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Method details

Monitoring spore counts in air using spore trap samplers traditionally includes laborious counting
of spores under microscope before subsequent statistical treatment. The present contribution reports
an attempt to apply computerised image analysis to ease this part of this workflow without modifying
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A B S T R A C T

This contribution demonstrates an example of experimental automatic image analysis to detect spores prepared

on microscope slides derived from trapping. The application is to monitor aerial spore counts of the

entomopathogenic fungus Pandora neoaphidis which may serve as a biological control agent for aphids.

Automatic detection of such spores can therefore play a role in plant protection. The present approach for such

detection is a modification of traditional manual microscopy of prepared slides, where autonomous image

recording precedes computerised image analysis. The purpose of the present image analysis is to support human

visual inspection of imagery data – not to replace it. The workflow has three components:

� Preparation of slides for microscopy.

� Image recording.

� Computerised image processing where the initial part is, as usual, segmentation depending on the actual data

product. Then comes identification of blobs, calculation of principal axes of blobs, symmetry operations and

projection on a three parameter egg shape space.

� 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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instrumentation and slide preparation (Fig. 1). The approach may, however, allow for different
requirements on slide preparation. Automatic microscopy will normally include posterior manual
inspection. So visual properties of imagery products are still relevant.

The image analysis below applies to an investigation on how an entomopathogenic fungus may serve
as a biological control agent for aphids. Many types of fungi are important entomopathogens suppressing
insect populations [8]. The study fungus here is Pandora neoaphidis (Syn. Erynia neoaphidis). It is within
the phylum Entomophtoromycota, class Entomophthoromycetes and order Entomophthorales [12]. The
fungus is an important pathogen on aphids in temperate agroecosystems where it can cause epizootics
and control their population on local scale [6–9]. Monitoring and predicting spores from P. neoaphidis is
therefore relevant to use in pest management decision support systems.

Conservation biological control with fungal natural enemies of pest insects and mites is possible.
One way of doing this is to reduce pesticide use in critical periods to avoid harm to these natural
enemies. Predictions of potential suppression of pest insects and mite populations by fungal
pathogens are based on monitoring of the natural fungal infection level in a pest population. Results
from this monitoring may then be used in a prediction model for the epidemic development and hence
control of a pest population by fungal natural enemies. These prediction models might then be used in
decision support systems (DSS).

Attempts have been made in USA to prevent pesticide treatment of mite populations on soya crops
when they are suppressed by fungal epizootics [15]. Similar approaches have been undertaken for the
related insect pathogenic fungus Neozygites fresenii, infecting cotton aphid (Aphis gossypii). Growers
withhold insecticide application for aphids when they expect N. fresenii epizootics to control the
cotton aphid [10]. This rule of engagement traditionally depends on laborious collection and squash
mounting of aphids to collect data on fungal propagules in/on the aphid. Utilisation of spore traps and
computer-aided processing could ease the situation assessment.[(Fig._1)TD$FIG]
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Fig. 1. Workflow for sensing spore counts in air.
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The life cycle of P. neoaphidis starts with a [14_TD$DIFF]conidia (spore) fixing to the cuticle of an aphid where it
germinates and penetrates into the insect. It then gradually fills the aphid with protoplasts and produces
hyphal bodies close to and after the dead of the host [4]. Spore bearing structures (conidiophores)
subsequently break out through the surface of the cadaver where it releases primary conidia
(sporulation). This sporulation requires a microclimatic relative humidity[15_TD$DIFF] (RH) above 93% [22].
P. neoaphidis may also form resting spores in vivo in aphids and activate later under special conditions
[19].

A conidium can produce secondary conidia if it does not adhere to a suitable surface (another
aphid-cuticle). Both primary and secondary conidia of P. neoaphidis are infective [5]. The shape of a
primary conidium [16_TD$DIFF]is clavate and obovoid with a rounded basal papilla [17_TD$DIFF]and it has a length[18_TD$DIFF] of 15–40mm
and[19_TD$DIFF] a width[20_TD$DIFF] of 9–16mm [11]. [21_TD$DIFF]Secondary [22_TD$DIFF]conidia [23_TD$DIFF]have the length of 16–25mm [24_TD$DIFF]and [25_TD$DIFF]a [26_TD$DIFF]width of 7–15mm
[27_TD$DIFF]and [28_TD$DIFF]can [29_TD$DIFF]be [30_TD$DIFF]of the same [31_TD$DIFF] shape or more rounded [32_TD$DIFF]than [33_TD$DIFF]the [34_TD$DIFF]primary conidia[3_TD$DIFF] [14].

Monitoring spore counts in air using spore trap samplers traditionally includes laborious manual
counting of spores under microscope before subsequent statistical treatment. The accuracy of the results
may depend on the researcher’s experience. Several authors have therefore tried to develop automatic
identification of spores in images. Benyon et al. [2] made such an attempt including extraction of 7 basic
shift-rotation invariant features: length, width, width-length ratio, area, form factor, perimeter and
roundness. They also applied several more complex features such as area of convex hull.

Bonner et al. [3] approached computerised measurement of production of [35_TD$DIFF]conidia from the aphid
pathogenic fungus Erynia neoaphidis. They focused on data preparation to simplify the computerised
part of the workflow.

Ranzato et al. [17] summarised previous work on recognition of biological particles in microscopic
images. They approached the problem by a preliminary search for interesting locations in images
followed by estimation of parameters of brightness at different scales. A mapping into a feature space
provided rotation and translation invariant regional features subject to classification to distinguish
between different types of particles.

Complex data preparation/recording and use of domain knowledge may help to simplify image
processing to identify spores in images. The present contribution attempts to aid identification of
spores in images of microscope slides originally meant for manual processing. It may be regarded as a
possible low cost, simple and intuitive extension of established manual and visual skill-based
procedures.

Molecular methods to detect airborne spores are developing [16,18]. This approach requires design
and development of DNA primers, DNA extraction techniques and PCR-based methods suitable to
detect, clone and sequence spores in question. Such molecular detection methods exist for most of the
entomopathogenic hypocrealean fungi, but there are only few for entomopathogenic fungi in the
Entomophthoramycota.

Materials and methods

Pandora neoaphidis isolate

The present experiments include use of a P. neoaphidis isolate NCRI 393/13 obtained from its
natural host the English grain aphid (Sitobion avenae) on wheat (Triticum aestivum) at Horten (WGS84:
N59826.0830, E10824.1910), Norway, 8 August 2013. The P. neoaphidis isolate was cultured on Saboraud
Dextrose Milk Yolk Agar (SDAMY) in sterile Petri dishes (diameter 5cm) sealed with Parafilm, and
transferred onto new Petri dishes regularly to ensure maintenance of the culture by cutting three
circular pieces (5mm) from the edges of the fungal mat and transferring these to new Petri dishes with
SDAMY. The Petri dishes were kept in dark plastic boxes lined with wet filter paper to ensure high
humidity and placed at 188C and 65% RH.

Experimental setup

Myzus persicae was used in this controlled spore discharge experiment and 20 adult female
M. persicae were placed on a 25mm paprika leaf disc in a 55mm petri dish with 1.5% water agar in
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darkness at 188C and 70% RH for 24h prior to the inoculation for the aphids to settle before exposure to
the fungal isolate. After 24h, aphids were exposed to P. neoaphidis by placing a Petri dish with a
sporulating culture of the pathogen on SDAMY over the petri dish with aphids. A fine plastic gauze
with mesh size 1mm�0.5mm was put in between the aphid dish and the lid, to avoid the aphids
getting in direct contact with the inoculum [1,20]. The dishes with aphids and fungal cultures were
kept in dark plastic boxes with wet filter paper for high humidity, and left to sporulate for 5h at 15 8C
and 70% RH. The fungal cultures were[36_TD$DIFF] removed after 5h[4_TD$DIFF] and the aphids transferred onto two plants in a
small wind tunnel. The plants were placed 10cm apart in the centre of the tunnel. Two leaf discs, each
with 20 P. neoaphidis-inoculated M. persicae, were placed on each of the two plants in the tunnel
providing 40 P. neoaphidis inoculated M. persicae on each plant.

The wind tunnel consisted of light transmitting plexiglass that was equipped with a rotating spore
trap cylinder that was designed as described by Suthaparan et al. [21]. Close to the opening of the
tunell, a spore trap of 1.5L plastic bottle with sticky tape was placed on a 24h rotating timer. The timer
ensures one complete rotation of plastic bottle for 24h. Each spore trap consisted of Melinex
microscope tape, 345.0mm, fitted around 1.5L bottles. A solution of 9.0g clear vaseline, 1.0g fluid
parafin and 100.0ml of toluene was heated in warm water and added onto the tape with a paintbrush.
The toluene solution ensured that the spores would stick to the tape and be conserved until counting.
Spore trap was changed daily at 10:00 in all six tunnels during the experiments. The tape on each spore
trap was removed, placed in plastic boxes and stored in a fridge at 58C until counting of spores.

To count the spores from P. neoaphidis-killed M. persicae cadavers on plants, the Melinex tape from
the spore trap was cut into six 4.9cm pieces representing 4h on each piece of the 24h cycle. Each piece
of tape was held in place by two drop of glycerol on the microscope slides. Two drops of a staining
solution consisting of 0.075% cotton blue in 50% lactic acid were added on top of each piece of tape, and
a cover slip (50mm�23mm) was then placed on top. The spores were manually/visually counted in
vertical transects of 2.0mm intervals (representing 10min) in each reading under a phase contrast
microscope (100�) resulting in a total of 144 transect readings per 24h.

Microscopy imagery data

Microscope slides containing spores trapped during 4h of collection were batch photographed
using a microscope of type Leica DM 6000 B, fitted with a CTR 6000 control unit, and a DFC 425 camera.
Images were captured at 10� magnification (Leica HC PL 10�/0,40) giving a pixel dimension of
0.5063mm. Focal plane was determined from focusing at 10 randomly selected spores, at different
areas of the slide, and selecting the mean focal plane for batch photo. The Leica LAS-Multistep-module
was used to capture a grid of 760 images, covering the entire slide. Initially stored TIF images files were
converted to jpeg format using Adobe Photoshop Lightroom 5.7. Fig. 2 shows two examples of images
[(Fig._2)TD$FIG]

Fig. 2. Two examples of the present type of images showing 2 and 4 spores respectively (from left to right). Note that the spore

detection algorithm has to distinguish spores from similar objects (blue dots). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of the article.)
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resulting from the present procedure. A total of 765 images were produced to test the present
approach for image processing. Approximately thirty percent of these images contained findings of
possible spores for manual check.

Image analysis

Data product dependency

A digital image of the surface of a real object can typically be looked at (in mathematical terms) as a
measure of distributed energy emission from the surface and restricted to a frequency band. A picture
element (pixel) represents a part of the surface and its (pixel) value then represents energy emission
from that part (at least approximately). However, the physical dimension (unit) of a pixel value is
normally not well defined (i.e. the data is not physically calibrated). Assume the pixel Pi has numerical
value xi (i=1, 2). If x1<x2 then one may believe that x1 +x2 represents radiation from the area
P1[P2. However, this is not the case for non-calibrated data, and the result of processing such data
may therefore depend on preparation and scanning of slides.

Estimates of the gradient of pixel values in an image, for example, includes arithmetic operations
on pixel values. If these numerical values do scale properly with radiation, then the gradient of pixel
values may not line up with the gradient of radiation from the physical object. However, images often
exhibit structures which an algorithm may identify. The algorithm and its parameters will in this case
depend on the data product. Sections ‘‘Spore colour space’’ and ‘‘Image segmentation’’ below is an
attempt to isolate the data preparation dependent part in the processing facilitation design of a
generic geometric approach.

Spore colour space

Fig. 3 gives a typical example of the red, green and blue (RGB) values of pixels included in spores on
the actual images. A three-dimensional vector r ¼ ðR;G;BÞ 2R3 in this case represents the red (R),
green (G) and blue (B) component of a pixel value in the numerical range 0–255 (here noted as a RGB-
vector). The figure shows that the different colours strongly correlate. The RGB-vector values for a
spore form a linear shaped structure embedded in the three-dimensional space R3.

A standard principal component analysis reflects the above observation of correlation between
colour components for a spore. Let A be the correlation (positive definite) matrix for the RGB vector.
Let l1�l2�l3 be the ordered set of eigenvalues of A with corresponding (orthonormal) eigenvectors
v1; v2; v3. Fig. 4 illustrates these eigenvectors (red) centered at the mean point r (green). The red arrow
along the linear shape illustrates the eigenvector v1 corresponding to the largest eigenvalue l1. It
[(Fig._3)TD$FIG]

Fig. 3. Example of colour composition of (RGB) values of pixels interior spores in present images. The value of the blue

component ranges between 100 and 250. Small values correspond to small values of red and green (and vice versa). (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)

R. Korsnes et al. / MethodsX 3 (2016) 231–241 235



seems to reflect the significant part of the variation of the RGB vector. The mean square deviation of
the RGB vector r from its mean value is Var[r]=l1 +l2 +l3, where the first term dominates. A possible
measure of the likelihood for an RGB vector r=(r1, r2, r3) to be from a spore, is

sðrÞ ¼
X

i

r2
i

li
(1)

A pixel is here classified as being within the colour distribution of a spore if

sðrÞ< P1 (2)

where P1 depends on the data product/treatment. This measure can facilitate image segmentation and
control of spore identification.

Image segmentation

Gradient methods

Eq. (1) above defines a scalar field s : R2!R. Assume linearisation of the field (s) around the
position r 2R2:

sðrÞ ¼ rsðrÞ�ðr�rÞ þ sðrÞ þ e (3)

where rs is a vector (gradient of s) and e represents the error.
The following procedure gives a least square estimate of the gradientrs. Let the vectors r1, r2, . . ., rn

represent the positions of n pixels surrounding a point r in an image. The vector Dri ¼ r�r in this case
represents the local position (displacement) relative to the mean vector r. The actual Gram matrix G
becomes a sum of outer products:

G ¼
X

i

Dri�Dri (4)

and measurement vector:

m ¼
X

i

sðriÞ�Dri (5)

This gives the following estimate of the gradient of the scalar field s : R2!R:

rs
˜
¼ G�1m (6)

A smooth linear border between regions of much different values of s gives neighbourhoods of
relatively large parallel gradients normal to it. Averaging of gradient values locally along these borders

[(Fig._4)TD$FIG]

Fig. 4. Example of colour composition of (RGB) values of pixels interior spores in present images. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of the article.)
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therefore tend to enhance such smooth borders and hence borders of images of spores which have
smooth surfaces.

Assume the gradient estimate g=rs(r) at position r in an image as above. The normalised vector
n=g/|g| denotes its direction (a vector of unit length). The vector p=aRn, where R is the 908 rotation,
denotes the position a units from the position r in the direction normal to the vector n. The similar
point in the opposite direction is given by �p. Fig. 5 illustrates that the sum (or average) of the
gradients at the position r, r+p and r�p is sensitive to tendencies in direction:

g ¼ 1

3
½rsð̃rÞ þ rsð̃r þ pÞ þ rsð̃r�pÞ� (7)

The variable a is here considered to be a learning variable (P2). The average gradient contributes to
reduce noise for the present application of image analysis.

The right image of Fig. 6 illustrates a further refinement of the segmentation based on the average
gradient providing less sensitivity to the threshold value P3. The white pixels are in this case pixels
with values above P3 but in addition they are ‘‘extreme pixels’’ in the way that they have few
neighbouring pixels with higher values. This condition provides exclusion of sloping areas of the scaler
field s : R2!R (cf Eq. (1)), and it contributes to make the pixel classification less sensitive to the
threshold P3.

Identification of blobs

The gradient method above facilitates identification of blobs in an image [13]. Morphological
openings and closing in addition of production of convex hull of connected regions can provide input
to further shape analysis. Fig. 7 illustrates the effect of morphological closing of segmented images (as
in Fig. 6). Such identification of separate blobs facilitate effective representations in a computer
program (in this case Containers in Ada 20121

[6_TD$DIFF]).

Axis of blobs

Estimates of the middle axis along a spore is useful for check of symmetry and to initiate form
fitting to the perimeter of spores. Section ‘‘Fitting egg shape to spore perimeter’’ illustrates such form
fitting where the actual shape is egg formed.

Assume the vectors r1, r2, . . ., rn denote the positions of pixels of a blob in an image (the middle
image of Fig. 7 illustrates such a blob). Let r ¼ 1=n�

P
iri be their centre point and n a unit vector (of

length 1). Without loss of generality, assume for simplicity that r is the zero vector. The length of the
cross product vector n�ri is the distance from the position ri and normal to the line defined by
n. Hence minimisation of the following sum of cross products defines an axis for the blob:

S # ¼
X

i

jn�rij2 (8)

[(Fig._5)TD$FIG]

a

a
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a

Fig. 5. Illustration of sensitivity of vector averages to local directional tendencies along linear features.

1 http://www.ada2012.org/.

R. Korsnes et al. / MethodsX 3 (2016) 231–241 237

http://www.ada2012.org/


Note that the terms of the sum in Eq. (8) process the equality |n�ri|
2 = |ri|

2� (n �ri)
2. Hence a value of

the n which minimises S#, maximises

S! ¼
X

i

ðn�riÞ2 (9)

The egg shape space

Keller [14] and Humber [12] described the form as clavate and obovoid with a rounded basal
papilla. However, morphological opening (with a disc as structuring element) of the 2-dimensional
projection (profile) of spores tend to resemble the form of eggs or ovals. There are several proposals for
simple formulas for egg shapes and ovals.2 The present work elaborate parameterisation of an ‘‘egg
shape’’ based on two simple transformations of the unit disc (D):

Fc : ðx; yÞ! ðx; gðxÞ�yÞ (10)

and

Ga;b : ðx; yÞ! ða�x; b�yÞ (11)

where g(x)=c �x+1. The three parameters a, b and c (real numbers) in this case define an egg shape S as
the image of the unit disc D:

S ¼ fGa;b	FcðrÞjr 2Dg (12)

Fig. 8 illustrates this composite mapping.

[(Fig._7)TD$FIG]

Fig. 7. Production of blob by further processing of image of Fig. 6. Left: morphological closing where disc of radius 3mm is the

structuring element. Middle: result from identification of convex hull and subsequent morphological opening where a disc of

radius 2mm is the structuring element. Right: border of blob superimposed on original image.

[(Fig._6)TD$FIG]

Fig. 6. Segmentation of image based on average gradient (cf Eq. (7)). Left image: subset of left image of Fig. 2 of size

100�100 pixels (approximately 50mm across). Middle image: pixels with absolute gradient values g ¼ g> P3 are white (others

are black). Right image: pixels with values of g above the 25 percent quantile for the neighbourhood pixels condition on g> P3. A

neighbourhood of a pixel is here defined as a square region of 7�7 pixels centred at the pixel.

2 http://www.mathematische-basteleien.de/eggcurves.htm.
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Fitting egg shape to spore perimeter

Fig. 9 gives an example of a egg shape fit to the perimeter of a blob in an image. The goodness of fit
in this case is a combination of the Hausdorff distance which in general is a measure of the difference
between two sets X and Y:

dHðX;YÞ ¼maxf sup
X

inf
y2Y

dðx; yÞ; sup
y2Y

inf
x2X

dðx; yÞg (13)

where d(x, y) is the (metric) distance between the points x and y. This definition directly provides a
goodness of fit between the perimeter of a spore and an egg shape.

Given a closed curve defining a set S (for example an egg shaped object) and a blob B. Consider both
sets to be simply connected subsets of the plane R2. The following curve integral defines a distance
between these sets.

dL2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

S
jd@BðrÞj2ds

s
(14)

where d@B(r) is the distance between r and the perimeter @B. Fig. 9 shows an example where a
procedure fits an egg-shaped form to the perimeter of a spore where the goodness of fit is a linear
combination between the Hausdorff and the L2 distance (Eqs. (13 and 14)). This figure also shows the
axis along the spore (cf Section ‘‘Axis of blobs’’ above).

The outer curve around the spore of Fig. 9 provides position for estimates of ‘‘normals’’ to the
irregular border of the blob inside it. A real spore will tend to give gradients mainly in the direction of
these normals. This feature can contribute within a check if the spore is real or not. The outer ring also
provides a check for correlation between the colour inside the blob (covering a potential spore) and
colours outside. The colour of the spore tends not to have correlations with its background. A strong

[(Fig._8)TD$FIG]

Fig. 8. A three-parameter egg shape as an image of the unit disc by composite function Fc	Ga,b (cf Eqs. (10–12)). In this case

a=2.5, b=1.5 and c=�0.5.

[(Fig._9)TD$FIG]

Fig. 9. Fitting egg shape to spore perimeter.
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correlation between the colour inside the blob and its surroundings, indicates the blob does not reflect
a spore.

Fig. 10 shows egg form projections of spores in Fig. 2. The egg shaped are apparently restricted. The
main three-dimensional axis of the spores may tilt relatively to the microscope slide plane. This will
affect the observed forms on the image. Hence the egg shapes can be round.

Discussion and conclusion

The main intention of the above proposal for computerised treatment of microscope slides, is to
save cost of labour for current activity without large investments with uncertain utility. Assume only a
small fraction of many images show spores to be counted. The present image analysis can in this case
serve as a tool to sort out this subset of images for further analysis. Even for example 50 percent over-
classification will in this case still save time of labour. A web-based visually based control and
correction of classification further saves labour and efforts to count spores.

The present way of classification depends on parameters for segmentation of images in addition to
three restricted parameters for egg forms (cf Eqs. (10 and 11)) and fitting criteria (Eq. (13) or (14)). It
therefore facilitates cost-sensitive computerised learning to optimise classification with respect to the
cost of labour and cost of final miss-classification.

Bonner et al. [3] proposed production of imagery data ready for common particle counting. The
present proposal is potentially more flexible and can be adapted to data and purpose after data
preparation. Benyon et al. [2] attempted to apply large numbers of features for classification.
Optimisation of classification in this case requires reduction of the set of features.

Precise figures for miss-classification cannot here be meaningfully provided since it highly depends
on concentration of spores and their background in images. Spores of interest often tend to arrive at
traps in bursts in the way that there is typically long periods without spores and short periods when
many spores arrive. The likelihood for a dust particle in an image to be classified as a spore, depends on
the ratio between concentrations of spores and dust particles there.

Actual spinoffs from computerised microscopy are image archiving, accumulation and transfer of
knowledge on data treatment and estimation of parameters not otherwise available. Manual
microscopy is normally restricted to take place in a laboratory and performed by an available
specialist. These restrictions are less an issue for a computerised approach.

[(Fig._10)TD$FIG]

Fig. 10. Examples of spores and their egg shape fit (numbers refer to Fig. 2).
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Elements of the computerised approach may provide opportunities for remotely controlled real
time monitoring of the pathogenic fungus. Also note that the capacity of automatic identification of
spores may also be relevant for search in image archives.
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