
Attribute-based filtering for embedded systems

Carlos Mitidieri
∗

Carlos.Mitidieri@informatik.uni-ulm.de
Jörg Kaiser

†

Kaiser@informatik.uni-ulm.de
Dept. of Computer Structures

University of Ulm
James-Franck-Ring

89069 Ulm, Germany

ABSTRACT
Filters are essential components of a publisher/subscriber
communication systems. They provide the necessary selec-
tivity enforcing that a subscriber only is noti�ed about the
events for which it actually has subscribed. The paper deals
with the problem of establishing a �ltering mechanism suit-
able for distributed systems in which the nodes have memory
and performance constraints and the interconnection net-
work has a limited bandwidth, e.g. as in systems composed
from smart sensors and actuators. Thus the trade-o� be-
tween expressiveness on the one side and e�ciency and pre-
dictability on the other side has to be balanced adequately
for coping with the resource constraints. The paper proposes
attribute-based �ltering which allows to �lter on the struc-
tural properties of events. The notion of super conformance
establishes a relation between these structural properties.
Attribute-based �ltering constitutes a variant of type-based
�ltering but re�ects a more component-oriented view which
is bene�cial when dealing with smart sensor or actuators
components.

Keywords
publish/subscribe, embedded, sensors, real-time

1. INTRODUCTION
The publisher/subscriber communication model enjoys in-
creased popularity in the area of control systems [14, 18, 10].
This is �rstly because it supports many to many communi-
cation which is well suited for the dissemination of sensor
data and commands. Secondly, it does not implicitly cre-
ate control dependencies through communication which is a
desirable feature to maintain control autonomy of the indi-
vidual smart components [19]. Thirdly, it enables sponta-
neous communication which well re�ects the needs of a sen-

∗
†

sor system to react on external stimuli. Finally, it supports
dynamic con�guration and interaction because its routing
scheme is based on the content of a message rather than on
a destination address. This property is particularly useful
because it allows to communicate without having to know
names or references. Actually, a component has only to
specify what kind of information it provides and what infor-
mation it needs, leaving open which other component will
provide this information. This encourages the dynamic de-
ployment of components which can be developed indepen-
dently and the spontaneous interaction without prior knowl-
edge of communication relations. This is a substantial ad-
vantage in systems composed from autonomous networked
sensors and actuators, each of which may comprise mechan-
ical, hardware and software parts and may be independently
designed and produced by di�erent vendors.

Because communication relations are not �xed at design
time, an overhead of resolving this issue occurs at a later
time, e.g. at deployment, con�guration or run-time. When
mapping the abstractions of the publisher/subscriber model
to an underlying communication medium, two problems have
to be tackled, routing and �ltering. Routing addresses the
mechanism of disseminating the event only characterized by
its content to the interested subscribers. Filtering is the
other side of the coin which has to assure that only those
events reach a subscriber, for which this subscriber has indi-
cated an interest. As a matter of fact, routing and �ltering
are often combined [3, 14]. As indicated above, we are work-
ing on a publisher/subscriber middleware which is suited to
accommodate resource constrained components. Therefore,
approaches which rely on a purely content-based approach
of routing and �ltering [16, 3, 11] are not feasible. In these
systems, arbitrary predicates over the event content have to
be evaluated by the subscribers or intermediate event dis-
patchers, which is not feasible in tiny systems because of
the computational overhead. An exception may be some
sensor networks [4] which use content-based source discov-
ery and routing. However, these networks have either no
or very weak timing constraints. In contrast to these sys-
tems, we are striving for control systems in which smart
sensors and actuators cooperate under stricter timing con-
ditions [13]. To cope with these requirements, we propose a
�lter scheme that is based on subject �ltering and attribute
�ltering which can be implemented with less overhead com-
pared to content �ltering. At the �rst stage of �ltering,
subject �lters provide a coarse grain selection and can be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/285962169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

implemented with very little computational costs. Actually,
we use a binding mechanism to dynamically map a sub-
ject to a network address and hence, combining routing and
�ltering by exploiting the hardware of the communication
controllers. A detailed description of the mechanism can be
found in [12]. However, it turned out that subject �lters
alone do not provide su�cient selectivity. Too many events
pass this �lter putting the burden to decide whether an event
is useful or not to the subscriber's application software.

Consider a mobile robot in which the reactive system layer is
composed from smart sensors and actuators. A smart sensor
may publish a distance event which is tagged by the respec-
tive subject. A smart actuator, e.g. the motor controller,
may subscribe to the distance event to reactively stop the
motor when the distance is below a certain threshold, indi-
cating that an obstacle is ahead. In a team of cooperating
robots, the same distance information may also be used by
other robots to control their behavior. In this case, they
need additional information associated with the event, e.g.
the position and orientation of the respective robot. Some
software component inside the robot may add this informa-
tion. Of course, we could assign a new subject to the event
which now has additional attributes describing the context
in which it was created. It is clear that this would sacri�ce
the relation between the content and the subject of an event
which still is a distance. On the other hand, if the events are
tagged with the same subjects, then some mechanism must
be provided to distinguish them. Structural properties of the
events can be exploited for this purpose, resulting in simple
�lters which detect the existence or absence of attributes
and can cope with this problem.

Attribute-based �ltering can be seen as a variant of type-
based �ltering [25, 5, 20, 11]. A certain type of event is re-
lated to a subject in the publisher/subscriber model. Type-
based �ltering imposes a structure on the properties of an
event by establishing a hierarchy of subtypes. The type hi-
erarchy re�ects a re�nement from the more general to the
more speci�c properties of an event. In a system built from
smart components it is di�cult to construct a type hierarchy
top-down. The hardware-software building blocks de�ne the
speci�c properties and attributes which make up the system.
These building blocks are developed independently and may
come from multiple vendors. Although delivering the same
type of information, they may be equipped with largely vary-
ing properties and attributes. To de�ne a bottom-up struc-
ture on the attributes of such diverse components needs a
model which is di�erent from the usual declarative type hi-
erarchy in a object-oriented system.

In this paper, we will describe attribute �lters which work
on the structural properties of events. We will introduce
the notion of conformance to express the relations between
events of the same type even if the attributes can not be
ordered in a strict top-down hierarchy. Conformance is ex-
ploited to de�ne �lters which can be implemented with a
low computational overhead. The remainder of this paper is
organized as follows. The rationale behind our de�nition for
attribute-based �lters is described in Section 2. In Section 3
the overall �ltering scheme is presented in perspective with
our P/S model. Implementation issues are brie�y discussed
in Section 4. The applicability of the proposed scheme is

illustrated in Section 5 through the analysis of a typical
embedded application. The related work is commented in
Section 6. Finally, conclusions are provided in Section 7.

2. ATTRIBUTE-BASED FILTERING
For a publish/subscribe system, it is important to precisely
�lter the stream of events such that only those events are
received for which a subscription has been performed. The
degree to which such constraints can be de�ned is known as
the expressiveness of a �ltering model.

Regarding expressiveness, two main �ltering paradigms are
identi�ed in the literature: subject-based (e.g. [17]) and
content-based (e.g. [3]) �ltering. In some systems, the no-
tion of subjects has been mapped to that of abstract types
in the context of object-oriented programming languages [5,
25]. A subject is a label acting as an event type identi�er,
placed in a single �eld that is orthogonal to the content.
Content is application related data and may comprise sev-
eral �elds. Subject �ltering can be implemented through
a table lookup while content �ltering requires the evalua-
tion of arbitrary predicates; which is obviously expressive,
but costly. Even considering the existence of algorithms af-
fording for sub-linear time complexity and linear space (i.e.,
memory) complexity [1], the computational overhead and
memory requirement of content-based �lters are still exces-
sive for embedded systems. Moreover, when striving for
real-time properties, the variance between the best- and the
worst-case evaluation times of such algorithms results in an
ine�cient utilization of already scarce computing resources.
The reason is that reservations must be done for the worst-
case.

Because of a better predictability and a lower overhead,
subject-based �ltering is the preferred mechanism for em-
bedded control systems. Nevertheless, as already mentioned
above, subject �lters lack expressiveness. Hence, attribute-
based �lters are introduced which allow to exploit a more
�ne grained event �ltering. As explained in detail below,
attribute �lters block or pass events based just on the pres-
ence or absence of attributes. Because presence/absence of
attributes can be mapped to a simple bit vector, this �lter
can be evaluated through simple table lookup and hence can
be implemented with low overhead and also a low temporal
variance, as desired in a real-time setting.

To specify attribute �lters, we need some formalism to de-
scribe the relationship of attributes which de�ne a substruc-
ture of some event type. As mentioned above, we have to
cope with the situation that the system is composed from
building blocks which provide a certain type of information
which may be quali�ed by a variety of attributes. Therefore
we can not order the attributes in a usual type hierarchy,
as the relations may have to be de�ned after the implemen-
tation of the components. Structural conformance seems
to be an appropriate foundation to de�ne the meaning and
assess the properties of attribute-based �lters. As a formal-
ism, structural conformance was developed in the compiler
research [2] and has been implemented in some program-
ming languages, e.g. [21]. Intuitively, a type " p" conforms
to a type "q" if an instance of "p" can be used where an in-
stance of "q" is expected. It results that "p" must present
at least the same attributes (or accessing methods, in an

object-oriented environment) as "q". E.g., considering that
each letter represents an attribute in Figure 1: < a,b,c>
conforms to all, while <a,c> conforms to <a,c>, <a>,
<c> and < >.

A,C B,C

A B C

(Subject)

A,B

A,B,C

Figure 1: Hierarchy de�ned by structural confor-
mance.

Taking structural conformance as the norm for building event
hierarchies, it follows that an event may belong to several
super-types. These super-types may not even be related.
Moreover, super-types may be de�ned after sub-types. This
property �rstly supports the requirement which originates
from building the system from components. Secondly, it en-
ables dynamic evolution under continuous operation. These
requirements were formulated in [17] and describes the abil-
ity to add new functions to a system without touching the
existing working components.

Given the properties of structural conformance, an attribute
�lter is de�ned as one that matches the events conforming
to a speci�c signature. Such signature can be speci�ed as
follows:

Fattr = {Namei : Typei, ..., Namej : Typej}

The Namek : Typek elements are the formal de�nitions of
the attributes, where Namek is an identi�er and Typek is
a primitive type, e.g., integer, �oat, etc. Considering that
each letter a, b and C in �gure 1 represents an attribute, it
follows that a �lter Fattr = {} matches all events, while a
�lter Fattr = {B} matches the events , <a,b>, <b,c>
and <a,b,c>.

3. OVERALL FILTERING SCHEME
Our P/S model [14, 13] includes the abstractions depicted in
Figure 2. The event channel handler (ECH) is a distributed
middleware component o�ering an event channel abstrac-
tion to applications. There is an instance of the ECH in
each node. Our approach contrast to others [10, 9] in the
extent that we exploit event channels to abstract the non-
functional properties of the underlying network [13]. To each
event channel corresponds one subject. The subject is a long
bit vector acting as an identi�er which is globally unique in
the system. As already mentioned, a binding mechanism
is exploited to dynamically map subjects to network ad-
dresses, trading �exibility for e�ciency. The dynamic bind-
ing is transparent to applications and is provided by the

event channel broker (ECB). Given that the underlying net-
work is a broadcast medium in our system (Section 4.2), the
routing problem is tackled by broadcasting events. Filtering
is then performed on the subscribers' side, under the control
of the ECH component. Gateways have two roles in our sys-
tem: they are exploited to de�ne an hierarchy of di�erent
networks and to encapsulate zones where a certain level of
quality of service (QoS) is assured. The network hierarchy
may re�ect containment relations of components. As an ex-
ample consider a mobile robot, which may be viewed as a
component in a team of robots, which is itself composed by
other networked components like inertial and distance sen-
sors, cameras, controllers, etc. These issues are discussed in
more details in [27, 26, 13].

Publisher

ECH

Network

ECB

ECH

Subscriber

Gateway

Figure 2: Architectural components of the P/S mid-
dleware.

An event is an instance of an event type, which is charac-
terized by a subject, attributes and contents. Attributes
qualify the event, and may relate to non-functional prop-
erties of event dissemination or to the context in which an
event is generated, like location, time, etc. Attribute �lters
can be applied to attributes and to structured content pa-
rameters. The �ltering scheme requires the speci�cation of
a subject �lter and an attribute �lter for each subscription.
That means, a match depends on the conjunctive evaluation
of the subject- and the attribute-based �lter. Therefore, the
complete speci�cation of a �lter is as follows:

F = {Subject, {Namei : Typei, ..., Namej : Typej}}

Subject and attribute �lters are managed and/or executed
in the ECH component. Filtering events on the subscribers'
side may simplify the management of the predictability in
an open distributed system because the schedulability anal-
ysis of each node must consider only the subscriptions that
are issued locally. Thus, regarding this aspect, there is no
need for run-time mechanisms akin to an admission control
of new subscriptions. When needed, content �ltering can
be performed in the application layer, as the de�nition of
predicates is supported by virtually any programming lan-
guage. It is expected that the need for content �ltering will
be reduced after the application of the other �lters.

Event structures can be mapped to bit vectors, each bit rep-
resenting the absence/presence of a given attribute. If such
bit vectors are to be used for �ltering purposes, every com-
ponent in the system must agree on those mappings. In
order to enforce such agreement, we introduce the notion
of a Super-Conformant Vector (SCV). The SCV includes

the set of attributes from which a designer may pick those
that will be used to "con�gure" an event source. Hence,
the super conformant vector is the starting point for de�n-
ing the hierarchical relations among events, from bottom to
up. The ECH will manage to accept subscriptions and an-
nouncements only for events that are conformed by the SCV
speci�ed for a given event channel. The restrictions imposed
by such scheme are alleviated by making the description of
the SCV available online. The SCV consulting service could
be co-located with the ECB or in a dedicated service, to be
de�ned.

Filtering on the basis of structural conformance may lead
to undesired matches. This is exactly the case when the
conformity relation coincidentally applies to two (or more)
event types which are actually unrelated regarding the ap-
plication semantics. This potential anomaly is avoided in
the proposed �ltering model because the sub-typing asso-
ciations are restricted to the scope of a subject, which is
enforced to be globally unique in the system. Accordingly,
the uniqueness of attribute de�nitions is enforced through
the SCV mechanism.

4. IMPLEMENTATION ISSUES
Some issues related to implementation are discussed in the
following.

4.1 Programming attribute filters
The simplest way for specifying attribute �lters in programs
is by means of bit vectors. This is a quite lightweight im-
plementation scheme, which is something primitive and er-
ror prone. Yet, it is advantageous and preferable for pro-
gramming mass produced, deeply embedded components,
for which a high degree of optimization is required, debug-
ging e�ort is worthwhile. An improvement on code readabil-
ity and extensibility consists in specifying attributes through
character strings and performing an automatic conversion
to the compact form speci�ed by SCV at runtime. A third
alternative for specifying attribute �lters is to exploit struc-
tural re�ection [7], which is a built-in feature of some pro-
gramming languages [24]. Supported by re�ection, the mid-
dleware can assess the name and the primitive type of formal
parameters contained on a structure passed in a subscrip-
tion as a �lter speci�cation. Such information can serve the
same purpose as the labels discussed above. That means, a
list of formals can be converted to a tag, based on the SCV
mapping (section 3) provided online. Re�ection poses an
overhead cost but o�ers a safety gain by enabling runtime
type checking. This section aimed to provide an overview on
the pros and cons of some models that may be employed for
programming attribute �lters. The selection depends on is-
sues like target platform, e�ciency requirements, etc. They
can be used together in order to satisfy the requirements of
an heterogeneous system.

4.2 Exploiting network properties
As described in details in [14], subject-based �ltering was im-
plemented via the frame-addressing mechanism of the CAN-
Bus protocol (ISO 11898 an 11519-1, [22]). On the CAN-
Bus, the frame identi�er (i.e. the frame address) is related to
the contents of the payload rather than to a receiver address.
On receivers side, CAN-Bus controllers can be con�gured to
receive frames based on the content-related frame identi�er.

The implemented approach for making subject �ltering more
e�cient in embedded systems is to map the subject tags to
the identi�er of the CAN-Bus frame, rather than placing
them in the payload. As a result, events are �ltered in the
MAC sub-layer through an e�cient hardware mechanism,
relieving the host for application related computing. The
same approach can be employed for implementing attribute
�lters, i.e., an attribute vector can be mapped to a segment
of the frame identi�er.

5. AN APPLICATION ANALYSIS
In this section, the exploitation of attribute �lters is illus-
trated through the analysis of a realistic application sce-
nario, which is described in the next paragraph. The de-
scription is supported by Figures 3 and 4.

5.1 An automotive traffic monitoring system
Two of the most common roles found in an intelligent tra�c
system are related to vehicles velocity monitoring and statis-
tics collection. These roles are modeled through the Veloci-
tyMonitor (vm) and StatisticsCollector (sc) classes, respec-
tively. The SensorLoop (sl) class abstracts electro-magnetic
sensors, which can detect the presence and categorize metal-
lic masses (i.e., vehicles). Loop sensors are deployed in lon-
gitudinally oriented pairs, bonded to the ground of the road
lanes. A VelocityMonitor object must coordinate with a
pair of SensorLoop objects, in order to compute the velocity
of passing vehicles. On the other hand, a central Statistic-
Collector object must coordinate with just one SensorLoop
object out of each pair inside the metropolitan area. In
a P/S system featuring subject-based �ltering, SensorLoop
objects would be mapped to publishers of events on the sub-
ject Loop. On the other hand, VelocityMonitor and Statis-
ticsCollector objects would be mapped to subscribers of the
events on the subject Loop. Apropos: the velocity of pass-
ing vehicles is computed dividing the distance separating the
sensors pair by the time interval between vehicle-detection
events. Such interval can be determined by timestamping
the Loop events, assuming that clocks are synchronized in-
side the CANs.

SensorLoop_2

"Loop"

SensorLoop_1

VelocityMonitor

StatisticsCollector

Figure 3: Mapping of a tra�c monitoring applica-
tion to the P/S model.

Notice that relating the sensor type to a subject enables
a coherent representation of application semantics in the
P/S system. It is inferable that this will be the case in

most applications. Further, the central StatisticCollector
wants to receive presence-events from one sensor out of each
control pair. Attribute �lters can be employed in order to
express and implement such a requirement in a way that
further relates the application structure to the coordination
environment.

Figure 4: Network deployment of a distributed traf-
�c monitoring application.

5.2 Applying attribute filters
At line 01 of �gure 5 is indicated a plausible de�nition for the
SCV related to the subject Loop. In this de�nition, LaneI-
denti�er is a local (to the CAN) identi�cation of the lane,
TimeStamp is the time at which a vehicle is detected, Local-
ization can be simply an urban address and VehicleCategory
can assume the values from an enumeration like {truck, car,
motorcycle}. Other functional and non-functional attributes
are omitted for simplicity.

Let's distinguish the objects on each sensor pair as Sensor-
Loop_1 and SensorLoop_2. Both objects publish events on
the subject Loop, but with di�erent attribute compositions.
The formal event de�nitions are showed in the lines 02 and
03 (�gure 5), respectively.

The subscribers are objects of the VelocityMonitor and Statis-
ticsCollector classes. They are both interested on events
pertaining to the subject Loop, but on distinct attribute
compositions. They express their distinct interests by pass-
ing di�erent event formal de�nitions in their subscriptions.
Such formal de�nitions are showed in the lines 04 and 05
(�gure 5).

As assured by attribute �ltering, a subscription speci�ed by
the VelocityMonitor object is noti�ed about the events pub-
lished by both SensorLoop_1 and SensorLoop_2. This is
quite clear, as the formal de�nition for the Event_For_VM
(line 04) is conformed by the formal de�nitions of both
Event_From_SL_1 (line 02) and Event_From_SL_2 (line
03).

On the other hand, the StatisticsCollector object is noti�ed
about the events published just by the SensorLoop_1 ob-
ject. The reason is clear again: the formal de�nition for the
Event_For_SC is conformed by Event_From_SL_1 (line

/ The SCV for the event channel "Loop"
01 SCVDEF{Loop,{li:LaneIdentifier;ts:TimeStamp;

lo:Localization;vc:VehicleCategory}};

// SensorLoop_1
02 Event_From_SL_1{li:LaneIdentifier;ts:TimeStamp;

lo:Localization;vc:VehicleCategory};

// SensorLoop_2
03 Event_From_SL_2{li:LaneIdentifier;ts:TimeStamp};

// VelocityMonitor
04 Event_For_VM{li:LaneIdentifier;ts:TimeStamp};

// StatisticsCollector
05 Event_For_SC{ts:TimeStamp;lo:Localization;vc:VehicleCategory};

Figure 5: Formal de�nitions of event compositions
following from the example application.

02), but not by Event_From_SL_2 (line 03).

The value on the LaneIdenti�er attribute can be evaluated
by the VelocityMonitor objects in order to coordinate with
speci�c sensor pairs. Such evaluation of predicates in the
application layer is foreseen in the proposed �ltering model.
And second, in this paper we were not concerned with the
event routing problem, taking place in the gateways and
beyond, in the metropolitan area network (�gure 4). This
is a signi�cant problem to be considered in the elaboration
of an architecture for real-time �ltering.

Now, suppose that the tra�c engineers have concluded that
the vehicle categorization should be complemented by a con-
�dence factor attribute, in order to improve their statistics.
A new generation of loop sensors is designed, including such
attribute. Then, one sensor out of each pair that is already
deployed in the city must be substituted by a sensor of the
new version. The substitution work may last several months.
In this meantime, the StatisticsCollector is continually noti-
�ed about events published by sensors of the new and the old
version, because both conform to the original subscription
(line 05 �gure 5). When the substitution is �nally complete,
the StatisticsCollector can issue a single new subscription
including the con�dence factor attribute. The system has
evolved without any disruption on the service provided.

6. RELATED WORK
The structural aspect of events have been exploited in many
systems for elaborating �ltering models but, to our knowl-
edge, always tied to the evaluation of a predicate [3, 23, 15,
16, 8]. That means, the speci�cation of a subscription in
the cited works included, in a single artefact, the attribute
itself, a test operator and a constant to which the attribute
value should be compared. This association is omitted in the
proposed de�nition of attribute �lters which is based only
on structural conformance. By considering attribute �lters
orthogonally to content �lters (i.e., predicates) it was possi-
ble to put in perspective some characteristics of the former.
In embedded systems, the proposed combination of subject
and content �lters provides an adequate balance among pre-
dictability, e�ciency and expressiveness. To our knowledge,
such particular combination of subject and attribute �lters
has not been proposed before.

JavaSpaces [25], CEO [11] and Obvents [6] implement type-
based �ltering. In these systems, events hierarchies are ex-
plicitly de�ned top-down, based on the support provided by
object-oriented languages. In contrast, the proposed notion
for attribute �lters supports the de�nition of an event hier-
archy from bottom to up, i.e., from the most speci�c to the
most general type. Hence, relations can be de�ned after the
design and implementation of the smart components which
are used as building blocks. In JavaSpaces and CEO, �lters
are speci�ed through templates. This mechanism includes a
constrained form of content �ltering akin to the structured
naming in Linda, which is omitted in attribute �lters.

7. CONCLUSIONS AND FUTURE WORK
The paper has focused on systems which 1. are composed
from smart, performance constrained devices operating over
bandwidth constrained communication links, and 2. have
to achieve real-time behavior because their tight interaction
with their physical environment. Therefore �ltering must
not incur a high computational overhead and secondly, must
allow an easy temporal analysis. Structural �ltering based
on event attributes meets these requirements. Before ap-
plying a complex evaluation of the event contents, subject
and attribute �ltering enable a fast and low overhead �lter
stage. Particularly, it allows an early discarding of events
which are not relevant. Moreover, structural �ltering eases
the temporal analysis of �ltering and thus contributes to the
predictability requirements in a real-time setting.

Attribute �lters are de�ned over the structural properties
of event representation. They match events based just on
the presence or absence of attributes and does not include
the evaluation of predicates. By considering attribute �l-
tering as a paradigm on its own, separated from content
�ltering (i.e., without predicates), it is possible to assure an
appropriate balance of the properties needed for meeting our
requirements. The trade-o� is the overhead of an additional
table look-up.

The presented �ltering model is being implemented, after
which an experimental evaluation will be performed. Mean-
while, a �ltering architecture for nodes and gateways is be-
ing developed. The �ltering architecture for the gateways is
specially important, as the gateways connect real-time sub-
systems to best-e�ort subsystems and are responsible for the
scoping and routing of events.

8. ACKNOWLEDGMENTS
This work has been supported by the European Union's In-
formation Society Technology Program under contract IST-
2000.26031 (CORTEX: COoperating Real-time senTient ob-
jects: architecture and EXperimental evaluation).

9. REFERENCES
[1] M. K. Aguilera, R. E. Strom, D. C. Sturman,

M. Astley, and T. D. Chandra. Matching events in a
content-based subscription system. In Symposium on
Principles of Distributed Computing , pages 53�61,
1999.

[2] L. Cardelli. Structural sub-typing and the notion of
power type. In Conference Record of the Fifteenth
Annual ACM Symposium on Principles of

Programming Languages, pages 70�79, San Diego,
California, 1988.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design of a scalable event noti�cation service:
Interface and architecture. Technical report,
Department of Computer Science, University of
Colorado, August 1998.

[4] D. Estrin, R. Govindan, J. S. Heidemann, and
S. Kumar. Next century challenges: Scalable
coordination in sensor networks. In Mobile Computing
and Networking, pages 263�270, 1999.

[5] P. Eugster, R. Guerraoui, and C. Damm. On objects
and events. In Proceedings for OOPSLA 2001 ,
October 2001.

[6] P. T. Eugster and R. Guerraoui. Content-based
publish/subscribe with structural re�ection. In 6th
Usenix Conference on Object-Oriented Technologies
and Systems, 2001.

[7] J. Ferber. Computational re�ection in class based
object-oriented languages. In Conference proceedings
on Object-oriented programming systems, languages
and applications, pages 317�326, New Orleans,
Louisiana, United States, 1989. ACM Press.

[8] D. Gelernter. Generative communication in Linda.
ACM Trans. Prog. Lang. Syst. , 7(1):80�112, 1985.

[9] P. Gore, R. Cytron, D. C. Schmidt, and C. O'Ryan.
Designing and optimizing a scalable CORBA
noti�cation service. In LCTES/OM, pages 1196�204,
2001.

[10] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The
design and performance of a real-time corba event
service. In OOPSLA'97, pages 184�200, Atlanta, USA,
October 1997.

[11] R. Hayton, J. Bacon, J. Bates, and K. Moody. Using
events to build large scale distributed applications. In
ACM SIGOPS European Workshop 96 , September
1996.

[12] J. Kaiser and C. Brudna. A publisher/subscriber
architecture supporting interoperability of the
CAN-Bus and the internet. In IEEE International
Workshop on Factory Communication Systems
(WFCS2002), Västeras, Sweden, August 2002.

[13] J. Kaiser, C. Brudna, and C. Mitidieri. A real-time
event channel model for the CAN-Bus. In 11th Annual
Workshop on Parallel and Distributed Real-Time
Systems, in conjunction with the International Parallel
and Distributed Processing Symposium IPDPS , pages
22�26, Nice, France, April 2003.

[14] J. Kaiser and M. Mock. Implementing the real-time
publish/subscribe on the controller area network
(can). In 2nd International Symposium on
Object-Oriented Real-time Distributed Computing ,
Saint-Malo, France, May 1999.

[15] R. Meier and V. Cahill. Steam: Event-based
middleware for wireless ad hoc networks. In
International Workshop on Distributed Event-Based
Systems, 2002.

[16] G. Mühl, L. Fiege, and A. P. Buchmann. Filter
Similarities in Content-Based Publish/Subscribe
Systems. In H. Schmeck, T. Ungerer, and L. Wolf,
editors, International Conference on Architecture of
Computing Systems (ARCS) , volume 2299 of Lecture
Notes in Computer Science , pages 224�238, Karlsruhe,
Germany, 2002. Springer-Verlag.

[17] B. Oki, M. P�uegl, A. Siegel, and D. Skeen. The
information bus - an architecture for extensible
distributed systems. In ACM Symposium on Operating
System Pronciples, pages 58�68, 1993.

[18] G. Pardo-Castellote, S. Schneider, and M. Hamilton.
NDDS: The real-time publish-subscrib middleware. In
IEEE Real-time Systems Symposium , pages 222�232,
1997.

[19] C. E. Pereira, J. Kaiser, C. Mitidieri, C. Villela, and
L. B. Becker. On evaluating interaction and
communication schemes for automation applications
based on real-time distributed objects. In 4th Int.
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC'01) , Magdeburg, Germany, 2001.

[20] P. Pietzuch and J. Bacon. Hermes: A distributed
event-based middleware architecture. In J. Bacon,
L. Fiege, R. Guerraoui, A. Jacobsen, and G. Mühl,
editors, Proceedings of the 1st International Workshop
on Distributed Event-Based Systems (DEBS'02) , July
2002.

[21] R. K. Raj, E. D. Tempero, H. M. Levy, A. P. Black,
N. C. Hutchinson, and E. Jul. Emerald: A
general-purpose programming language. Software -
Practice and Experience, 21(1):91�118, 1991.

[22] Robert Bosh GmbH. CAN Speci�cation version 2.0 ,
September 1991.

[23] G. Starovic, V. Cahill, and B. Tangney. An
event-based object model for distributed
programming. In OOIS (Object-Oriented Information
Systems) '95, pages 72�86, London, 1995.
Springer-Verlag.

[24] I. Sun Microsystems. Java Core Re�ection: Overview
and API Speci�cation.
http://java.sun.com/j2se/1.3/docs/guide/re�ection/.

[25] Sun Microsystems, Inc. JavaSpaces Service
Speci�cation Version 1.1 , October 2000.

[26] P. Veríssimo and A. Casimiro. Event-driven support of
real-time sentient objects. In Eighth IEEE
International Workshop on Object-oriented Real-time
Dependable Systems (WORDS 2003) , Jan 2003.

[27] P. Veríssimo, V. Cahill, A. Casimiro, K. Cheverst,
A. Friday, and J. Kaiser. Cortex: Towards supporting
autonomous and cooperating sentient entities. In
European Wireless 2002, Florence, Italy, February
2002.

