in other systems where root biomass follows 
 

394 both water and nutrient placement (Wang et al. 2007). We used a nutrient-poor compost 
 

395 to add some organic material to the substrates. Although this was leached for soluble 
 

396 nutrients before use, it released some nutrients to the plants throughout the experiment 
 

397 and masked some of the effects of fertiliser placement. In conclusion, nutrient availability 
 

398 did not limit plant growth, so a strong root foraging for nutrients could not be expected. 
 

399 Coarse green roof substrates leach considerable amounts of nutrients (Kuoppamäki and 
 

400 Lehvävirta 2016), but that would depend on the precipitation or as in our case the watering 
 

401 treatments. This interaction between watering and fertiliser placement was not included 
 

402 in the experimental design. 

 

403  
 

 

404 Fig. 3 indicated more shallow roots in the layered substrate (higher FIRL) at increasing 
 

405 watering. This effect could be interpreted as a weakening of foraging in layers with higher 
 

406 water-holding capacity when water availability is increased through watering. However, 
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407 this was a common trend for most of the substrates (also with a main effect of watering) 
 

408 showing just a more shallow rooting at increasing watering. As we found no preferential 
 

409 foraging in specific layers, we were not able to evaluate the hypothesis that increased 
 

410 watering reduced the foraging in substrate layers with higher water-holding capacity 

 

411  
 

 

412 Except for the fine substrate, there were only weak effects on the root fraction of the total 
 

413 biomass. The overall patterns of root and shoot growth and allocation of biomass to roots 
 

414 in response to watering reflected those found for Sedum lineare under different watering 
 

415 regimes (Lu et al. 2014). This indicates that there is a limited flexibility in the allocation 
 

416 of biomass to roots, even under water-deficient conditions also in other Sedum species. 
 

 

417 The lack of interactions between most treatments on root foraging is difficult to explain, 
 

418 especially the observation that roots did not forage deeper in layered substrates at the 
 

419 lowest watering level, where weekly watering was below ET0  throughout most of the 
 

420 experimental period. Growth was clearly water-limited, as shoot biomass increased by 51 
 

421 and 152 % when going from 5 to 10 and 20 mm week-1, respectively. There are some 
 

422 alternative explanations.  Either the  soil  water  conditions  were not  extreme enough to 
 

423 trigger a change in rooting patterns, or morphological root plasticity in response to 
 

424 especially water availability is not a common strategy in Sedum species. Rooting depth is 
 

425 a plastic trait in many plants, and non-succulent species respond to early signals of soil 
 

426 drying (Schachtman and Goodger 2008) by allocating resources to deeper roots  (Comas 
 

427 et al. 2013). We do not know if root elongation in Sedum species is more or less sensitive 
 

428 to soil water potential than that in non-succulents. Observations that succulent species 
 

429 can extend their roots in dry soil with water from the shoot (North and Nobel 1998) 
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430 indicate that they may be less sensitive. Recent findings have shown the importance of 
 

431 shoot-derived  abscisic  acid  (ABA)  for  root  growth  (McAdam  et  al.  2016).  As the 
 

432 succulent leaves of Sedum species are buffered against loss of turgor for extended periods 
 

433 during drought (Sayed et al. 1994), one can speculate on the extent of signalling from 
 

434 shoots to roots before leaf turgor decreases. CAM species can be considered to show 
 

435 hypersensitivity to ABA and rapidly respond to environmental conditions to conserve 
 

436 water (Negin  and  Moshelion 2016). This indicates that strategies  to prevent losses  are 
 

437 more important than foraging. 

 

438  
 

439 Succulents are somewhat difficult to classify using the competitor-stress tolerator-ruderal 
 

440 (CSR) model of primary plant strategies developed by Grime and colleagues (Hodgson 
 

441 et al. 1999), but Sedum species are considered stress-tolerators. There are trade-offs 
 

442 among strategies, so stress-tolerant species in less productive systems and in systems 
 

443 where abiotic constraints dominate are less likely to express costly foraging strategies 
 

444 based on changes in morphology, relying instead on cellular acclimations (Grime and 
 

445 Mackey 2002). Such trade-offs lower the root foraging precision and competitive ability. 
 

446 Sedum species have been found to perform well even on substrates as thin as 2.5 cm 
 

447 (Durhman et al. 2007), although without competition they perform better on thicker 
 

448 substrates (Getter KL, Rowe 2008; Thuring et al. 2010) and substrates with higher water 
 

449 retention  capacity  (MacIvor  et  al.  2013).  However,  there  are  some species-specific 
 

450 responses and differences between broadleaved (like Phedimus) and ‘cylindrical’ Sedum 
 

451 species (MacIvor et al. 2013). 

 
452  
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453 Justification of the approach 
 

 

454 Duration of the experiments is one critical factor when evaluating allocation strategies. 
 

455 During the 3-months experiment, plants experienced 1031 growing degree days (with a 
 

456 base temperature of 10 ºC), showed a 73 to 107 fold increase in shoot biomass in S. album 
 

457 and 23 to 45 fold increase in S. ruprestre, and had a total root length at harvest ranging 
 

458 of from 6.4 to 8.2 m in S. album and from 3.8 to 5.9 m in S. ruprestre. In our opinion, 
 

459 there  was  sufficient  time  and  growth  to  detect  flexibility in  rooting patterns. These 
 

460 patterns may however change over time and there may be seasonal patterns in root growth 
 

461 strategies not detected in our study. These aspects have not been documented for Sedum 
 

462 species so far and critical factors as root turnover and expected lifetime of Sedum roots 
 

463 are unknown.  As  nutrients  did  not  limit  plant growth,  the  test  for root  foraging for 
 

464 nutrients is weak and should be followed up by more studies. 
 

 

465 Pot size is another critical factor, causing edge effects and restricts access to resources. 
 

466 At start, the pots had a total plant biomass to rooting volume ration (BVR)  of from 0.05 
 

467 to 0.08 gL-1. At harvest, this had increased to an average of 3.4 gL-1 (95% CI of 3.1 to 3.8, 
 

468 range 0.7 to 7.4). This is higher than 1 gL-1 as recommended for pot experiments by 
 

469 Poorter et al (2012), but considerably lower than for established green roofs. Using data 
 

470 from Getter et al. (2009), considering only aboveground biomass and a mean carbon 
 

471 content of 42 %, twelve standard Sedum based green roofs had a mean BVR of 8.7 gL-1
 

 

472 (95% CI: 6.2 – 11.2 gL-1). In small pot volumes, root foraging along pot walls is common 
 

473 and roots are usually forced downwards when they meet the pot wall. This would however 
 

474 obscure the rationale of our approach. Previous observations of Sedum root development 
 

475 in these media do however predicted a more homogenous root distribution. 
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476 e observed a rather homogenous horizontal root distribution, and not a higher root density 
 

477 along pot edges (Fig. S4). This is as expected with such porous substrates and illustrates 
 

478 that  the edge effects  were small.  In  conclusion,  the chosen  pot  size was  suitable   to 
 

479 represent the  extensive  green  roof systems studied  with respect  to both  available soil 
 

480 volume and the rapid changes in soil water content on green roofs. 
 

481 Conclusions 
 

 

482 Both Sedum album and S. rupestre showed a low ability to exploit water and nutrients by 
 

483 precise root foraging in substrates of different texture and layering. Allocation of biomass 
 

484 to roots was low and showed limited flexibility, even under water-deficient conditions. 
 

485 More shallow  roots were  produced  at  higher irrigation and in fine substrate. However, 
 

486 considerably more shoot biomass developed per unit root length in fine substrate. A 
 

487 layered substrate with coarse substrate on top of a layer of fine substrate did not give 
 

488 major improvements compared with a coarse or a mixed substrate, and led to no additional 
 

489 foraging of root biomass or root length in the deep layer, even when fertiliser was placed 
 

490 in this layer. Thus layered substrates provide no major additional benefits for Sedum 
 

491 growth and roof function during summer. This also infers that it will be difficult to direct 
 

492 roots to deeper layers, at least in the short term. A stronger response to fertilizer placement 
 

493 is however expected when nutrients are more limiting. In summary, water was the  main 
 

494 factor  driving  plant  growth,  followed  by substrate  structure,  while  vertical fertiliser 
 

495 placement had marginal effects on plant growth. 

 

496  
 

497 SUPPLEMENTARY MATERIAL 

 
498  
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Fig. 1 Biomass allocation patterns in Sedum album and S. rupestre in response to watering 

(5, 10 or 20 mm week-1) and fertiliser placement (top half, bottom half or evenly 

distributed in pots) when cultivated in green roof substrates of contrasting structure. Note 

that root data are multiplied by a factor of 10 for better presentation 
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Fig. 2 Specific root length, root length per shoot biomass and root fraction (mean with 

95% confidence interval) for Sedum album (white symbols ) and S. rupestre (black 

symbols) growing in green roof substrates of contrasting composition. Estimates are 

averaged over watering and fertilisation treatments 
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Fig. 3 Effects of watering, vertical fertiliser placement and substrate structure on shoot 

biomass, total root length and total root biomass (mean ± SD) in Sedum album and S. 

rupestre growing in green roof substrates of contrasting texture 
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Fig. 4 Specific root length and root length per shoot biomass (mean with 95% confidence 

interval) of Sedum species growing in green roof substrates of contrasting composition 

receiving 5, 10 or 20 mm water per week. Estimates are averaged over species (S. album 

and S. rupestre) 
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Fig. 5 Effects of watering (above) and vertical fertiliser placement (below) on indices of 

root foraging (mean with 95% confidence interval) based on root length (FIRL) or root 

biomass (FIBM) for two Sedum species grown in substrates of contrasting texture, 

receiving either 5, 10 or 20 mm irrigation per week or manipulation of vertical fertiliser 

placement in the pots (B = bottom, M = mixed, T = top). Indices were estimated as 

response in upper part of pot minus response in bottom part of pot divided by the sum 
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response for the whole pot. The dashed lines indicate when root length or root biomass is 

evenly distributed between the top and bottom parts of the pot 
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Fig. S1 Texture and layering in the four types of substrates used in the pot experiment. The 

full height of the columns corresponds to the substrate height of 9 cm used in the pots. Black 

bar is 1 cm. 
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Fig. S2 The amounts of water lost 

and retained in the different vertical 

layers given 5, 10 or 20 mm of 

watering. The bottom figure shows 

the relationship between water added 

and water retained per pot (mean ± 

SD, n=3). Stippled line is the 1:1 

relationship between added and 

retained. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. S3 Estimated cumulative weekly reference evapotranspiration (ET0) during the 

experiment. Dashed lines show the irrigation regimes of 5 and 10 mm week-1
 



 

 

Fig. S4 Contour plots showing the 

horizontal distribution of root 

biomass for three layers of the pot 

volume in a mixed substrate 

estimated as mean percentage (%) of 

root biomass per horizontal layer 

based on a sampling of 16 cubes per 

layer (n = 3). Pot base is 9 by 9 cm. 


