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Abstract The saturated hydraulic conductivity of soil, K;, is a critical parameter in hydrological models that
remains notoriously difficult to predict. In this study, we test the capability of a model based on percolation
theory and critical path analysis to estimate K; measured on 95 undisturbed soil cores collected from
contrasting soil types. One parameter (the pore geometry factor) was derived by model fitting, while the
remaining two parameters (the critical pore diameter, d,, and the effective porosity) were derived from X-ray
computed tomography measurements. The model gave a highly significant fit to the K; measurements

(p < 0.0001) although only ~47% of the variation was explained and the fitted pore geometry factor was
approximately 1 to 2 orders of magnitude larger than various theoretical values obtained for idealized porous
media and pore network models. Apart from assumptions in the model that might not hold in reality, this
could also be attributed to experimental error induced by, for example, air entrapment and changes in the soil
pore structure occurring during sample presaturation and the measurement of K;. Variation in the critical pore
diameter, d., was the dominant source of variation in K;, which suggests that d_ is a suitable length scale for
predicting soil permeability. Thus, from the point of view of pedotransfer functions, it could be worthwhile to
direct future research toward exploring the correlations of d. with basic soil properties and site attributes.

1. Introduction

The saturated hydraulic conductivity of soil, K, is a key parameter determining the water balance of the land
surface. Soil hydraulic conductivity can be measured on small cylinder samples in the laboratory (Klute &
Dirksen, 1986) or with a variety of different infiltrometer techniques in the field (Angulo-Jaramillo et al.,
2000). These methods are labor- and time-consuming and so they are not practical to apply in larger scale
studies, for example, to support catchment-, regional-, and global-scale hydrological modeling. Since the
1990s, statistical techniques such as multivariate regression or machine learning techniques have therefore
been employed to derive so-called pedotransfer functions that enable estimation of soil hydraulic properties
from more easily available proxy variables (Bouma, 1989; Schaap et al., 2001; Wosten et al., 2001). A reason-
ably strong correlation is often found between soil water retention and the particle size distribution
(Vereecken et al., 2010). In contrast, existing pedotransfer approaches for saturated hydraulic conductivity
perform less well (e.g., Jarvis et al., 2013; Jorda et al., 2015; Vereecken et al., 2010). This is because K; is largely
governed by the properties of structural pores, which are only poorly correlated with the solid-phase proper-
ties (e.g., texture and organic carbon content) commonly used as predictors. In a modeling context, the use of
inaccurate estimates of K; may propagate into significant errors in predictions of water balance components
such as runoff, infiltration, water storage, and evaporation (e.g., Chirico et al.,, 2010; Davis et al., 1999).

The application of noninvasive X-ray tomography (Helliwell et al., 2013) may help to improve our understand-
ing of how K; is controlled by the geometry and topology of structural pore networks. Some local-scale stu-
dies have found significant statistical relationships between various X-ray imaged metrics of the pore space
and K, measured on the same samples (e.g., Kim et al.,, 2010; Luo et al., 2010; Udawatta et al., 2008). However,
physics-based models of K, should allow deeper insight into how the properties of soil pore networks control
Ks and, arguably, more reliable extrapolation beyond the constraints of the supporting data. Many models
have been proposed to predict K5 from characteristics of the soil pore space (Assouline & Or, 2013). Most
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Table 1
Field Sites for Sampling

Profile number Land use

Number of cores Texture

Horizons sampled

Taxonomy

101942 Grains/potato 4 silt loam/silt loam Ap By Dystric Fluvic Endostagnic Cambisol
101945 Grains/potato 4 silt/silt loam Ap: Bg Dystric Fluvic Mollic Stagnosol
101972 Grains 2 Loam Ap Cambic Chernic Phaeozem
101973 Grass 2 Loam Ap Chernic Phaeozem
101946 Grains 1 Loam Ap Haplic Phaeozem
101947 Grains 4 silt loam/silt loam Ap By Stagnic Cambisol
101948 Grains 4 clay loam/silty clay loam Ap Bg Mollic Planosol
101949 Grains 2 sandy loam Ap Eutric Stagnic Cambisol
101950 Grains 2 Loam Ap Stagnic Phaeozem
101951 Grains 4 silt loam/silt loam Ap Cg Mollic Gleysol
101952 Grass 4 sandy loam/loam Ap, By Fluvic Umbric Gleysol
101954 Grains 4 loam/loam Ap Bw Haplic Phaeozem
101955 Grains 3 sandy loam Ap Mollic Stagnosol
101967 Grass 2 silt C Eutric Protic Regosol
101969 Grass 4 sandy loam/silt loam Apg) C Dystric Fluvic Gleysol
Skuterud Grains 43 silty clay loam Ap: Bg, Brg Luvic Stagnosol
approaches derive from the Kozeny-Carman model first developed nearly 100 years ago, which assumes that
flow rates are controlled by a single effective pore. As such, in its original form it can successfully describe K;
for porous media characterized by a relatively well-connected pore space and uniform-sized pores. However,
it will fail in natural soils characterized by a wide distribution of pore sizes, since water flow at saturation is
dominated by a few large, continuous, pores (Childs, 1969).
The Kozeny-Carman equation has been generalized in an attempt to expli-
citly account for the effects of soil pore size distribution using the soil
. water retention function as a proxy and making use of the Young-
.Trondhelm Laplace equation to relate pore size to soil water tension. These capillary
bundle models are widely used to estimate unsaturated hydraulic conduc-
tivity from an independently measured K, value and knowledge of the
Alesund water retention characteristic (Assouline & Or, 2013). Although it is less
=] often done, they can also be used to estimate K, (e.g. Jarvis, 2008;
Laliberte et al., 1968; Mishra & Parker, 1990; Nasta et al., 2013). The few stu-
101967.101969 dies that have tested capillary bundle models against measured data show
that K; is strongly overestimated for most, but not necessarily all, soils for
101973 physically realistic values of the pore tortuosity factor (e.g., Hoffmann-
®°101972 Riem et al., 1999; Jarvis, 2008; Nasta et al.,, 2013). This is probably because
the conceptual basis of capillary bundle models (i.e., noninteracting paral-
lel or series-parallel pores) cannot properly account for the significant
Bergen 101946 -® effects of pore connectivity on K, (Hunt et al., 2013).
u 101955 & 101942 In contrast with generalized Kozeny-Carman type models, approaches
°101945 based on critical path analysis (CPA) and percolation theory may prove
Oslo to be better suited to predict K; in naturally structured soils.
] Percolation-based models of conducting porous media envisage that
JSkuterud flow takes place through a percolating network of pores consisting of
multiple connected pathways (Hunt et al, 2014). CPA is based on the
premise that flow through a pore network characterized by a very wide
range of conductances is limited by the smallest (i.e., bottleneck) pore
N thickness on the path of least resistance through the sample.
A Percolation and CPA-based approaches have been successfully applied
16 500 000 to predict the permeability of rocks and artificial porous materials such
as ceramics and concrete (Arns et al, 2005; Ghanbarian et al, 2016;

Figure 1. Map of the sampling locations in Norway.

Katz & Thompson, 1986; Nishiyama & Yokoyama, 2014, 2017; Nokken &
Hooton, 2008), but they have not yet been critically tested on soils. A
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Department of Agriculture soil texture classes, but this model was not
tested against data for individual soil samples. Furthermore, the model
parameters were estimated indirectly. In particular, the percolation
threshold was equated with the residual water content determined from
water retention curves, a procedure which may provide values of the
right order of magnitude, but which lacks physical justification. Here
we tested the capability of a percolation/CPA-based model to predict
K; of 95 soil cores collected in Norway from a wide range of contrasting
soil types under differing land uses (arable land and grassland) with the

model parameters derived directly from high-resolution X-ray scanning.
20000 30000

grey value (-) 2. Materials and Method

Figure 2. Joint histogram of the gray values of the 95 3-D images. The parts ~ 2-1- Theory

of the histogram shown in dark gray correspond to air-filled pores as defined
by a joint threshold value of 10,171 obtained using the minimum method.
Voxels with X-ray attenuation values larger than that of aluminum (grayscale

Using concepts from percolation theory and CPA, Katz and Thompson
(1986) derived an expression for the saturated hydraulic conductivity of

values larger than 20,000) are depicted in a lighter gray. The remaining gray- @ percolating porous medium characterized by a very wide distribution
scale values predominantly correspond to the soil matrix (e.g., solid matter  of local hydraulic conductances:
and water-filled pores smaller than image resolution).

_(Ng.a2 (P9
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where g is the acceleration due to gravity (L/T?); 7 (M- L' - T~") and p (M/L) are the dynamic viscosity and
density of water; d. is the critical pore diameter (L), defined as the smallest pore neck encountered along the
path of least resistance through the sample; o, (—) is the reciprocal of the electrical conductivity formation
factor (i.e., the bulk soil electrical conductivity divided by the conductivity of the saturating fluid); and G
(=) is a geometry factor, the value of which varies depending on assumptions concerning pore shape (i.e.,
cylinders or slits) and aspect ratio (i.e., the relationship between pore length and diameter) as well as the
width of the conductance distribution (Skaggs, 2011). From theoretical considerations, values for G as small
as 27 (for slits of equal length and variable diameter) and as large as 85, 130, or 226 (for cylinders of equal
length and diameter) have been suggested (e.g., Banavar & Johnson, 1987; Katz & Thompson, 1986; Le
Doussal, 1989; Skaggs, 2003, 2011).

The relative electrical conductivity term in equation (1) represents an effective (conducting) porosity in soil,
defr, accounting for the connectivity of the pore space. In the absence of direct measurements of electrical
conductivity, Katz and Thompson (1987) showed that ¢ could be defined as

o= ur = 4, |2 @
C

where ¢, is the accessible percolating porosity with thicknesses larger than d,, a value corresponding to
the optimal path for electrical conductance. Katz and Thompson (1987) also proposed a method to estimate
dopt for individual samples from the accessible pore size distribution obtained from mercury intrusion experi-
ments. In our study, we adopted a simpler approach to estimate dop based on the assumption that for wide
distributions of pore thickness, d,p can be estimated from [1 — (t/(1 + t))ld. where tis a critical exponent from
percolation theory, which equals 2 in three dimensions (Ghanbarian et al,, 2017; Katz & Thompson, 1987;
Stauffer & Aharony, 1994). Thus, in this study, ¢ef is given by one third of ¢, where ¢, is the accessible
and percolating porosity corresponding to pores thicker than d./3.

2.2. Sampling and Experimental Measurements

Aluminum cylinders (6.5 cm in inner diameter and 6 cm in height) were used to collect all the samples used in
this study. Forty-three samples were from the Skuterud catchment situated approximately 30 km south of
Oslo and 2.5 km east of As (Table 1 and Figure 1). These cores were collected as part of an ongoing field
experiment from two soil pits spaced 5 m apart, at soil depths from 10 to 90 cm. A further 46 undisturbed
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Figure 3. X-ray images of the cores with (a) the largest critical pore
diameter (Ap horizon at site 101952; d. = 1.85 mm), (b.) the largest K;

value (=257 cm/hr; topsoil sample from Skuterud), and (c) the smallest K;
value at Skuterud (=0.004 cm/h).

soil cores were sampled at 15 additional sites across Norway from topsoil
and subsoil horizons (Table 1 and Figure 1). To complement and contrast
with the data from these structured and mostly fine-textured soils, we also
included data for six cores that were sampled from a vermi-compost
experiment carried out in As, Norway, in which a sandy soil originating
from Nyirség in Hungary was mixed with different organic amendments
(at 2% by weight).

The cores were stored in a cold room at 3 °C. We then equilibrated them at
a pressure head of —100 cm on a sand table for approximately 1 week to
ensure that all pores quantifiable by X-ray tomography would be air-filled.
They were then scanned using a GE v[tome|x 240 X-ray scanner with a
tungsten target and a 16" flat panel detector. We applied tube voltages
between 150 and 170 kV and electron fluxes between 300 and 600 pA,
depending on the density of the soil column. We did not apply an optical
filter to the X-ray beam. The image resolution was 0.04 mm in all directions
for all columns, which corresponds to a feature resolution of approxi-
mately 0.08 mm. After X-ray scanning, the saturated hydraulic conductivity
of each core was measured using a constant head method in the labora-
tory after slowly saturating the samples from the base during a two-week
period. The smallest K, value that can be measured by this method, in prac-
tice, is approximately 0.05 mm/hr (= ~1.4 x 1078 m/s).

We processed the X-ray images using SoilJ (Koestel, 2018), a plugin for the
free software ImagelJ/FlI (Schindelin et al., 2012) that allows for a semiau-
tomatized image processing and analyses of 3-D images of cylindrical soil
columns. In the first processing steps, the soil column outlines were auto-
matically detected and the column was moved into the center of the
image canvas. Unused canvas was cut away as well as image slides depict-
ing the air and the Styrofoam above and below the soil column, respec-
tively. Next, we calibrated the gray scale of all 95 16-bit images to values
of 5,000 for air and 20,000 for aluminum. The calibration was carried out
layer-by-layer where the 0.1 percentile of the grayscale value sampled
inside the soil column was employed as the reference value for air, while
the value for the column wall was used as the reference for aluminum.
Subsequently, we calculated the joint histogram for all 95 calibrated 3-D
images (see Figure 2) and a joint-threshold grayscale value of 10,171 was
determined by the minimum method (Tsai, 1995). As was also done by
Hellner et al. (2018), we applied this threshold value to all gray-scale-
calibrated images to obtain binary images depicting the X-ray resolvable
pores. Beckers et al. (2014) found that a similar global segmentation
method performed as well as local approaches that are more demanding
in terms of time and computational resources. Figures 3a-3c depict three
example images of samples showing contrasting pore space structure.

We identified individual percolating pore clusters in the binary images using the parallelized Particle Analyzer
algorithm published under the BoneJ plugin (Doube et al., 2010). The critical pore diameter d., which can be
defined as the diameter of the largest sphere that passes through the pore network (e.g., Arns et al., 2005),
was then calculated in Soill. Local pore diameters of the percolating pore space were determined using
the maximal inscribed ball method implemented in Image) (Local Thickness). The effective porosity desr
was then calculated using equation (2) from d. and the percolating and accessible pore space (i.e., connected
from top to bottom of the core only by pore space of thickness larger than d./3; see Figure 4; Katz &
Thompson, 1987). It should be noted that the image resolution (0.04 mm) has some influence on the results.
For example, one of the 95 samples had no visible percolating porosity. For plotting purposes only, the critical
pore diameter for this sample was set to the image resolution and the effective porosity to a nominal value of
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Figure 4. lllustration of the method used to estimate the effective porosity from X-ray images. The schematic figure to the
left shows the effective porosity in light grey. This pore space is thicker than one third of the critical pore diameter d,
and is also both accessible and connected to a percolating cluster. The yellow-colored pore space is part of the percolating
cluster, and some is also thicker than d./3. However, these pores are not accessible because they are only connected
through pore necks smaller than d./3. The lilac-colored pore space is disconnected (i.e., not percolating at the image
resolution). The figure to the right shows an actual X-ray image with the pore space classified and colored in the same way.

0.1%. In addition, measured d, values were smaller than 0.12 mm (i.e,, 3 times the image resolution) for seven
columns, which suggests that ¢e¢ would be underestimated for these samples, since the estimated value of
dopt Was smaller than the image resolution.

The complex and highly variable geometry of soil structural pore networks suggests that G in equation (1)
should be treated as a fitting parameter. We estimated G from ordinary linear regression without intercept
using the experimentally measured K; values, the values of d. and ¢.¢ obtained from the X-ray analysis,
and known values of p, g, and 1 at 20 °C. The square of the correlation coefficient between the estimated
and measured values of log (K;) was taken as a measure of the proportion of variance explained by the model,
since linear regression without an intercept gives artificially inflated estimates of R,

3. Results and Discussion

Figures 5a-5¢ show the distributions of the critical pore diameter, d; the estimated effective porosity, dess;
and the measured K values for the 95 samples. The critical pore diameter appeared to be lognormally distrib-
uted, with a median d, value of 0.33 mm and an interquartile range of
0.35 mm (0.16-0.55 mm; Figure 5a). Thus, although many d, values were

b)

o < relatively small, lying close to the feature resolution (0.08 mm), nearly
2 30% of the samples had critical pore diameters larger than 0.5 mm, which
* 1 L indicate the presence of one or more structural macropores connected

across the sample (see the examples in Figures 3a-3c) that may dramati-
cally increase K; values (e.g., Jarvis et al., 2013; Jorda et al., 2015). The med-
-1 b ian value of the effective porosity was 3.2%, with an interquartile range of
1.4 to 7.2% (Figure 5b). The effective porosity and the critical pore dia-
meter were not significantly correlated (Figure 6; p = 0.62). The median
-3 * r value of the saturated hydraulic conductivity was 3.84 cm/h, but as is com-
monly found, the K; values varied widely, ranging across approximately 6
orders of magnitude, with lower and upper quartile values of 0.36 and

Log(Ks), cm/hour

* 3k

26 cm/h (Figure 5¢) and a coefficient of variation of 215%.

Figure 5. The box and whisker plots of critical pore diameter (d,), effective  The fit obtained with the Katz and Thompson model described by equa-
porosity (¢efr), and saturated hydraulic conductivity (K). The horizontal tions (1) and (2) was significant at p < 0.0001, with a best fit value of G
lines indicate medians, the length of the box shows the inter-quartile range, of 3162 (Figures 7 and 8) and no apparent bias in the estimates across

and the whiskers indicate the range of typical values. Possible and
probable outliers indicated by asterisks and open symbols are defined as
values that lie outside the box boundaries by more than 1.5 and 3 times the

size of the box respectively.

approximately 4 orders of magnitude, except at very small measured K;
values (< 0.01 cm/hr). Nevertheless, Figure 8 shows that there is consider-
able scatter in the relationship between estimated and measured K;

KOESTEL ET AL.
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Figure 6. The relationship between critical pore diameter, d., and effective
porosity, Pefs.

values. Only 47% of the variation in log (K;) was explained by the model,
and the predictions were in error by more than 1 order of magnitude for
approximately 30% of the data points. The fitted value of G is approxi-
mately 1 to 2 orders of magnitude larger than theoretical values (27 to
226, see above) previously derived for idealized porous media and pore
network models and also lies outside the range (approximately 333 to
1820) found experimentally by Nishiyama and Yokoyama (2017) for a wide
range of different porous rocks and artificial (man-made) porous media
(e.g, cement, concrete). Furthermore, in contrast to our results,
Nishiyama and Yokoyama (2017) showed that the Katz and Thompson
model accurately estimated permeability (R* > 0.96). Errors and uncertain-
ties in the measurements may have contributed significantly to the much
poorer predictions of K; and the larger estimate of G for our naturally struc-

Log {K;, cmh™1}

-1

=34

51

tured soils. For example, after X-ray scanning, the pore space structure of
many of our samples may have changed during presaturation prior to K; measurement or during the mea-
surement of K;, either due to the swelling of clay minerals, the consolidation of structurally unstable soils,
or the activity of macrofauna (e.g., earthworms). This is illustrated for one core sample in Figure 9. These
images were taken before and after presaturation and K; measurement and show evidence of both pore
space consolidation and shrinkage crack formation. One potential solution to this problem would be to make
measurements on printed copies of X-ray imaged samples, although some technical issues remain to be
resolved (Bacher et al., 2015).

Air entrapment has also been shown to occur in structural pores during sample presaturation and infiltration
(Koestel & Larsbo, 2014; Luo et al., 2008; Luo & Lin, 2009; Snéhota et al., 2010). Babko (2016) measured
entrapped air contents after presaturation for five of the samples from the Skuterud field site in Norway with
imaged porosities between 3 and 7%. This experiment showed that between 25 and 65% of the imaged por-
osity contained trapped air, with larger values found for the samples of smaller imaged porosity. Following
vacuum saturation, trapped air contents were subsequently reduced to close to 0, while K; more than
doubled in one sample and increased by approximately 10% in two others. However, K, was only marginally
affected in the two remaining samples (Babko, 2016). As also found by Jarvis et al. (2017) and predicted by
percolation theory, the connectivity of the structural pore space in our data set decreases significantly as
the imaged porosity decreases toward a threshold value for long-range continuity (or percolation;
Figure 10). Furthermore, during saturation entrapped air will tend to collect in the larger pores (Snéhota et al.,
2010). All this suggests that air entrapment could have a disproportionally large effect on the permeability of

soils with small structural porosity. Thus, it seems probable that the com-

paratively large estimated value of G and the large systematic overestima-

tion of permeability for samples with measured K; values less than

3162

Log {d)eff d? (%) cm h_l}

Group
O OM amended sand

| & Other soils

O Skuterud

Figure 7. Measured saturated hydraulic conductivity, K, as a function of ¢eff
d.”. The dotted line shows the best fit from ordinary linear regression
without intercept (slope = 1/3162).

approximately 0.1 cm/hr (Figures 7 and 8) are at least partly a consequence
of air entrapment. Although air can be removed from samples by vacuum
saturation with degassed water, such conditions would rarely occur in the
field. Such an experimental approach would also make it difficult to com-
pare K, values with data obtained in previous studies, where air entrap-
ment has been tacitly accepted.

A simple empirical model based solely on d. and not ¢ (equation (3) with
a fitted value of G of 68074; p < 0.0001) explained almost as much (45%) of
the variation in log (K;) as the full model given by equation (1), in combina-

tion with equation (2):
<40
G \n

This suggests that although the critical pore diameter appears to be a
good length scale for predicting soil permeability, the effective porosity
(the reciprocal of the formation factor) may have been poorly estimated

3)

KOESTEL ET AL.



~1
AGU

100

ADVANCING EARTH
'AND SPACE SCiENCE

Water Resources Research 10.1029/2018WR023609

~ e
E 2 *te *
= . ﬁ
g g O 3 &
S . .
B N ‘ﬁ??é’-% o
S 0l ea Ll AR | cow
‘T‘ Dn . o %E a g ao O OM amended sand
o . n - # Other soils
E Wad . O Skuterud
Q
~ -
-~ 24 7
o3 1
— .
) o
Q
~
-4
4 -2 0 2

Log(Ky), cm h™! (measured)

Figure 8. Measured K, and estimated values using equations (1) and (2) with G = 3162.

Figure 9. X-ray images of the pore space of a sample taken from the silt A, horizon at site 101945, (a) before and (b) after
sample presaturation and measurement of K.

by the simple method employed in this study. Another likely reason for the poor performance of the CPA-
percolation model is that one or more of the key assumptions underlying its derivation were not
sufficiently valid. CPA-theory relies on the assumption that the distribution of local (pore-scale)
conductances is broad and that they are not spatially correlated. Under these conditions flow at saturation
should be dominated by the bottleneck resistance along the critical path. The first assumption may be
reasonable for many naturally structured soils, although some of our samples may not have met this
requirement (e.g., the packed sands amended by organic matter and the natural sandy loam soils; Table 1).
With regard to the second assumption, it seems highly probable that for the size of our samples, the
structural pore space imaged by X-ray cannot be adequately described as the outcome of a spatially

1.0 « e o
. - eg:,.on... st o
c e Jj‘ge B
g 08 LI
° -« @
@® o °
<= 06 *a Group
(o)) . ﬁ O OM amended sand
-5 ¢ 20 ° e ® Other soils
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g -]
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.
.
0.0 o
5 10 15 20 25 30

Imaged porosity, %

Figure 10. The percolating fraction of the imaged porosity as a function of imaged porosity.

KOESTEL ET AL.



~1
AGU

100

ADVANCING EARTH
'AND SPACE SCiENCE

Water Resources Research 10.1029/2018WR023609

Acknowledgments

This work was carried out in the project
SOILSPACE (“Quantifying soil structure
to augment the relevance of laboratory-
based soil hydraulic properties for
environmental modelling”) funded by
the Research Council of Norway (project
240663). We would like to thank Eivind
Solbakken and Age Nyborg (both at
NIBIO) for assistance with the field
sampling, together with students Julia
Szocs, Erin Ball, Jonas Reinemo,
Matthew Patterson, and Mingming Qin.
We would also like to thank Claudia von
Brémssen (Department of Energy and
Technology, Unit of Applied Statistics
and Mathematics, SLU) for helpful
advice on statistics.

uncorrelated (random) arrangement of pore space (see the examples in Figures 3a-3d; Jarvis et al., 2017). If
these assumptions are not met, flow may be less localized than is envisioned in classical CPA (e.g., Bernabé &
Bruderer, 1998; Friedman & Seaton, 1998; Skaggs, 2003, 2011) and theoretical predictions of the relative
electrical conductivity (effective porosity) and the coefficient G will be less reliable.

4. Conclusions

The critical pore diameter, d., appears to be a suitable length scale for predicting the saturated hydraulic con-
ductivity of sail, K. Physical and semiempirical models based on d_ are also parsimonious and may therefore
represent suitable approaches for estimating K, in hydrological models, despite large prediction uncertain-
ties. From this point of view, it could therefore be worthwhile to direct future research toward exploring
the correlations of d. with basic soil properties and site attributes. The effective porosity (or inverse of the for-
mation factor) estimated by the simple approach employed here did not contribute significantly to explain-
ing the variation in K;. It may therefore be worthwhile testing whether the more advanced method suggested
by Katz and Thompson (1987) to estimate effective porosity from measurements of the thickness distribution
of the accessible pore space could give improved predictions of K;. An inadequate sample size was thought
to be another important reason for the large uncertainty in predictions of K; using the percolation-based
models. It could therefore also be valuable to make use of X-ray scanning techniques to revisit the long-
standing issue of the size of sample needed to adequately capture the scale of the heterogeneity found in
structured soils, focusing especially on the variations of the percolating pore space and the critical pore dia-
meter with sample size, since these parameters will significantly affect water flow at and near saturation.

Data Statement

The authors have uploaded a copy of the data as supporting information.
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