
Energy Reduction in Multiprocessor Systems Using
Transactional Memory∗

Tali Moreshet∗, R. Iris Bahar∗ and Maurice Herlihy†
∗Brown University, Division of Engineering, Providence, RI 02912

†Brown University, Department of Computer Science, Providence, RI 02912
{tali,iris}@lems.brown.edu, mph@cs.brown.edu

ABSTRACT
The emphasis in microprocessor design has shifted from high perfor-

mance, to a combination of high performance and low power. Until recently,
this trend was mostly true for uniprocessors. In this work we focus on new
energy consumption issues unique to multiprocessor systems: synchroniza-
tion of accesses to shared memory. We investigate and compare different
means of providing atomic access to shared memory, including locks and
lock-free synchronization (i.e., transactional memory), with respect to en-
ergy as well as performance. We show that transactional memory has an
advantage in terms of energy consumption over locks, but that this advan-
tage largely depends on the system architecture, the contention level, and
the policy of conflict resolution.

Categories and Subject Descriptors: C.1.2[Computer Systems
Organization] Processor Architectures: Multiprocessors

General Terms: Design

Keywords: Multiprocessor, power, transactional memory

1. INTRODUCTION
Reducing energy consumption is a pressing issue for many high-

performance microprocessor systems. However, while this issue
has been studied extensively for uniprocessors, little research has
been targeted at reducing energy consumption in large multipro-
cessor systems. Multiprocessors are becoming increasingly com-
mon, both in the form of chip multithreading and chip multiproces-
sors. Moreover, multiprocessors are increasingly used not only for
servers, but also for desktops and smaller devices.

Although many energy-consumption issues that apply to unipro-
cessors apply to multiprocessors as well, multiprocessors involve
new energy issues. In this work we investigate the energy con-
sumption resulting in one of the principal ways in which multipro-
cessors differ from uniprocessors: synchronizing accesses to shared
memory. Memory accesses compose a large fraction of the over-
all energy consumption both in uniprocessor and multiprocessor
systems. For example, consider a simple bus-based multiproces-
sor system consisting of several processors, each with its own on-
chip L1 and L2 caches, and all processors sharing a single off-chip
main memory. If a processor misses in its L1 and L2 caches, it
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obtains the data from main memory or from another processor’s
cache through an invalidate operation. The number of concurrent
accesses to a single shared memory block determines the system
contention level. In addition, synchronization of shared memory
accesses increases the number of memory accesses in a multipro-
cessor system, regardless of the contention level.

In this paper, we investigate different means of providing atomic
access to shared memory, and their benefits and drawbacks in terms
of energy consumption. We focus in particular on transactional
memory, an alternative to locks that provides lock-free synchro-
nization and has become a popular research area. Transactional
memory was originally proposed as a better solution than locks
to shared-memory synchronization, since it provides ease of pro-
gramming and avoids the problems of serialization and deadlocks
involved with locks [7]. It was shown to also have a performance
advantage over locks. In this work we are also interested in the en-
ergy aspects of transactional memory and analyze whether it still
has an advantage over locks when energy, performance and ease of
programming need to be considered together.

The rest of the paper is organized as follows: Section 2 gives
an overview of energy consumption related issues in recent work;
Section 3 introduces the concept of transactional memory and its
variations; Section 4 describes our design, experimental setup and
evaluation. Section 5 concludes our work.

2. OVERVIEW AND RELATED WORK
Energy consumption is a pressing issue for processing systems

in general. While energy consumption is a well-known issue for
mobile systems, where lower energy consumption enables longer
battery life, it is also an issue for stationary systems since they incur
problems of power delivery, high power densities and cooling.

The memory hierarchy is one of the main sources of power dis-
sipation in superscalar uniprocessors. Although power dissipa-
tion in uniprocessor systems has been well examined, very little
work has been dedicated to power reduction in a shared-memory
multiprocessor from the system level. Of the work related to mul-
tiprocessors, Ekman et al. [4] studied the power and performance
variation between chip multiprocessors that tradeoff a single wide
issue superscalar processor for many narrow-issue cores. While a
moderate number of cores with moderate issue widths was found to
be optimal in terms of performance of multi-threaded applications,
the power dissipation was found to be constant across the different
systems. Wide-issue cores had higher core power and systems with
many cores had higher power dissipation in the memory hierarchy.

Of particular interest to us is the work of Li et al. [10], energy re-
duction in the synchronization of shared memory multiprocessors
by using a variation of barrier synchronization. A barrier is used to
synchronize parallel threads such that no thread may execute past
the barrier before all other threads reached the barrier. Threads gen-
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erally spin-wait at the barrier for all other threads. They propose the
thrifty barrier to reduce the energy of spinning on a barrier. When
an early arriving thread reaches the thrifty barrier, a software pre-
dictor is used to decide in which low power mode to place the CPU.
Then the modified hardware of the cache controller wakes up the
thread in time to resume execution. Thus, the energy wasted in the
barrier spin loops is reduced. To the best of our knowledge, this
is the only work that addresses energy concerns related to memory
contention. While this approach appears quite promising, it pro-
poses improvements to the way a processor responds to the spin
loop produced by a barrier, whereas we are proposing alternatives
to the spin loop itself.

3. CONTENTION IN SHARED MEMORY
In a shared memory multiprocessor system, locks are tradition-

ally used to provide atomicity and mutual exclusion. Before a
thread can enter a critical section (i.e., obtain exclusive access to
a shared variable), it must acquire a lock. After the thread leaves
the critical section it must release the lock, allowing other threads
to acquire it. Locks are implemented using test-and-set, compare-
and-swap, or load-linked/store-conditional instructions, and are rel-
atively easy to implement. However, since a lock is physically
represented by a field stored in shared memory every attempt to
acquire a lock requires a shared memory access to read the lock,
followed by another memory access to write the lock, assuming
that it was found to be free. If the lock read from memory is found
to be busy, repetitive memory accesses are required to read the lock
(test it, if using test-and-set, or comparing it, if using compare-and-
swap), until it is eventually found to be free. This increased mem-
ory traffic results in high memory contention, thereby reducing pro-
gram throughput and performance and increasing energy consump-
tion. In addition to numerous memory accesses, locks also intro-
duce software engineering problems. In order to maximize paral-
lelism, fine-grained locks are used, which minimize the scope of
the lock. Fine-grained locks are difficult to use, since the program-
mer must ensure mutual exclusion as well as deadlock freedom.
Finally, locks are conservative, forcing a thread to acquire a lock
even if contention is very low and a conflict is unlikely.

As an alternative to locks, Transactional Memory was first pro-
posed several years ago by Herlihy et al. [7], and concurrently by
Stone et al. [18]. Transactional memory has subsequently been
studied both from the software side, in the form of software trans-
actional memory [6], [5] and from the hardware side [14], [12],
[13], and [15].

A transaction is defined by the scope of a lock. Each transac-
tion is executed speculatively by a single thread without acquiring
a lock. The execution of the transaction is optimistic, and if it com-
pletes without conflicts, it will commit and no further action is re-
quired. Otherwise, if conflicts were detected during the execution
of the transaction, the transaction will abort and its effects will be
discarded. If a transaction aborts, it is required to be rolled back
and re-issued. The roll-back mechanism is required to guarantee
forward progress, and thus this process will eventually result in an
atomic commit of the transaction. Until a transaction successfully
commits, its effect will not be apparent to other threads.

Hardware transactional memory keeps memory entries which
were modified within a transaction in local cache. These entries
are not visible to other threads until the transaction commits, at
which point they may be written back to the shared memory. Any
attempt of other threads to access a transactional memory entry in
local cache will cause the transaction to abort. When using hard-
ware transactional memory, the scope of a transaction is limited by
the size of the local cache.

Software transactional memory, on the other hand, uses software
support to manage the modified entries within a transaction. In [6],
the transactional memory is implemented by a Java package, allow-
ing transactional objects to be created dynamically. The package
also includes a contention manager that is responsible for conflict
resolution. The main advantage of the software transactional mem-
ory implementation is that it is independent of hardware resources,
and allows transactions to be almost unlimited in size. Its main
disadvantage, however, is the performance overhead involved with
using software support for the implementation.

While hardware transactional memory shows superior perfor-
mance to that of the software transactional memory, it is limited by
the availability of hardware, which is more costly. Very recently
Ananian et al. [2] introduced unbounded transactional memory,
which allows transactions that do not fit in the cache to overflow
into a data structure kept in main memory. This model relies largely
on operating system support to enable transactions with size limited
only by the size of the virtual memory. All the above approaches
proposed for handling contention in shared-memory multiproces-
sor systems focus either on ease of programming or performance
(or perhaps a combination of the two). While both these aspects
are important, they ignore the impact on energy consumption in
employing these different approaches.

4. DESIGN
The main sources of energy in an m-way set associative cache

are those resulting from precharging the bit-lines, reading or writ-
ing data, assertion of the word-line, and driving external busses.
The energy consumption of a single cache is thus a factor of its
implementation (SRAM vs. DRAM), its size, the capacitance of
the busses it drives (which depend on whether the cache is on or
off-chip), as well as the number of read and write accesses. The
dominant portion of energy consumption per access in the mem-
ory hierarchy is due to off-chip caches, resulting from their signif-
icantly larger size, and the higher capacitance board buses [3], [8].
The largest and most remote memory in a multiprocessor system
is the shared memory. Therefore, an important factor in reducing
the energy consumption of the memory hierarchy is minimizing the
number of shared memory accesses.

In this work, we target a general multiprocessor system not bound
to a specific configuration. A multiprocessor system is generally
composed of a series of uniprocessors, each with its own local on-
chip cache. Any number of processors may share a larger cache
at the next level. The nature and number of caches in the memory
hierarchy of every processor depends on the specific system. How-
ever, any large multiprocessor system includes more than a single
uniprocessor (or multiprocessor) chip, and thus, in order to allow
all the processors in the system to synchronize and share data, they
all need to have access to a shared memory. For most of the proces-
sors this memory will be located on a remote chip, and we therefore
consider it an off-chip memory.

4.1 From Locks to Transactions
In order to run an application that uses locks on a transactional

memory environment, locks need to be replaced with transactions.
This can be achieved by replacing lock(x) instructions with start
transaction, and unlock(x) instructions with end transaction. No
nested transactions are allowed. Since nested locks will now be-
long to an existing transaction, they will be treated as part of the
atomic region defined by the outer transaction. Replacing lock in-
structions with start and end transaction instructions can be done
as a preprocessing step on the code, or alternatively the translation
may be done at run time by the decode stage hardware.

When a thread is running within the bounds of a transaction (i.e.,
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executing in transactional mode), all memory modifications must
be kept in local cache, and not be visible to other threads. In addi-
tion, we may want to save the old value of these memory blocks in
local cache, in order to make re-execution of a transaction in case of
a conflict faster and less costly, avoiding shared memory accesses
when rolling-back to the pre-transaction state.

Our transactional memory model is loosely based on the origi-
nal hardware transactional memory proposal of [7]. In our model,
each processor includes, in addition to its main DL1 on-chip cache,
a secondary cache called transactional cache. The transactional
cache is a smaller, fully-associative cache that is exclusive to the
main cache. Cache lines in the transactional cache have an addi-
tional transaction tag which can hold one of the following values:
Empty, Normal, Xcommit and Xabort. The first two values mark
lines with invalid and non-transactional mode data, respectively. A
line marked as Xcommit indicates that the line contains data that
was valid before entering transactional mode, and may be used to
recover from an aborted transaction. An Xabort tag indicates that
the line contains data that was modified within the transaction, it is
not visible to other threads, and any attempt to access it by another
thread will result in a conflict and cause the transaction to abort.
4.2 Rollback and Checkpointing

An important aspect of the hardware transactional memory ar-
chitecture is the ability to rollback on a transaction abort, and return
to the state of the system before the transaction started. Previous
work on hardware transactional memory largely ignored the aspect
of implementing rollback capabilities. Rollback and re-execution
of transactions is different than re-issuing after a branch mispredic-
tion. When a branch is discovered to be mispredicted, all wrong-
path instructions are still pending in the pipeline, and none of them
are retired. In contrast, the scope of transactions and their nature is
such that when a transaction aborts many instructions that already
retired and released their buffer slots and physical registers may
need to be re-issued. It is therefore essential that we have some
means of checkpointing the state of the system when entering a
transaction, so that we can recover from a conflict if required.

Several works propose using some form of checkpointing as a
method for recovering the state of a uniprocessor or multiprocessor.
Akkary et. al [1] introduced Checkpoint Processing and Recovery
(CPR), a new microarchitecture that replaces a reorder buffer-based
design. Sorin et. al [17] introduced SafetyNet, a hardware mech-
anism to recover the state of a multiprocessor system, used to en-
able recovery from deadlocks and transient or permanent hardware
faults by periodically creating a system-wide logical checkpoint of
the system. The system-wide checkpoint includes the state of the
processor registers, memory values, and coherence permissions.

For our purposes of recovering from a conflicting transaction,
when starting a transaction we can take a checkpoint that saves only
the register state of the processor running the transaction. Check-
pointing the memory state is not necessary, since the memory state
will be saved in the transactional cache. As an alternative, we can
use a system-wide checkpointing mechanism, if it already exists in
the system for other types of recoveries (such as fault recovery).
In this case, the checkpoint is taken periodically, and on a conflict
we can rollback to the most recent checkpoint. The only limitation
on the checkpointing mechanism is that a checkpoint can be taken
only when no transactions are in progress. The length of checkpoint
intervals will determine the rollback penalty.

Another aspect of checkpointing is the cost of taking a check-
point. Although we adapt the assumption of SafetyNet, that check-
point creation is a lightweight process, the energy overhead of this
process must be taken into account when analyzing the overall en-
ergy consumption of transactional memory. On the other hand, if

we have a system that already takes periodical checkpoints, then
unless we have contention, this additional energy will be indepen-
dent of whether we use locks or transactions.

4.3 Simulation Model
After testing various simulation models, we found Virtutech’s

Simics [11] to be the most appropriate for our needs. Simics is a
full system simulation platform, capable of simulating high-end tar-
get systems running full operating systems and commercial work-
loads [19]. We use a version of Simics which models Sun Mi-
crosystem’s Sun Enterprise 3500-6500 class of servers, which can
be configured to run up to 30 UltraSPARC II processors, and 60GB
of memory. We use a system running the Linux operating system.

The limitations of Simics include limited flexibility in manipu-
lating the processor microarchitecture. It is a functional simula-
tor, which assumes that each instruction takes one cycle to execute.
However, Simics provides an interface to a detailed memory hier-
archy simulation, as well as a detailed operation system simulation,
both of which are essential for our purposes.

In Simics, an atomic instruction that implements a lock will be
blocked if it may conflict with an earlier load that has not been
executed or an earlier store that has not been retired. To avoid a
possible deadlock situation, an atomic instruction will be stalled
until there are no possible conflicts. The load part of the atomic
instruction will always be sent to memory, even if its data is found
in the load-store queue.

Implementing the transactional memory hardware includes add-
ing some means of rolling back execution and re-issuing transac-
tions in case of a conflict. Although Simics’ limitations do not
allow us to implement a realistic rollback of the processor state af-
ter instructions are retired, it does provide a checkpoint mechanism
which allows taking a checkpoint of the entire simulated system
state, and then restarting simulation from the checkpoint.

Our initial configuration includes 4 processors, each with its own
DL1 cache and unified data/instruction L2 on-chip cache. All pro-
cessors share a single off-chip memory. Table 1 summarizes the
system configuration.

4.4 Evaluation
The energy estimates for the different memory hierarchy com-

ponents are listed in the third column of Table 1. These numbers
were extrapolated from Micron SDRAM power calculator [9] and
CACTI [16], as well as from a conversation with high-end multi-
processor designers from industry. We assume the processor clock
is 1GHz and the SDRAMs’ clock is 133MHz. The shared mem-
ory energy is the sum of the I/O of the processor Front Side Bus,
the I/O of the SDRAM pins, and the actual SDRAM access. The
load/store activity ratio is considered in our approximation. These
numbers are meant to illustrate the relative difference between ac-
cesses to different levels of the memory hierarchy.

In order to simulate a series of transactions with some conflicts
on a multiprocessor system, we use our own microbenchmark with
4 threads, all accessing a shared array. Each array entry is pro-
tected by a dedicated lock (which then defines a transaction). We
force each thread to run on a different processor, and make sure the
threads run concurrently and conflict. We are using global check-

Table 1: System configuration and energy consumption per
cache/memory access.

Machine Width 4-wide fetch, issue, commit
L1 DCache 8KB 4-way; 32B line; 3 cycle 0.47 nJ
Trans. Cache 64-entry fully associative 0.12 nJ
L2 Cache 128KB 4-way; 32B line; 10 cycle 0.9 nJ
Shared Memory 256MB; 200-cycle latency; 64-bit bus 33 nJ
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Figure 1: Memory overhead of locks vs. transactions.
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Figure 2: Energy consumption of locks vs. transactions.
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points of the system to recover from conflicts. Also, since we are
interested in an energy-aware approach to using transactional mem-
ory, we consider two different schemes for handling a conflict:

1. the standard approach of re-issuing the transactions in paral-
lel (after a random backoff), and

2. allowing all transactions that were pending during the con-
flict to execute serially.

Figure 1 compares the number of cache and memory accesses
for each of the microbenchmark runs. The first set of bars shows
DL1 cache accesses, the second set of bars DL2 cache accesses,
and the third set of bars shared memory accesses. In each set of
bars, the first bar shows accesses for the microbenchmark using
locks, the second bar for the microbenchmark using standard trans-
actions, and the third bar for our serial re-execution scheme. Note
that the version using locks incurs the most memory accesses (this
is discussed below), and that the serial re-execution run has fewer
memory accesses than the standard transactions. In this case, the
standard transaction version had more re-executions that resulted
in conflicts, and therefore in wasted instruction execution and cy-
cles. If, however, the re-executions had not resulted in conflicts,
this would have allowed an earlier commit of transactions and bet-
ter performance.

For the simulations using transactions, only user instructions,
i.e., the instructions from the microbenchmark, were executed. For
the simulation using locks, the supervisor (operating system) ex-
ecuted a large number of additional instructions, regardless of the
conflict rate. The locks we used are standard library locks and are
not optimized; however, even with an optimized lock, it is unclear
what the extent of the benefit will be. We leave this lock optimiza-
tion for future work.

Figure 2 shows the energy consumption of each microbenchmark
run. The shared memory accesses dominate the energy consump-
tion, making the use of locks an unlikely energy-aware solution.
The serial re-execution of transactions consumes less energy than

the standard transactions version, which follows as a direct result
of the reduced number of accesses reported in Figure 1.

The performance results, not shown here, vary between differ-
ent conflict scenarios. However, with serial re-execution of trans-
actions we are assuming that more conflicts will occur, and as a
result, we are preventing possible parallelism in case this assump-
tion was overly pessimistic. Therefore, in terms of performance, it
is overall better to use standard transactions. On the other hand, if
lower energy consumption has a higher priority, then resorting to
serial execution of transactions in a situation where a high conflict
rate is likely makes for a more appropriate choice.

5. CONCLUSION
This is a first step in trying to evaluate the energy cost of manag-

ing memory contention in a multiprocessor environment, focusing
specifically on conflict scenarios within transactions. When con-
flicts are rare, transactions have an advantage over locks in terms
of performance as well as energy, due to fewer accesses to shared
memory. As conflicts become more common, however, the cost of
rolling back and restoring checkpoints justifies an alternative con-
flict resolution scheme. We propose to serialize transactions fol-
lowing a conflict (assuming we are entering a high-conflict region
of execution). Forcing synchronization may not seem beneficial
for performance since it hurts parallelism, but being conservative is
advantageous in terms of energy.
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