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Abstract 12 

In the context of reducing CO2 emissions to the atmosphere, chemical absorption with amines is 13 

emerging as the most advanced technology for post combustion CO2 capture from exhaust gases 14 

of fossil fuel power plants. Despite amine solvent recycling during the capture process, 15 

degradation products are formed and released into the environment, among them aliphatic 16 

nitramines, for which the environmental impact is unknown. In this study, we determined the 17 

acute and chronic toxicity of two nitramines identified as important transformation products of 18 

amine-based carbon capture, dimethylnitramine and ethanolnitramine, using a multi-trophic suite 19 

of bioassays. The results were then used to produce the first environmental risk assessment for 20 

the marine ecosystem. In addition, the in vivo genotoxicity of nitramines was studied by adapting 21 

the comet assay to cells from experimentally exposed fish. Overall, based on the whole organism 22 

bioassays, the toxicity of both nitramines was considered to be low. The most sensitive response 23 

to both compounds was found in oysters, and dimethylnitramine was consistently more toxic than 24 

ethanolnitramine in all bioassays. The Predicted No Effect Concentrations for dimethylnitramine 25 

and ethanolnitramine were 0.08 and 0.18 mg/L, respectively. The genotoxicity assessment 26 

revealed contrasting results to the whole organism bioassays, with ethanolnitramine found to be 27 

more genotoxic than dimethylnitramine by three orders of magnitude. At the lowest 28 

ethanolnitramine concentration (1 mg/L), 84 % DNA damage was observed, whereas 100 mg/L 29 

dimethylnitramine was required to cause 37 % DNA damage. The mechanisms of genotoxicity 30 

were also shown to differ between the two compounds, with oxidation of the DNA bases 31 

responsible for over 90 % of the genotoxicity of dimethylnitramine, whereas DNA strand breaks 32 

and alkali-labile sites were responsible for over 90 % of the genotoxicity of ethanolnitramine. Fish 33 

exposed to > 3 mg/L ethanolnitramine had virtually no DNA left in their red blood cells.  34 



Highlights  35 

• The environmental risk posed by nitramines, CO2 capture by-products, was unknown. 36 

• A multi-trophic suite of bioassays was used to assess ecotoxicity and genotoxicity.  37 

• Nitramine toxicity through necrosis was considered low. 38 

• The first risk assessment for dimethylnitramine and ethanolnitramine was produced. 39 

• Ethanolnitramine induced massive DNA damage in turbot.  40 

 41 

Graphical abstract 42 

 43 

 44 

Keywords 45 

Environmental risk assessment, post combustion CO2 capture, 2-(nitroamino)ethanol, single cell 46 

gel electrophoresis   47 



1. Introduction 48 

The capture and storage of carbon dioxide (CO2) from the exhaust gases of fossil fuel power 49 

stations is an important technology for reducing CO2 emissions to the atmosphere. Approximately 50 

43% of the global CO2 emissions in 2011 were attributed to the generation of electricity from fossil 51 

fuel power stations (IEA, 2013). Chemical absorption with amines is emerging as the most 52 

advanced mitigation technology for post combustion capture of CO2 from fossil fuel power 53 

stations (Reynolds et al., 2012). The exhaust gas from the power station is bubbled through an 54 

amine solution in the absorber unit, producing a CO2-saturated amine solution. In the stripper 55 

unit, heat separates CO2 and amines, resulting in pure CO2 ready to be stored on one side, and 56 

amine solution, recycled and sent back to the absorber unit, on the other side. The main 57 

advantage of post combustion CO2 capture is that the technology can be incorporated into 58 

existing power plants, avoiding the need to build new facilities. In addition, the technology benefits 59 

from almost two decades of full-scale experience for removal of CO2 from natural gas (Lackner, 60 

2009; Reynolds et al., 2012). However, the environmental impacts of replacing CO2 emissions 61 

with the discharge of amine solvents and their chemical transformation products, as by-products 62 

of the capturing process, are largely unknown. 63 

  64 

There is increasing public and environmental concern with regard to two main groups of amine 65 

transformation products, nitrosamine and nitramine contamination in air and drinking water 66 

supplies downstream of amine-based CO2 capture plants (Reynolds et al., 2012). A few in vitro 67 

studies showed that nitramines could be carcinogenic and mutagenic (Fjellsbø et al., 2014; 68 

Wagner et al., 2014). Recent theoretical modelling and controlled laboratory experiments reported 69 

the occurrence of nitramines as transformation products of amines in the carbon capture process 70 

within the discharge effluent (Bråten et al., 2008; Nielsen et al., 2009). Two of the nitramine 71 

compounds that were identified included dimethylnitramine (CAS No. 4164-28-7) and 72 

ethanolnitramine (CAS No. 74386-82-6). However, despite the likelihood of these compounds 73 

increasing in the environment, with the potential to cause environmental harm, no environmental 74 



toxicity data for these compounds currently exist. Due to the location of some CO2 capture and 75 

storage plants along the coastline, as well as their tendency to partition to the water phase, 76 

amines and their transformation products are likely to end up in the marine environment. 77 

Therefore, an ecotoxicity assessment performed on marine organisms is needed in order to 78 

provide an appropriate assessment of the environmental risk. 79 

 80 

In addition to organismal toxicity, there is a real concern that nitrosamines and nitramines can 81 

cause genotoxic effects (Fjellsbø et al., 2014; Frei et al., 1984, 1986; Wagner et al., 2012). 82 

However, although nitramines are considered not as potent as nitrosamines in terms of their 83 

genotoxic potential, the greater persistence of nitramines in the environment increases their 84 

likelihood to cause environmental harm (Låg et al., 2011). In the present study, the comet assay 85 

was used in fish exposed to sub-lethal concentrations of the two nitramine compounds to assess 86 

their potential in vivo genotoxicity. The comet assay detects DNA strand breaks and alkali-labile 87 

sites (i.e. apurinic and apyrimidinic sites or AP sites), which arise from the loss of a damaged 88 

base. In normal cells, strands breaks and AP sites are not the only kind of damage. Oxidized 89 

bases are present in at least as great a number and can be readily detected with the comet 90 

assay, by incorporating an additional step involving formamidopyrimidine DNA glycosylase (FPG, 91 

Collins et al., 2008). 92 

 93 

The first aim of the study was to determine the acute and chronic ecotoxicity of dimethylnitramine 94 

and ethanolnitramine using a suite of standardized and non-standardized tests on marine species 95 

belonging to several trophic groups. The ecotoxicity data were then used to assess the 96 

environmental risk of the two nitramine compounds in the marine environment. The second aim 97 

was to determine the potential in vivo genotoxicity of these two compounds by measuring the 98 

frequency of DNA damage in fish blood.  99 

 100 

2. Materials and methods 101 



2.1. Nitramines 102 

Dimethylnitramine (CAS No. 4164-28-7, purity >98%) and ethanolnitramine (CAS No. 74386-82-103 

6, purity 98%) were purchased from Chiron AS (Norway). Stock solutions at 5 g/L were prepared 104 

in ultrapure water (Milli-Q, Millipore, USA) and stored at 4 °C until use. Aged filtered (0.45 µm) 105 

seawater collected from a depth of 60 m from the Outer Oslo fjord, Norway, was used as a 106 

negative control and for the preparation of dilution series. In all bioassays, test solutions were 107 

prepared on the first day of testing (and, in chronic tests, on days where exposure media had to 108 

be renewed), by diluting stock solutions with appropriate amounts of filtered seawater to produce 109 

the required concentration series. 110 

 111 

2.2. Bioassays 112 

A bioassay battery consisting of three acute toxicity tests (24 h oyster larval development, 48 h 113 

copepod mortality and 96 h turbot mortality), a sub-chronic toxicity test (72 h algal growth), and 114 

three chronic toxicity tests (13 d macroalgae germling growth, 14 d copepod reproduction and 28 115 

d turbot growth) was applied for both nitramines.  116 

 117 

2.2.1. Oyster larval development 118 

The toxicity of nitramines to the developing embryos of the Pacific oyster Crassostrea gigas was 119 

assessed based on the standard protocol ASTM E724 (ASTM, 1994). For both nitramines, the 120 

concentration series tested was 0, 2, 4, 9, 21, 45 and 100 mg/L. Zinc sulphate (ZnSO4.7H2O, 121 

CAS No.7446-20-0) was used as a positive control. 122 

Oysters were obtained in spawning condition from Guernsey Sea Farms Ltd, Guernsey, UK. 123 

Separate male and female gamete suspensions were made by stripping the gonads and placing 124 

them in filtered seawater. Prior to fertilization, egg density was adjusted to 3000 ± 300 eggs/mL 125 

and sperm mobility was confirmed by microscopic examination at ×400 magnification. For 126 

fertilization, 10 mL of the sperm suspension was added to 1 L of the egg suspension. The 127 

fertilized embryos were allowed to develop into trocophore larvae (2 h after fertilization) before 128 



they were placed in the test vessels. The test was performed in 12 well microplates with four 129 

replicate vessels for each test concentration and eight replicate vessels for controls. The number 130 

of fertilized embryos added to each replicate vessel was approximately 50 per mL. The vessels 131 

were incubated in the dark for 24 ± 2 h at 24 ± 1 °C. The test was terminated and the embryos 132 

fixed with the addition of 200 µL of neutral buffered formalin. Dissolved oxygen, salinity and pH 133 

were measured in the high, medium and low concentration test solutions at the start and the end 134 

of the exposure period and were within accepted validity criteria (ASTM, 1994). Samples of the 135 

lowest and highest test concentration solutions were taken at the start and the end of the 136 

exposure period for analytical determination of nitramine concentrations. 137 

The number of normal D-larvae (normally developed embryos) was counted in 1 mL of test 138 

solution for each test vessel after 24 ± 2 h using an inverted microscope at ×100 magnification. 139 

Normal D-larvae were considered those that possessed a completely formed shell and contained 140 

cellular material. Any small differences in the shape of the shell e.g. pinch to the hinge, was still 141 

counted as normal as long as it was still fully D shaped. The percentage development from 142 

trocophore to veliger (D-shaped) larvae in the controls was assessed as a quality control measure 143 

and was within accepted validity criteria. 144 

 145 

2.2.2. Copepod mortality 146 

In the copepod mortality test, 6 ± 2 day old Tisbe battagliai (first copepodid stage) were exposed 147 

to nitramines for a period of 48 h based on the ISO standard procedure 14669 (ISO, 1999; 148 

Environment Agency, 2007). For both nitramines, the concentration series tested was 0, 2, 4, 9, 149 

21, 45 and 100 mg/L. Potassium dichromate (K2Cr2O7, CAS No.7778-50-9) was used as a 150 

positive control. The test was performed with four replicate wells for each test concentration of 151 

nitramine, negative control and positive control, with each well containing 5 individuals. Test 152 

organisms were maintained at 20 ± 1 °C and were not fed during the test. Samples of the lowest 153 

and highest test concentration solutions were taken at the start and the end of the exposure 154 

period for analytical determination of nitramine concentrations. Organisms were considered dead 155 



when no swimming or appendage movement was observed within 10 seconds of gently agitating 156 

the test container. 157 

 158 

2.2.3. Turbot mortality 159 

Juvenile turbot Scophthalmus maximus were exposed to nitramines for a period of 96 h based on 160 

the OECD test guideline 203 (OECD, 1992). Hatchery-reared juvenile turbot were obtained from 161 

Maximus A/S, Denmark, and acclimatized at the Marine research station in Solbergstrand, 162 

Norway, for approximately 4 weeks prior to testing. For both nitramines, the concentration series 163 

tested was 0, 1, 3, 10, 30 and 100 mg/L. The experimental setup included one 20 L aquarium 164 

containing 10 fish per nitramine concentration, and two 20 L control aquaria with 10 fish in each. 165 

Individual fish weight was 2.0 ± 0.2 g (wet weight) at the beginning of the test. The test was 166 

performed at 16 ± 1 °C, with a 16 h light: 8 h dark cycle. Fish were fed a ration of 2 % body weight 167 

per day (Nutra Parr 1.5 mm, Skretting A/S, Norway). Water was aerated continuously with 168 

airstones to ensure a satisfactory dissolved oxygen concentration. Test solutions were half 169 

exchanged once during the test. Samples of the lowest and highest test concentration solutions 170 

were taken at the start and the end of the exposure period for analytical determination of 171 

nitramine concentrations. Mortality was checked within the first 2 h and then every 24 h until the 172 

end of the test. 173 

 174 

2.2.4. Algal growth 175 

The unicellular algae Skeletonema costatum were exposed for 72 h to a concentration range of 176 

nitramines (0, 18, 32, 56, 10, 180, 320 mg/L for dimethylnitramine and 0, 200, 360, 1120, 2000, 177 

3600 mg/L for ethanolnitramine), following the ISO standard procedure 10253 (ISO, 2006). 178 

Growth medium was prepared by adding ISO 10253 stock solutions to filtered seawater. The 179 

growth of the algal inoculum (5.6 × 106 cells/L) placed on an orbital shaker in continuous cool 180 

white fluorescent light (68 ± 4 µmol/m2/s, Philips TLD 36W/950) under constant temperature (20 ± 181 

1 °C) was measured every 24 h for the duration of the test using a Beckman Coulter Multisizer 3 182 



(Beckman Coulter, USA). Three replicates were used per nitramine concentration with 6 183 

replicates for the control. Samples of the lowest and highest test concentration solutions were 184 

taken at the beginning of the exposure period for analytical determination of nitramine 185 

concentrations.  186 

The relative growth rate (RGR) for each test concentration was calculated using the equation: 187 

𝑅𝐺𝑅 = (𝑙𝑛𝑁𝑛 −  𝑙𝑛𝑁0) (𝑡𝑛 − 𝑡0⁄ ), where Nn = Cell density at time tn, N0 = Cell density at time zero 188 

(t0). The percentage inhibition of growth rate as compared to the control was calculated for each 189 

concentration. 190 

 191 

2.2.5. Macroalgae germling growth 192 

The toxicity of nitramines to the growth of Fucus vesiculosus germlings was assessed based on 193 

the method described by Brooks et al. (2008). The algae were collected in the Oslo fjord (GPS 194 

59.904 N, 10.702 E) and thoroughly rinsed with filtered seawater. The receptacles were then left 195 

for 6 h in seawater to allow for the release of eggs and sperm cells. The resulting zygote 196 

suspension was filtered through a 90 µm sieve, collected on a 25 µm sieve, and its quality and 197 

density assessed at ×20 magnification. Microscope slides were placed in a shallow tray, covered 198 

to a depth of 2 cm with seawater, and 1 mL of zygote suspension (50-100 zygotes) was placed 199 

onto each individual slide. The tray, covered with film to prevent evaporation, was left for 48 h to 200 

enable the zygotes to attach and develop into germlings. After 48 h, 5 or 6 slides with at least 6 201 

germlings on each were placed in separate Coplin jars, one jar per concentration. Due to low 202 

abundance of germlings, the setup was reduced to control, dimethylnitramine at 100 mg/L and 203 

200 mg/L, and ethanolnitramine at 100 mg/L and 500 mg/L. Renewal of the exposure solutions 204 

was performed on day 7. Exposure solutions were sampled at the start and at the end of the 205 

exposure period for analytical determination of nitramine concentrations. All germlings from each 206 

slide were photographed and measured on day 0, 4, 7, 10 and 13. The RGR was calculated using 207 

the equation: 𝑅𝐺𝑅 = (𝑙𝑛𝐿𝑛 −  𝑙𝑛𝐿0) (𝑡𝑛 − 𝑡0⁄ ), where Ln = germling length at time tn, L0 = germling 208 

length at time zero (t0). 209 



 210 

2.2.6. Copepod reproduction 211 

The reproductive output of T. battagliai was recorded over a 14 d exposure period to nitramines. 212 

Test solutions were prepared by diluting stock solutions with appropriate amounts of filtered 213 

seawater to produce a concentration series of 0, 12.5, 25, 50 and 100 mg/L nitramine. The test 214 

was performed in 12-well microplates with 10 individually housed organisms (replicates) per 215 

concentration including controls. Tests were initiated by introducing female copepods at the start 216 

of their adult reproductive period (after the appearance of the first egg sac). Test organisms were 217 

maintained at 21 ± 1 °C with a 16 h light: 8 h dark cycle, and were fed a diet of Rhodomonas 218 

baltica at a rate of 2 x 105 cells/mL at each renewal period. Exposure solutions were renewed on 219 

day 2, 6, 9, and 12. At each renewal, adult females were transferred to a new set of test vessels 220 

containing fresh exposure solutions and algae. The old test vessels were then poured and 221 

thoroughly rinsed into counting chambers and nauplii were counted. Observation of mortality and 222 

behavior were made daily. Samples of the lowest and highest test concentration solutions were 223 

taken at the beginning and on day 2, 12 and 14 of the exposure period for analytical 224 

determination of nitramine concentrations. 225 

 226 

2.2.7. Turbot growth 227 

The effect of nitramines on the growth of juvenile turbot S. maximus was determined based on 228 

the standard guideline OECD 215 (OECD, 2000). Hatchery-reared juvenile turbot were obtained 229 

from Maximus A/S, Denmark, and acclimatized at the Marine research station in Solbergstrand, 230 

Norway, for approximately 4 weeks prior to testing. The experimental design included one 20 L 231 

aquarium containing 10 fish per nitramine concentration (1, 3, 10, 30, 100 mg/L), and two 20 L 232 

control aquaria with 10 fish in each. Average individual fish weight was 2.0 ± 0.2 g (wet weight) at 233 

the beginning of the test. The water temperature was maintained at 16 ± 1 °C, continuously 234 

aerated and semi static conditions (50 % renewal was carried out twice a week). Fish were fed a 235 

ration of 2% body weight per day (Nutra Parr 1.5 mm, Skretting A/S, Norway). Samples of the 236 



lowest and highest test concentration solutions were taken at the beginning and on day 2, 24 and 237 

28 of the exposure period for analytical determination of nitramine concentrations. After 28 days, 238 

fish were weighed and the ‘pseudo’ specific growth rate (SGR) was calculated using the equation: 239 

𝑆𝐺𝑅 = (𝑙𝑛𝑊𝑛 −  𝑙𝑛𝑊0
̅̅ ̅̅ ̅̅ ̅) (𝑡𝑛 − 𝑡0⁄ ) × 100, where 𝑙𝑛𝑊𝑛 = logarithm of the weight of an individual fish 240 

at time tn, and 𝑙𝑛𝑊0
̅̅ ̅̅ ̅̅ ̅ = average of the logarithms of the weights of individual fish at time zero (t0). 241 

 242 

2.3. Comet assay 243 

DNA damage was analyzed in blood samples collected from the caudal vein of juvenile turbot S. 244 

maximus after 28 day exposure to nitramines, using a version of the comet assay (Collins, 2004; 245 

Collins and Azqueta, 2012) in which 12 mini-gels are set on each slide (Shaposhnikov et al., 246 

2010). The experimental setup included 4 concentrations of ethanolnitramine and 247 

dimethylnitramine (1, 3, 30, 100 mg/L), with 6 fish per nitramine concentration and 12 fish per 248 

control. Cell density was optimized beforehand by preparing blood dilutions in PBS and 249 

measuring cell number with the aid of a Coulter counter. A cell density of 2.5 × 105/mL was found 250 

to give an appropriate number of cells per mini-gel. 251 

Blood samples were diluted in PBS (1:10000) and kept on ice. For each blood sample, 15 µL of 252 

cell suspension at 2.5 × 105/mL and 70 µL of 1 % low melting point agarose in PBS at 37 °C were 253 

mixed by pipetting up and down once. One 5 µL drop of this agarose-cell suspension was placed 254 

on three microscope glass slides pre-coated with normal melting point agarose, each intended for 255 

a different treatment (with gels from 12 different samples on each slide). All slides were incubated 256 

in lysis buffer consisting of 2.5 M NaCl, 0.1 M EDTA Titriplex (CAS nr. 60-00-4), 10 mM Trizma 257 

base (CAS nr. 77-86-1), and 1 % Triton X-100, with pH adjusted to 10 with NaOH. Lysis removes 258 

membranes, soluble cell constituents, and histones, leaving DNA as nucleoids. One of the three 259 

slides, referred to as LYS, was simply lysed, in order to measure DNA strand breaks and alkali-260 

labile sites.  261 

Measurement of DNA base oxidation requires subsequent digestion with the enzyme 262 

formamidopyrimidine DNA glycosylase (FPG, provided by A. Collins, University of Oslo), which 263 



detects oxidized purines. After lysis, the other two slides, FPG and BUF, were gently washed 3 264 

times for 5 min in enzyme buffer at pH 8.0 (10 mM HEPES, 0.1 M KCl, 0.5 mM EDTA, 0.2 g/L 265 

BSA) and then incubated for 30 min at 37 °C in either enzyme buffer (without enzyme) (slide 266 

BUF), or with FPG enzyme made up in the same buffer at 1:50000 (slide FPG). After incubation, 267 

these two slides and the LYS slide were placed in a horizontal gel electrophoresis tank and DNA 268 

was allowed to unwind for 20 min in cold alkaline solution (0.3 M NaOH and 1 mM Na2EDTA, 269 

pH>13) followed by electrophoresis for 20 min at 0.8 V/cm at 4 °C. Slides were then washed 270 

twice with cold PBS for 5 min and for 1 min in distilled water. Gels were dehydrated and DNA 271 

fixed by incubating slides in 70 % ethanol for 5 min and in absolute ethanol for a further 5 min. 272 

They were then placed on the bench at room temperature to dry. 273 

For visualization, gels were stained in a bath with SYBR Gold (Molecular Probes) at a 1:10000 274 

dilution of stock solution in TE buffer (10 mM Tris, 1 mM EDTA pH 7.5) as recommended by the 275 

manufacturer. Stained nucleoids (comets) were visualized using an epifluorescence microscope 276 

at ×20 magnification. The slides were coded and the entire analysis was carried out blind. Images 277 

were analyzed with Comet Assay IV software (Perspective Instruments), recording the % DNA in 278 

the tail of 50 comets per gel. The scores (% tail DNA) of gels on BUF slides were subtracted from 279 

the scores of FPG slides to give the net FPG-sensitive sites (Collins et al., 2008). 280 

  281 

2.4. Chemical analysis  282 

The method used to determine concentrations of dimethylnitramine and ethanolnitramine in 283 

exposure media was modified from the USEPA method 521 (USEPA, 2004). Solid phase 284 

extraction (SPE) of samples was carried out on activated charcoal columns (SPE EPA method 285 

521 and 522, 6 mL/2 g activated charcoal, Restek, USA). To avoid peak saturation on the SPE 286 

column and the chromatograph, samples with high nominal concentrations of nitramines were 287 

diluted with ultrapure water to a nominal concentration of 2 mg/L nitramine. Columns were 288 

conditioned by successive solvent washes (3 mL dichloromethane, 9 mL methanol, 15 mL 289 

ultrapure water), then loaded with 5 mL of sample, followed by 3 mL of ultrapure water. Columns 290 



were then eluted with 15 mL dichloromethane. Samples were dried with sodium sulfate and 291 

spiked with internal standard (2.5 µg 1,2,4-trichlorobenzene and 1.25 µg tetrachloroethane). 292 

Samples were finally reduced to 0.5 mL under a nitrogen flow and added 0.5 mL methanol. 293 

For quality assurance, blanks and spiked samples containing 2 mg/L dimethylnitramine and 294 

ethanolnitramine, processed in the same way as the samples, and 5 standard solutions in the 295 

range 0.1 to 10 mg/L, were analyzed. The analysis was performed by gas chromatography 296 

Agilent 6890N with a 63Ni µECD detector. GC separation was performed using an Agilent J&W 297 

DB5 capillary column (30 m × 0.25 mm, 1.0 µm film). The oven temperature program was setup 298 

as follows: 60 °C held for 2 min, then ramped at 7 °C/min to 125 °C, held for 3 min, then ramped 299 

at 10 °C/min to 250 °C held for 2 min. Injection temperature was 200 °C, detector temperature 300 

was 240 °C, and carrier gas flow (hydrogen) was 3 mL/min. 301 

 302 

2.5. Data analysis 303 

Where toxicity was observed, calculation of toxicity parameters (Effect Concentrations EC10, EC20 304 

and EC50) was performed using the Hill model of the Excel macro REGTOX developed by Eric 305 

Vindimian (Vindimian et al., 1983). Homogeneity of variance was checked with a Levene’s test 306 

before a one-way analysis of variance (ANOVA) was used to evaluate effects of nitramines on the 307 

various biological endpoints, and differences were identified with a Holm-Sidak test. When 308 

normality and homoscedasticity assumptions were not reached, a Kruskal-Wallis analysis of 309 

variance on ranks was used, followed by a Dunn’s test (SigmaPlot 12.5, Systat software). 310 

 311 

3. Results 312 

3.1. Chemical analysis of exposure media 313 

The recovery in the spiked samples was 100-120 % and 90-118 % for dimethylnitramine and 314 

ethanolnitramine, respectively. Dimethylnitramine and ethanolnitramine were persistent over time 315 

under experimental exposure conditions. In addition, nitramines were also found to be remarkably 316 

stable at 4 °C, as concentrations in exposure media remained unchanged after one year. 317 



Measured concentrations in exposure media compared well with the respective nominal 318 

concentrations and were typically within ± 10 % of the nominal concentration. The only exception 319 

was the copepod (T. battagliai) acute test where measured ethanolnitramine concentrations were 320 

3 times below the nominal concentrations. In this case, the determination of toxicity values was 321 

based on measured concentrations, rather than on nominal concentrations. 322 

 323 

3.2. Acute toxicity 324 

3.2.1. Oyster larval development 325 

The positive control (zinc sulphate) used for the oyster embryo bioassay confirmed that the 326 

sensitivity of the embryos was within the quality control limits for the test. Dimethylnitramine 327 

caused a significant reduction in the number of normal D larvae at 45 mg/L and completely 328 

inhibited the development of the embryos at 100 mg/L (Figure 1). Ethanolnitramine was slightly 329 

less toxic to the oyster larvae than dimethylnitramine, with a significant reduction in the number of 330 

normal D larvae at the highest exposure of 100 mg/L. The calculated ecotoxicity endpoints are 331 

summarized in Table 1. For dimethylnitramine, the no observable effect concentration (NOEC), 332 

lowest observable effect concentration (LOEC) and the concentration affecting 50 % of the 333 

population (EC50) were 21, 45 and 47 mg/L, respectively. For ethanolnitramine, NOEC, LOEC and 334 

EC50 were 45, 100 and 107 mg/L. 335 

 336 

3.2.2. Copepod mortality 337 

The copepod T. battagliai responded as expected to the positive control (potassium dichromate), 338 

which confirmed the validity of the bioassay. No significant mortality was observed in copepods 339 

exposed for 48 h to dimethylnitramine or ethanolnitramine at concentrations up to 100 mg/L 340 

(Table 1).  341 

 342 

3.2.3. Turbot mortality 343 



There was no significant mortality observed in juvenile turbot S. maximus following a 96 h 344 

exposure to dimethylnitramine or ethanolnitramine at concentrations up to 100 mg/L (Table 1). 345 

 346 

3.3. Sub-chronic and chronic toxicity 347 

3.3.1. Algal growth 348 

The growth rate of the unicellular algae S. costatum after 72 h exposure was significantly reduced 349 

by dimethylnitramine at concentrations ≥ 32 mg/L (Figure 2A). The calculated NOEC, LOEC and 350 

EC10 concentrations for dimethylnitramine were 18, 32 and 48 mg/L, respectively (Table 1). The 351 

relatively high EC50 concentration (591 mg/L, extrapolated value) despite a LOEC of 32 mg/L was 352 

reflective of the limited effect on growth achieved at higher exposure concentrations, with only 353 

approximately 40 % reduction in growth rate achieved at the top concentration of 320 mg/L.  354 

Ethanolnitramine, on the other hand, had no negative effect on the growth of S. costatum, unless 355 

very high concentrations, well above those considered environmentally relevant, were reached. 356 

The experimental NOEC and LOEC for ethanolnitramine were 2000 and 3600 mg/L, respectively, 357 

and are reported as >100 mg/L in Table 1. 358 

 359 

3.3.2. Macroalgae germling growth 360 

The growth of F. vesiculosus germlings after 13 day exposure was reduced by 45 % and 64 % at 361 

100 mg/L and 200 mg/L dimethylnitramine, respectively, whereas ethanolnitramine had no 362 

significant effect at 100 mg/L, and induced 84 % growth reduction at 500 mg/L (Figure 2B, table 363 

1). 364 

 365 

3.3.3. Copepod reproduction 366 

The number of offspring (mean ± SD) produced over a 14 day period per adult female T. 367 

battagliai was 124 ± 37 in the controls (Figure 2C). In the presence of dimethylnitramine, a 368 

significant decrease in reproductive output was observed at 50 mg/L with 57 ± 45 offspring. For 369 

ethanolnitramine, a significant reduction in reproductive output was achieved following exposure 370 



to 100 mg/L (63 ± 33 offspring). The calculated NOEC, LOEC and EC50 concentrations were 25, 371 

50 and 70 mg/L, respectively, for dimethylnitramine, and 50, 100 and 108 mg/L, respectively, for 372 

ethanolnitramine (Table 1).  373 

 374 

3.3.4. Turbot growth 375 

No significant decrease in the growth rate of the turbot S. maximus was recorded following a 28 376 

day exposure to 100 mg/L of dimethylnitramine or ethanolamine (Figure 2D, Table 1). Large 377 

variations in growth rate were observed within groups, with mean values between 0.7-1.6 times 378 

that of mean control fish for dimethylnitramine and mean values between 0.7-2.3 times the growth 379 

rate of the control fish for ethanolamine. An apparent increase in turbot growth rate was observed 380 

at 3 and 10 mg/L ethanolnitramine, although no statistically significant difference was found. 381 

 382 

3.4. Genotoxicity  383 

Dimethylnitramine induced DNA damage in red blood cells of juvenile turbot after 28 day 384 

exposure as shown in figure 3. The percentage of tail DNA for total damage (i.e. strand-breaks, 385 

alkali-labile and fpg-sensitive sites) was 11 % at 30 mg/L, and 37 % at 100 mg/L, compared to < 1 386 

% in control fish. DNA damage was almost entirely due to the presence of oxidized bases (fpg-387 

sensitive sites). The estimated EC10, EC20 and EC50 (with their 95% confidence interval) for total 388 

DNA damage were 29 (22-36) mg/L, 55 (47-63) mg/L, and 157 (129-209) mg/L dimethylnitramine, 389 

respectively (for EC50, values are outside the concentration range tested). 390 

All concentrations (from 1 to 100 mg/L) of ethanolnitramine induced massive DNA damage in 391 

turbot blood cells (Figure 3). The magnitude of the effect was much higher than observed with 392 

dimethylnitramine; comets were already close to saturation at 1 mg/L (84 % tail DNA, total 393 

damage) and only ghosts were visible at 30 and 100 mg/L (virtually no DNA left in cells). In the 394 

absence of data points between 0 and 1 mg/L, EC values could not be calculated. For 395 

ethanolnitramine, NOEC and LOEC were <1 mg/L and ≤1 mg/L, respectively. 396 

 397 



4. Discussion 398 

The main source of nitramines in the environment has been through their use in weapons 399 

manufacturing (Ryon et al., 1984). High environmental concentrations of nitramines, hexahydro-400 

1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 401 

which are important ingredients in explosives, have been found in both ground and surface 402 

waters near to army ammunition plants. Concentrations as high as 1.9 mg/L and 0.21 mg/L have 403 

been reported for RDX and HMX respectively (Best et al., 1999; Lewin et al., 1997). Data for the 404 

environmental concentrations of other nitramine compounds not associated with ammunition 405 

plants are limited. However, chlorination of public waters has led to concerns about nitramine and 406 

nitrosamine formation. For example, dimethylnitramine was detected at median values of 64.5, 50 407 

and 203 ng/L in outdoor pools, indoor pools, and hot tubs, respectively (Walse and Mitch, 2008), 408 

with the nitramine levels comparable to measured levels of the nitrosamine, N-409 

nitrosodimethylamine. 410 

 411 

The introduction of post combustion CO2 capture plants using amines, where monoethanolamine 412 

is the mostly widely used, has the potential to contribute as a nitramine source (Da Silva and 413 

Booth, 2013). The concentration of nitramines from such facilities depends on a variety of factors, 414 

including the amine solvent used, the composition of the flue gas, and the plant operation 415 

conditions. Emission data from post combustion CO2 capture facilities with amines are relatively 416 

scarce. This is partly due to the confidentiality issues surrounding the solvent systems used by 417 

the various companies, as well as the only relatively recent interest in CCS emissions. Emission 418 

data that are available mostly derive from pilot plants where predominantly monoethanolamine 419 

(MEA) has been used as the solvent. A recent summary of emission data from a range of pilot 420 

plants including Maasvlakte (Texas, USA), Esbjerg (Denmark), and Mongstad (Norway) have 421 

indicated low concentrations (ppb levels) of nitramines (Da Silva et al., 2013). Monitoring of the 422 

lakes and fjords within the catchment area of the test plant at Mongstad did not detect nitramines 423 

above quantification limits (0.7-1.5 ng/L) (Grung et al., 2012). Due to the recent change of 424 



government in Norway, although the test facility remains operational, the full scale launch of post 425 

combustion CO2 capture with amines has been put on hold. Therefore, accumulation of 426 

nitramines as degradation product of amines in CO2 capture may not be a threat at Mongstad in 427 

the short term. However, outside of Norway, the first commercial post-combustion coal fired 428 

carbon capture and storage facility was started in September 2014 at the SaskPower Boundary 429 

Dam power station in Estevan, Saskatchewan (Canada) (Stéphenne, 2014). Emission data for 430 

nitramines from this facility were not available at the time of publication. The success of this 431 

facility is likely to have a bearing on the implementation of similar power stations throughout the 432 

world for tackling CO2 emissions. In addition, with increasing pressures on nations to limit and 433 

reduce their carbon footprint, such post combustion technology may be likely to become favorable 434 

and economically viable in the future.  435 

 436 

Nitramines are thought to preferentially partition to the water phase, suggesting potential 437 

exposure to aquatic organisms. Based on the whole organism toxicity bioassays, which included 438 

both acute (survival) and chronic (growth and reproduction) endpoints in marine species 439 

belonging to several trophic levels, dimethylnitramine and ethanolnitramine were considered to 440 

exhibit low levels of toxicity. Large interspecific differences in sensitivity of the two compounds 441 

were observed. Among acute toxicity assays, the oyster larval development test was the most 442 

sensitive to both nitramines. The reason for this may be linked to the fact that susceptibility to 443 

toxicants is often inversely related to the age of exposed organisms, and oysters being exposed 444 

at an earlier developmental stage (embryo/ larvae), compared to fish (juvenile) and copepod 445 

(copepodite). 446 

 447 

Dimethylnitramine was the more toxic of the two compounds, with the most sensitive LOEC found 448 

in the unicellular algae S. costatum and the embryos of the oyster C. gigas at 32 mg/L and 45 449 

mg/L, respectively. However, in S. costatum higher concentrations of dimethylnitramine did not 450 

fully inhibit growth of the algae, which led to a particularly high EC50 of 591 mg/L. In contrast, the 451 



most sensitive LOEC for ethanolnitramine was only 100 mg/L from both the embryos of the oyster 452 

and the copepod reproduction. These were also the only two species where ethanolnitramine 453 

toxicity was found and where EC values could be calculated.  454 

 455 

Nitrosamines have been well studied as components of tobacco smoke and cured meats, and are 456 

known to be potent carcinogens (Shah and Karnes, 2010). Until recently, it was unknown whether 457 

the carcinogenic potency of nitramines was comparable to that of nitrosamines. However, in vitro 458 

mutagenicity bioassays in Salmonella typhimurium and acute genotoxicity in Chinese hamster 459 

ovary cells showed that nitramines were 15 times less mutagenic/genotoxic than their nitrosamine 460 

analogues (Wagner et al., 2014). Despite this, current limits for nitramines in drinking water in 461 

Norway have been set at 4 ng/L, which are based on the most potent nitrosamine, N-462 

nitrosodimethylamine. The conservative approach taken is due to the lack of genotoxic/mutagenic 463 

and carcinogenic data available for nitramines in order to propose reliable exposure limits. 464 

 465 

For our second goal, namely the determination of in vivo genotoxicity of nitramines, we adapted 466 

and applied the comet assay – a sensitive method for measuring DNA damage – to cells from 467 

experimentally exposed turbot. The genotoxicity assessment of the two compounds revealed 468 

contrasting results to the whole organism toxicity bioassays, with ethanolnitramine found to be 469 

more genotoxic than dimethylnitramine by three orders of magnitude. At the lowest 470 

ethanolnitramine concentration (1 mg/L), 84 % DNA damage was observed. In contrast, 100 mg/L 471 

dimethylnitramine was required to cause 37 % DNA damage. The mechanisms of genotoxicity 472 

were also shown to differ between the two compounds, with oxidation of the DNA bases 473 

responsible for over 90 % of the genotoxicity of dimethylnitramine, whereas DNA strand breaks 474 

and alkali-labile sites were responsible for over 90 % of the genotoxicity of ethanolnitramine. Fish 475 

exposed to > 3 mg/L ethanolnitramine had virtually no DNA left in their red blood cells.  476 



The large difference in genotoxicity observed between the two nitramine compounds highlights 477 

the danger of inferring toxicity from structurally similar compounds for environmental risk 478 

assessment, and conversely shows the importance of compound specific assessments. 479 

 480 

Fjellsbø et al. (2014) evaluated the genotoxicity of nitramines including dimethylnitramine and 481 

ethanolnitramine, using the bacterial reverse mutation (Ames) test, the cytokinesis block 482 

micronucleus (CBMN) assay and the comet assay. Ethanolnitramine was found to show 483 

mutagenic potential with the Ames test, was weakly genotoxic in the CBMN assay, but showed no 484 

increase in DNA strand breaks in the comet assay despite concentrations up to 1.9 g/L. The lack 485 

of genotoxic response in the comet assay is in contrast to the present study. Differences in the 486 

type and duration of exposure between the studies may explain the differences in toxicity 487 

observed. A 3 h in vitro exposure of human TK6 cells to 1.9 g/L ethanolnitramine failed to show a 488 

significant increase in DNA strand break frequency, in spite of the positive CBMN response 489 

(Fjellsbø et al., 2014). However, our 28 day in vivo exposure produced significant DNA damage at 490 

the lowest concentration tested (1 mg/L). It is possible that metabolic activation of the 491 

ethanolnitramine does not occur to a sufficient extent in a 3 h exposure, whereas the longer 492 

incubation period of the CBMN assay or our in vivo exposure allows activation to occur. In 493 

addition, the likely differences in specific metabolising capacity (due to variations in cytochrome 494 

P450 enzymes) between fish and humans could account for the divergence between these two 495 

reports. The differences observed between the two nitramines in the present study could be 496 

accounted for by the presence or absence of compound-specific P450 enzymes in the fish. The 497 

large differences observed between in vivo and in vitro genotoxicity highlight the need for 498 

thorough ecotoxicity evaluations for environmental risk assessment. To the authors’ knowledge, 499 

this is the only long term in vivo exposure study where genotoxicity of nitramines has been 500 

evaluated, and more data for the different trophic groups would assist in determining the 501 

genotoxicity of ethanolnitramine to aquatic life. 502 

 503 



To date most of the risk assessments carried out for nitrosamines and nitramines have focused 504 

on the risks to human health (De Koeijer et al., 2013; NIPH, 2009; Ravnum et al., 2014) 505 

associated with CO2 capture, with little focus on the environmental risks. The ecotoxicology data 506 

generated through this work is essential in contributing to an environmental risk assessment. 507 

Although the studies conducted were not carried out according to Good Laboratory Practice 508 

(GLP), they were based on accepted international standards and guidelines (ISO, OECD, ASTM) 509 

and any modification to these were detailed in full. Therefore, the data generated can be 510 

considered to be of high quality and provide information on these amine derivatives for which little 511 

or no data presently exists. 512 

 513 

One simple way of assessing the environmental risk of a compound is to calculate its risk 514 

quotient, which is the ratio between its predicted environmental concentration (PEC) and its 515 

predicted no effect concentration (PNEC) (ECHA, 2008). The PNEC is derived by dividing the 516 

most sensitive EC10 by the appropriate assessment factor. Considering long-term results (EC10) 517 

from three species representing three trophic levels, an assessment factor of 100 was used in the 518 

present study (ECHA, 2008). The calculated PNECs (with their 95 % confidence interval) were 519 

0.08 (0.01-0.42) mg/L for dimethylnitramine and 0.18 (0.01-0.78) mg/L for ethanolnitramine. 520 

Based on these results, environmental concentrations exceeding 0.08 mg/L dimethylnitramine 521 

and 0.18 mg/L ethanolnitramine may be expected to pose a potential risk to the aquatic marine 522 

environment. It is noted however, that the PEC/PNEC approach provides a conservative estimate 523 

of concentrations below which an unacceptable effect will most likely not occur, but where further 524 

action is necessary if exceeded.  525 

 526 

5. Conclusions 527 

The multi-trophic battery of bioassays encompassing multiple endpoints, acute and chronic 528 

exposures and a biomarker response (genotoxicity) add valuable data for the two nitramine 529 

compounds ethanolnitramine and dimethylnitramine, for which no ecotoxicological data exists at 530 



present. Overall, based on the whole organism toxicity bioassays, the toxicity of dimethylnitramine 531 

and ethanolnitramine was considered to be low. The most sensitive response for both nitramines 532 

was found in the early life stages of the oyster. However, dimethylnitramine was consistently 533 

more toxic than ethanolnitramine in all bioassays. The calculated PNECs for dimethylnitramine 534 

and ethanolnitramine were 0.08 and 0.18 mg/L, respectively, suggesting that marine PECs above 535 

these calculated PNECs have the potential to pose environmental harm. 536 

In contrast to the toxicity observed through necrosis, higher genotoxic potency was observed for 537 

the nitramines, with ethanolnitramine exhibiting significantly more genotoxicity than 538 

dimethylnitramine. Significantly elevated levels of DNA damage were observed at the lowest 539 

concentration of ethanolnitramine tested (1 mg/L). Overall, the toxicity of the two nitramine 540 

compounds through necrosis was considered to represent a low environmental risk, with potential 541 

environmental harm unlikely to occur except around ammunition sites were nitramines are known 542 

to accumulate. However, the in vivo genotoxicity of ethanolnitramine poses the highest 543 

environmental risk to aquatic life and further evidence to support the genotoxic observation and 544 

refine the toxicity assessment are required. 545 

 546 
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Table 1. Ecotoxicity parameters derived from dose-response relationships for marine species 654 

exposed to dimethylnitramine (A) and ethanolnitramine (B). NOEC: no observed effect 655 

concentration, LOEC: lowest observed effect concentration, ECx: concentration giving x% effect, 656 

na: not applicable. ECx are given with their 95% confidence interval in parentheses. *values 657 

above the highest concentration tested. 658 

A) Dimethylnitramine 

Species Test 
NOEC 
(mg/L) 

LOEC 
(mg/L) 

EC10 
(mg/L) 

EC20 
(mg/L) 

EC50 
(mg/L) 

Crassostrea 
gigas 

Oyster larval 
development 24 h 

21 45 
39 (22-

44) 
42 (28-45) 47 (42-52) 

Tisbe battagliai Copepod mortality 48 h ≥ 100 > 100 na na na 

Scophthalmus 
maximus 

Turbot mortality 96 h ≥ 100 > 100 na na na 

Skeletonema 
costatum 

Algal growth 72 h 18 32 
48 (33-

64) 
121 (97-

143) 
591 (521-

702)* 

Fucus 
vesiculosus 

Macroalgae germling 
growth 14 d 

< 100 100 na na na 

Tisbe battagliai 
Copepod reproduction 
14 d 

25 50 8 (1-42) 18 (4-55) 70 (38-202) 

Scophthalmus 
maximus 

Turbot growth 28 d ≥ 100 > 100 na na na 

B) Ethanolnitramine 

Species Test 
NOEC 
(mg/L) 

LOEC 
(mg/L) 

EC10 
(mg/L) 

EC20 
(mg/L) 

EC50 
(mg/L) 

Crassostrea 
gigas 

Oyster larval 
development 24 h 

45 100 
65 (23-

92) 
78 (42-95) 107 (99-140) 

Tisbe battagliai Copepod mortality 48 h ≥ 100 > 100 na na na 

Scophthalmus 
maximus 

Turbot mortality 96 h ≥ 100 > 100 na na na 

Skeletonema 
costatum 

Algal growth 72 h > 100 > 100 na na na 

Fucus 
vesiculosus 

Macroalgae germling 
growth 14 d 

100 500 na na na 

Tisbe battagliai 
Copepod reproduction 
14 d 

50 100 18 (1-78) 35 (6-93) 108 (55-421) 

Scophthalmus 
maximus 

Turbot growth 28 d ≥ 100 > 100 na na na 

  659 



Figure legends 660 

Figure 1. Effects of dimethylnitramine (left) and ethanolnitramine (right) on the larval development 661 

of the oyster Crassostrea gigas after 24 h exposure. Results are shown as the average fraction of 662 

normal D larvae ± one standard deviation; statistical differences are indicated by different letters 663 

(p < 0.05). 664 

 665 

Figure 2. Effects of dimethylnitramine (left) and ethanolnitramine (right) on the growth of the 666 

unicellular algae Skeletonema costatum after 72 h exposure (A); the growth of the macroalgae 667 

Fucus vesiculosus after 13 day exposure (B); the reproductive output of the copepod Tisbe 668 

battagliai over a 14 day exposure (C); the growth of juvenile turbot Scophthalmus maximus after 669 

28 day exposure (D). Results are means ± one standard deviation; statistical differences are 670 

indicated by different letters (p < 0.05). 671 

 672 

Figure 3. Effects of dimethylnitramine (left) and ethanolnitramine (right) on DNA damage in red 673 

blood cells of juvenile turbot Scophthalmus maximus after 28 day exposure. For total damage (i.e. 674 

strand-breaks, alkali-labile and fpg-sensitive sites), statistical differences are indicated by different 675 

letters (p < 0.05).  676 



Figure 1.  677 
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Figure 3. 681 

 682 Ethanolnitramine (mg/L)

0 1 3 30 100

%
 t
a
il 

D
N

A
 

0

20

40

60

80

100

Strand breaks and alkali-labile sites

Fpg-sensitive sites

Dimethylnitramine (mg/L)

0 1 3 30 100

%
 t
a

il 
D

N
A

 

0

10

20

30

40 Strand breaks and alkali-labile sites

Fpg-sensitive sites

a a
ab

b

c

a

b

b
b b


	Forside Akseptert versjon Elsevier
	STOTEN-S-15-00940_revised



