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ABSTRACT

This paper addresses the evaluation of the inf–sup condition for Reissner–Mindlin plate bending elements.
This fundamental condition for stability and optimality of a mixed �nite element scheme is, in general, very
di�cult to evaluate analytically, considering for example distorted meshes. Therefore, we develop a numerical
test methodology. To demonstrate the test methodology and to obtain speci�c results, we apply it to standard
displacement-based elements and elements of the MITC family. Whereas the displacement-based elements
fail to satisfy the inf–sup condition, we �nd that the MITC elements pass our numerical test for uniform
meshes and a sequence of distorted meshes. ? 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many plate bending �nite elements have been proposed since the �rst application of �nite element
analysis to plate bending problems. The elements are mostly based on the Kirchho� and Reissner–
Mindlin plate theories, and a number of variational formulations have been developed to obtain
e�cient elements.
The Reissner–Mindlin model o�ers some advantages in the design of �nite elements, namely the

theory is applicable to moderately thick to very thin plates, and only the displacement functions
and not their derivatives need to satisfy the interelement continuity conditions.
These advantages have spurred much attention to using the Reissner–Mindlin theory as the

basis of formulating general plate bending elements. A straightforward way to proceed is to use
isoparametric interpolations for the transverse displacement and section rotations. However, this
approach leads to well-known di�culties as the plate thickness t is decreased. In analysis of thin
plates, the �nite element discretization becomes too sti�, which is a numerical phenomenon referred
to as shear locking.1;2

A number of approaches (and, correspondingly, �nite elements) have been proposed in the lit-
erature to overcome this purely numerical di�culty; among them are selective=reduced integration
schemes, stabilization methods, and various mixed=hybrid formulations.
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However, in almost all cases, these elements were solely proposed as e�cient because, when
used in the solution of certain plate bending problems, accurate results were obtained. A deeper
mathematical analysis that ensures stability and convergence properties of the chosen �nite element
spaces in general analysis conditions has not been performed. Yet, such mathematical analysis is
most valuable to �rmly prove the reliability of an element.
Among the proposed elements, the MITC element family can be clearly distinguished, because

the elements of this family show superior performance in numerical simulations and have a strong
mathematical basis. The elements were originally designed as an extension of a four-node mixed-
interpolated element using an analogy to analysis of incompressible media.3;4 In the construction,
the properties of the mixed plate bending elements were deduced from the properties of e�ective
mixed elements for incompressible elasticity, and some error bounds were established and compared
with numerical results.5–7 For more recent mathematical results on the elements, see the papers
by Brezzi et al.,8 Stenberg and Suri,9 and Pitk�aranta and Suri.10

The two crucial conditions to satisfy for stability and optimal convergence of mixed methods
are the ellipticity and inf–sup conditions.1;11 If these conditions are satis�ed, the �nite element
discretization is reliable and optimal for the element interpolations used. Thus, it is a great attribute
for a mixed �nite element formulation to satisfy these conditions. While in many cases it is
relatively easy to check whether the ellipticity condition holds, it can be di�cult, and indeed
almost impossible, to analytically show that the inf–sup condition is satis�ed for a given �nite
element discretization. For this reason, Chapelle and Bathe proposed a numerical inf–sup test for
incompressible media analysis.12

Our objective in this paper is to propose a numerical scheme for the evaluation of the inf–sup
condition for plate bending elements. While we use the test to study whether speci�cally the MITC
elements satisfy the inf–sup condition, the methodology presented is quite general and can also
be applied to other discretization schemes. The results given in the paper show that, for uniform
discretizations, and a sequence of distorted meshes, the numerical inf–sup test is passed by the
MITC elements.

2. GOVERNING EQUATIONS

2.1. Reissner–Mindlin plate model

Let 
 be a plane domain with su�ciently smooth (e.g., Lipschitz-continuous) boundary @
. In
the further analysis we will concentrate, without loss of generality, on the case of Dirichlet bound-
ary conditions (clamped plates). The following variational problem governs the
model:

Find u=(R; w)∈V =B×W = [H 10 (
)]
2×H 10 (
) such that

a(R; W) + �k
t2
(∇w − R;∇�− W)= 1

t3
(f; �) ∀v=(W; �)∈V

(1)

where R is the vector of rotations �1, �2; w is the transverse displacement; and a(· ; ·) is a symmetric
bilinear form de�ned as

a(W1; W2)=
D
t3

∫


[(1− �)U(W1) : U(W2) + �(∇ · W1)(∇ · W2)] d
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D=Et3=[12(1− �2)] is the 
exural rigidity of the plate; U(·) is the linear strain operator: U(W)=
�1;1e1e1 + �1;2e1e2 + �2;1e2e1 + �2;2e2e2; E, �=E=[2(1 + �)], and � are the Young’s modulus,
shear modulus, and Poisson’s ratio, respectively; ∇= @

@x1
e1 + @

@x2
e2; (·; ·) stands for the L2(
)-

inner product; f is a distributed load acting normal to the plate surface; and k stands for the shear
correction factor that accounts for nonuniformity of the shear stress distribution through the plate
thickness, usually k = 5

6 .
If we de�ne

S= �k
t2
(∇w − R) (2)

and g=f=t3, we arrive at the variational formulation, equivalent to (1):

Find u = (R; w)∈V = B×W = [H 10 (
)]
2×H 10 (
) and S∈G such that

a(R; W) + (S;∇�− W) = (g; �) ∀v=(W; �)∈V (3)(
t2

�k
S − (∇w − R); S

)
= 0 ∀S∈G

The key point is to identify the appropriate space G for the shear term S. Clearly, ∇w∈L2(
),
which implies that for the case of �nite plate thickness t, S∈∇W ⊕ B⊂L2(
). However, as we
approach the limit letting t→ 0, the L2 regularity of the shear term S is lost, i.e., ‖S‖L2 is no
longer �nite. This fact suggests that we should look for a space for shears among the negative
Sobolev spaces, and the appropriate space would be the smallest, in which the corresponding norm
is �nite for all thicknesses, i.e., ‖S‖G6 const independent on t.
In Appendix I we present a result which manifests that the functional space �′=H−1(div; 
)

satis�es the requirement given above,3 and

�′ = H−1(div; 
)= {S; S∈ [H−1(
)]2; ∇ · S∈H−1(
)}
‖S‖2H−1(div;
) = ‖S‖2H−1 + ‖∇ · S‖2H−1

(4)

As we shall see in Appendix I, �′ can also be identi�ed as the dual space of �=H0(rot; 
),
which is de�ned as

H0(rot; 
) = {f; f∈ [L2(
)]2; rotf∈L2(
); f · c=0 on @
}
‖f‖2H0(rot;
) = ‖f‖2L2 + ‖rotf‖2L2

(5)

Moreover, we have the following dual norm:

‖S‖�′ = sup
f∈�

(S; f)
‖f‖� (6)

If the estimate ‖S‖G6const has to hold independently of t, it is reasonable to require it to hold
for the limit problem, which is obtained by setting t=0 in (3), that is

Find u = (R; w)∈V = B×W = [H 10 (
)]
2×H 10 (
) and S∈�′ such that

a(R; W) + (S;∇�− W) = (g; �) ∀v=(W; �)∈V
(∇w − R; S) = 0 ∀S∈�′

(7)
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Since this problem can clearly serve as the most severe test on the elements’ ‘addiction’ to
locking, we will further concentrate on the analysis of equations (7), presuming that, if our �nite
element discretization provides a good solution for this case, then the elements will not lock under
any other circumstances.
Realizing that equations (7) represent, in fact, a particular case of the well-studied saddle-point

optimization problem (see e.g., Reference 13), we can focus on the mathematical conditions for
existence, uniqueness, stability, and optimality of the solution to (7).
The �rst, so-called ellipticity condition,

a(W; W)¿�‖v‖2V = �(‖W‖2H 1 + ‖�‖2H 1 ) ∀v=(W; �)∈V0 (8)

where �=const¿0, and

V0 = {v=(W; �)∈V | (∇�− W; S)= 0 ∀S∈�′}

ensures the positive de�niteness (after eliminating rigid body modes) of the energy functional in
pure bending conditions, and therefore, guarantees existence and uniqueness of R and w.
Once the ellipticity condition is satis�ed, the second, the inf–sup condition,

inf
S∈�′

sup
v=(W; �)∈V

(S;∇�− W)
‖v‖V ‖S‖�′ ¿k0¿0 (9)

where k0 is a constant, establishes a criterion for existence, uniqueness, stability and optimality of
the solution of equation (7).

2.2. Finite element approximation. Modi�ed variational problem

Let us choose two �nite element spaces, Wh⊂W , and Bh⊂B; then Vh=Bh×Wh⊂V , and we
are left with a conforming approximation of the original continuous spaces. The general approach
to circumvent the locking behavior is to modify the variational setup (1) by introducing a reduction
operator Rh so that the problem becomes:

Find uh=(Rh; wh)∈Vh=Bh×Wh such that
a(Rh; Wh) +

�k
t2
(Rh(∇wh − Rh); Rh(∇�h − Wh))= (g; �h) ∀vh=(Wh; �h)∈Vh

(10)

If Rh= I (identity operator), we have the standard displacement-based method; if the reduction
is based on an inaccurate numerical integration in evaluating the shear energy term, we in essence
use the idea of selective or reduced integration. In the following, we will consider the mixed
interpolation approach, in which the shear terms are �rst approximated independently, and then
eliminated from the system.
De�ning the discrete approximation for the shear term as

Sh=
�k
t2
Rh(∇wh − Rh) (11)
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we have an equivalent discrete variational problem:

Find uh=(Rh; wh)∈Vh=Bh×Wh and Sh ∈Gh=Rh(Vh) such that
a(Rh; Wh) + (Sh; Rh(∇�h − Wh))= (g; �h) ∀ vh=(Wh; �h)∈Vh(

t2

�k
Sh − Rh(∇wh − Rh); Sh

)
=0 ∀ Sh ∈Gh

(12)

Following the same procedure as in the previous section, we can de�ne the discrete limit
problem:

Find uh=(Rh; wh)∈Vh = Bh×Wh and Sh ∈Gh such that
a(Rh; Wh) + (Sh; Rh(∇�h − Wh)) = (g; �h) ∀ vh=(Wh; �h)∈Vh

(Rh(∇wh − Rh); Sh) = 0 ∀ Sh ∈Gh
(13)

The corresponding conditions for existence, uniqueness, stability and optimality of the solution
to (13) are given by

a(Wh; Wh)¿�‖vh‖2V = �(‖Wh‖2H 1 + ‖�h‖2H 1 ) ∀ vh=(Wh; �h)∈V0h (14)

where

V0h= {vh=(Wh; �h)∈Vh | (Rh(∇�h − Wh); Sh)= 0 ∀ Sh ∈Gh}
and

inf
Sh∈Gh

sup
vh=(Wh;�h)∈Vh

(Sh; Rh(∇�h − Wh))
‖vh‖V ‖Sh‖�′

¿k0¿0 (15)

Notice that (14) will follow easily if we require that

(i) ∃ c1¿0 such that ‖Rhvh‖L26c1‖vh‖L2 ∀ vh ∈Vh; and
(ii) ∃ c2¿0 such that ‖Rh∇�h‖L2¿c2‖∇�h‖L2 ∀ �h ∈Wh
Condition (i) just enforces continuity of the reduction operator Rh, and is quite natural due to

the physics of the problem. Actually, in order to have optimal results, we shall also need that Rh
is ‘a good approximation of the identity’. For instance, we might ask that

‖Rhv − v‖L26chk (16)

for every smooth v in V (k being the order of the interpolation space Vh) and

(Rhvh − vh; S)6c‖vh‖V hk (17)

for every vh ∈Vh and for every smooth S in H0(rot; 
), (see (5)).
On the other hand, (ii) says that, in a certain sense, we do not loose too much information on

transverse displacements by considering Rh∇wh instead of ∇wh. Note that if we had (in contrast
with (ii)) Rh∇�̃h=0 for some �̃h ∈Wh \ {0}, then �̃h would be a parasitic mode, displaying zero
energy in (10).

? 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3639–3663 (1997)



3644 A. IOSILEVICH, K. J. BATHE AND F. BREZZI

If (i) and (ii) hold, then (14) will also hold, and we have only to check (15). If indeed (15)
is satis�ed, then we have

‖R− Rh‖H 1 + ‖w − wh‖H 1 + ‖S − Sh‖�′6chk (18)

uniformly in t, provided the solution (R; w; S) of (3) is smooth and (16)–(17) hold as well.

Remark 1. In a general case, the solution of (3) will not be smooth enough (uniformly in t) to
give (18), as pointed out in Reference 14, due to boundary layer e�ects. However, on one hand
(18) still provides reliable information on the potential accuracy of the method; on the other hand,
in many cases one can have interior estimates of type (18) even in the presence of boundary
layers, as pointed out by Gastaldi.15

3. MITC PLATE BENDING ELEMENTS

In this section we present the MITCn family of plate bending elements, following the original
papers.4; 5; 7

3.1. Design principles

For the choice of operator Rh, we still need (i), (ii), (16) and (17) to hold true. As we shall
see, (i), (16) and (17) will come out naturally from our other choices, while in order to enforce
(ii) we take a stronger condition

(Rh − I)∇�h= 0 ∀�h ∈Wh (19)

This assumption (which clearly implies (i)) is rather strong but, as we shall see, it has the merit
of simplifying greatly the design procedure.
In the limit case t=0 the continuous solution (R; w; S) will satisfy the Kirchho� constraint

∇w= R, and the discrete solution will satisfy
Rh(∇wh − Rh)= 0 (20)

The least we can ask is that for every smooth pair ∇w= R there exists at least a discrete pair
(Rh; wh) satisfying (20) and (optimally) close to (R; w). In order to have (20) we need (using (19))

∇wh=RhRh (21)

and recalling that for any scalar function ’,

rot∇’=∇×∇’=0 (22)

we can equivalently rewrite condition (21) as

rot RhRh=0 (23)

For the time being, we consider a slightly di�erent constraint, namely

{(rot Rh; q)= 0∀ q∈Qh⊂Q= L2(
)} or Ph rot Rh=0 (24)

Int. J. Numer. Meth. Engng., 40, 3639–3663 (1997) ? 1997 John Wiley & Sons, Ltd.
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where Ph stands for the projection operator de�ned over a discrete space Qh ∈L2(
). Noting that
for a scalar function ’ and vector function v, we have

rot’=(∇’)⊥; rot v=∇ · v⊥ (25)

where ‘⊥’ is the ninety degree clockwise rotation operator, we can consider an auxiliary variational
problem, similar to the one encountered in the analysis of incompressible media:

Find Rh ∈Bh and ph ∈Qh⊂L2(
); such that
aS(Rh; Wh)− (rot Wh; ph)= aS(R; Wh) ∀ Wh ∈Bh
(rot Rh; qh)= 0 ∀ qh ∈Qh

(26)

where aS(W1; W2)=
∫

∇W1 :∇W2 d
.

To have a unique solution for Rh and ph and optimal accuracy for ‖R− Rh‖, our choice of the
discrete spaces (Bh; Qh) has to satisfy the inf–sup condition

inf
qh∈Qh

sup
Wh∈Bh

(rot Wh; qh)
‖qh‖Q‖Wh‖B¿k0¿0 (27)

with the constant k0 independent of the typical mesh size h. Using relations (25), we conclude
that to have a unique, stable and optimally convergent solution in (26), our discrete spaces must
satisfy the inf–sup condition for the case of incompressibility

inf
qh∈Qh

sup
Wh∈Bh

(∇ · Wh; qh)
‖qh‖Q‖Wh‖B¿k0¿0 (28)

There exist quite a few pairs (Bh; Qh) described in the literature, that are known to satisfy
the inf–sup condition (28) (see Reference 13). Therefore, taking such a pair, we have that, for
every smooth pair R=∇w we can construct a Rh ∈Bh, such that Rh→ R with an optimal rate, and
Ph rot Wh (that is (24)). In order to have (23), we must now require

Ph rot Wh= rot RhWh ∈Qh (29)

Finally, (23) will imply the existence of a wh ∈Wh satisfying (21) if we require that Wh satisfy

∇Wh= {Vh ∈�h; rot Vh=0} (30)

Notice that (30) will imply (19) as soon as Rh= I when restricted to �h.
Thus, we can summarize the design process as follows:

1. Start with a pair of functional spaces (Bh; Qh) that satis�es the inf–sup condition (28). Bh
would be the space of section rotations, while Qh is an auxiliary space, which never appears
in actual calculations.

? 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3639–3663 (1997)
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2. Find another space �h⊂� and a reduction operator Rh, such that the following diagram
commutes:

Bh
rot−−−−−→ L2(
)

Rh
y y Ph

�h −−−−−→
rot

Qh

(31)

This condition is referred to as the commuting diagram property, and is equivalent to (29).
3. Choose Wh to satisfy condition (30) and yield the proper order of accuracy.

Remark 2. As was pointed out above, the functional space Qh does not have any physical
meaning, and serves just as a link between the Stokes system and the problem under consideration.
Since we are barely interested in the solution for ph in (26), the inf–sup condition (28) which
ensures solvability, stability, and optimal convergence of both Rh and ph seems to be too strong,
and we should not discard the pairs (Bh; Qh) which are known to work for velocities, but fail to
produce stable results for pressures in the Stokes problem. A weaker condition to guarantee the
solvability would be the stability inequality

sup
Wh∈Bh

(∇ · Wh; qh)
‖Wh‖B ¿c(h)‖qh‖Q ∀qh ∈Qh; qh 6=0 (32)

It can be demonstrated (see Reference 13 for the proof) that elements, which are designed
following the procedure stated above, satisfy a weak form of the inf–sup condition (15),

inf
Sh∈�h

sup
vh = (Wh; �h)∈Vh

(Sh; Rh(∇�h − Wh))
‖vh‖V ‖Sh‖�′h

¿�¿0 (33)

with � not dependent on the mesh size and plate thickness, and where the �′
h-norm is de�ned as

‖Sh‖�′h = sup
fh∈�h

(Sh; fh)
‖fh‖� (34)

We will refer to equation (33) as the inf–sup condition in the �′
h-norm.

The main implication of this result is that in case of uniform meshes, the following error bounds
hold:13

‖R− Rh‖H 1 + ‖w − wh‖H 1 + ‖S − Sh‖�′h 6 chk (35)

where k is the order of the interpolation space Vh.
Clearly, to satisfy the actual inf–sup condition (15), and make the bounds (18) applicable, we

should have that the following condition holds:

‖Sh‖�′h¿�‖Sh‖�′ ∀Sh ∈�h (36)

with a constant � independent of the plate thickness t and characteristic mesh size h.
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So far no analytical results exist regarding the norm equivalence (36) and regarding the inf–sup
condition (15). Such results would be very hard, if not impossible, to obtain for general distorted
meshes, and we therefore resort to a numerical treatment.

3.2. The elements

In this section we brie
y describe the displacement-based approach to the plate bending problem,
as well as the MITCn plate bending elements, taking the MITC4 element as a special case, and
the MITC9 element as a typical representative of the family.
We de�ne all spaces for a reference 2×2 square element K =(−1; 1)2, and these derivations can

be directly extended to any general case through covariant transformations (provided the Jacobian
matrix of the transformation is not singular)1.

3.2.1. Displacement-based �nite elements. The simplicity of these elements made them popular
among practitioners although the produced results often su�er from locking. The space for shears
is obtained as (taking Rh= I)

�h=∇Wh ⊕ Bh
which implies

V0 = {vh=(Wh; �h)∈Vh | ∇�h= Wh}
This condition severely restricts the number of functions which satisfy the Kirchho� constraint

to a small subspace of the original space for displacements Vh, barely leaving a hope to have good
convergence properties for all plate thicknesses t, especially for lower order elements.

3.2.2. The MITC4 element. The element was introduced by Dvorkin and Bathe16 as a general
shell element. Results regarding the numerical performance, convergence studies, and an error
analysis can be found in References 3 and 17.
For the mixed-interpolated four-node element we use

Wh = {�h ∈H 10 (
); �h |K ∈Q1(K)}
Bh = {Wh ∈ [H 10 (
)]2; Wh |K ∈ [Q1(K)]2}
Qh = {qh : qh |K ∈R}
�h = {Sh ∈H0(rot; 
); Sh |K ∈RT (K)}
RT = {span{1; s}; span{1; r}}

Although the Q1–P0 pair satis�es the stability inequality (32) with c(h)=O(h),18 it fails to sat-
isfy the inf–sup condition for the Stokes problem (28), so that the analytical results of Section 3.1
are not applicable to the MITC4 case. The existing theoretical error bound for the case of uniform
meshes is

‖R− Rh‖H 1 + ‖w − wh‖H 1 + t‖S − Sh‖L26ch
and depends on the plate thickness t.

3.2.3. MITC9 element. For the mixed-interpolated nine-node element we use:5

Wh = {�h ∈H 10 (
); �h |K ∈Q′
2(K)}

? 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3639–3663 (1997)
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Bh = {Wh ∈ [H 10 (
)]2; Wh |K ∈ [Q2(K)]2}
Qh = {qh : qh |K ∈P1(K)}
�h = {Sh ∈H0(rot; 
); Sh |K ∈BDFM (K)}

BDFM = {span{1; r; s; rs; s2}; span{1; r; s; rs; r2}}
where Q′

2 is the second order Serendipity space.
1

The pair (Bh; Qh) is known to satisfy the inf–sup condition (28); indeed, we can check (see
the details in Reference 5) that all other requirements of the design scheme (i.e., the commuting
diagram property (31) and condition (30)) are satis�ed with this choice of functional spaces.
Therefore, the results of Section 3.1 are applicable in this case, and we can conclude that the

element satis�es the inf–sup condition in the �′h-norm at least for uniform, non-distorted meshes.
The theoretically predicted error bound is13

‖R− Rh‖H 1 + ‖w − wh‖H 1 + ‖S − Sh‖�′h6ch2

3.2.4. Other elements. The MITCn family of plate bending elements also includes a higher
order 16-node quadrilateral element MITC16, and two triangular elements, the MITC7 and MITC12
elements.1 All these elements have the same properties as the MITC9 element, namely, they satisfy
the ellipticity condition (14) (and hence have no spurious zero eigenvalues), they satisfy the inf–
sup condition in the �′

h-norm (for uniform meshes) and hence conform to the error bounds (35).
For the summary of elements and numerical results see References 1, 6 and 7.

4. TEST METHODOLOGY

In this section we develop a test methodology which allows to check numerically whether the
inf–sup condition holds for a particular discretization. In our developments we follow the idea of
the numerical inf-sup test proposed by Chapelle and Bathe,1; 12 and apply the test to the MITC
elements and to the displacement-based elements.
As we have demonstrated in the previous section, in order to prove that the inf–sup condition

(15) is satis�ed for a given �nite element discretization, it is su�cient to show that:

(a) The inf–sup condition holds with respect to the �′h-norm for the shear term, as given by
(33); and

(b) The norm equivalence stated in (36) holds with a constant � independent of the plate
thickness t and mesh size h.

Correspondingly, we propose two numerical tests, which allow to check whether (a) and (b)
are satis�ed for a given mesh.

4.1. Inf–sup test in the �′
h-norm

We start by establishing a matrix form of the inf–sup condition in the �′
h-norm. We take the

following norm for the space for rotations and transverse displacement ‖vh‖V = ‖vh‖H 1 . Restricting
our analysis to the case of bounded domains, we have by the Poincar�e–Friedrichs inequality:1

‖vh‖2V ' |vh|2H 1 = |Wh|2H 1 + |�h|2H 1 = L2
2∑

i; j=1

∥∥∥∥@�h; i@xj

∥∥∥∥2
L2
+

2∑
i=1

∥∥∥∥@�h@xi
∥∥∥∥2
L2
=VTSV (37)
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where L is a characteristic dimension of the plate (i.e., plate width or length), V∈Rn is a vector
of nodal point displacements, and S∈Rn × Rn is a positive de�nite norm matrix.
Shear terms are calculated from nodal point displacements U using a shear nodal basis B
 :

Rn→�h as Sh=B
U. Let us de�ne the L2-inner product G=(BT
 ;B
), G∈Rn × Rn; then, the
numerator of (33) can be rewritten as (Sh; Rh(∇�h − Wh))= (UTBT
 ;B
V)=UTGV, where G is a
positive semide�nite n× n matrix. To avoid corner solutions (i.e., the inf–sup value being either
zero or in�nity), we impose the following restriction: V; U∈D=Rn\ker(G), where ker(G) stands
for the null space of G.
To calculate ‖Sh‖�′h , we will use the de�nition (34). Taking ‖fh‖� = ‖B
W‖� as

‖fh‖2� = ‖fh‖2H0(rot;
) = ‖fh‖2L2 + L2‖ rot fh‖2L2 =WT(G +Q)W =WTDW

where Q is a symmetric positive-semide�nite matrix, we can rewrite (34) as

‖Sh‖�′h = sup
W∈D

UTGW√
WTDW

(38)

Of course, the condition W∈D is su�cient to guarantee that the seminorm in the denominator
can be used as a norm. Summarizing, the inequality (33) can be written in matrix form as

inf
U∈D

sup
V∈D

UTGV

sup
W∈D

UTGW√
WTDW

√
VTSV

¿� (39)

We show in Appendix II that the following bound can be derived for the inf–sup value �:

�¿�∗=
√
�min =�max (40)

where �min stands for the smallest nonzero eigenvalue of D, and �max is the largest eigenvalue
of S.
To analyse the behaviour of an element, we calculate �∗ for a sequence of meshes obtained by

successive re�nements and plot lg(�∗) vs. lg(1=N ), where N stands for the square root of the total
number of elements. If we see that the value �∗ converges to zero, the element fails the inf–sup
test, and thus does not satisfy the inf–sup condition (15). Conversely, if �∗ stabilizes away from
zero, we conclude that the test is passed.

4.2. From �′
h to �

′

We re�ne the �nite element space with a characteristic mesh size h, simply by transforming
each element j, j=1; : : : ; N 2 to the reference element K through a covariant transformation, then
subdividing K into four ‘subelements’ Ki, i=1 : : : 4, and transforming the resulting functional
space back to j (Figure 1 demonstrates this procedure for a four-node element). We call the
resulting space for the shear term �h=2. The next re�nement would give us �h=4 and so on. Clearly,
we have that �h⊆�h=2⊆�h=4⊆ · · ·⊆�h=n⊂�, and increasing the re�nement, we can approach the
continuous space � as closely as we want by our �nite element discretization. Moreover, for
Sh ∈�h, we have

‖Sh‖�′h=n = sup
fh∈�h=n

(Sh; fh)
‖fh‖�h=n

−→
n→∞ ‖Sh‖�′ (41)
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Figure 1. �h→�h=2 transformation for a reference four-node element

so that, if we consider

�n(h)= inf
Sh∈�h

‖Sh‖�′h
‖Sh‖�′h=n

(42)

we can �nd an estimate (for large n) for the constant

�∞(h)= inf
Sh∈�h

‖Sh‖�′h
‖Sh‖�′

(43)

If the constant �∞(h) does not converge to zero as h tends to zero, that is if

�∞(h)¿�¿0 (44)

for some � independent of h, we can conclude that the �′h and the �
′ norms, for the �nite element

spaces under analysis, are equivalent (with constants independent of h), so that the two inf–sup
conditions, (15) and (33) are in fact equivalent.

Remark 3. In some cases, it is possible to prove analytically that there exists a constant c,
independent of h, such that19

�2(h)6c�∞(h) (45)
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so that, in practice, it is su�cient to check whether �2(h) is bounded from below by a positive
constant independent of h:

�2(h)¿c1¿0 (46)

Clearly, (44) then follows from (45) and (46) with �= c1=c.

Hence, in general, the essence of our test is to evaluate a lower bound for �∞(h) as h→ 0, and
we require this bound not to converge to zero.
To compute �n(h) we �rst rewrite it, according to the de�nitions (34) and (41) as

�n(h)= inf
Sh∈�h

sup
fh∈�h

(Sh; fh)
‖fh‖�h

sup
Zh∈�h=n

(Sh; Zh)
‖Zh‖�h=n

(47)

Then, in order to rewrite (47) in matrix form, we de�ne

Sh = B
U; fh=B
V; B
 : Rm→�h; U; V∈Rm

‖fh‖�h =
√
V
T
DV; G=(B

T

 ;B
); D; G∈Rm × Rm

Zh = B
V; B
 : Rm→�h=n; V∈Rm; ‖Zh‖�h=n =
√
VTDV

D∈ Rm × Rm; G=(BT
 ;B
); G∈Rm × Rm

D= Rm\ker(G); D= IRm\ker(D)
where m and m are dimensions of the nodal point displacement vectors corresponding to the spaces
�h and �h=n, respectively. Substituting these expressions into equation (47), we obtain

�n= inf
U∈D

sup
V∈D

V
T
GU√

V
T
DV

sup
V∈D

VTGU√
VTDV

(48)

We show in Appendix III that the following bound for �n(h) can be found

�n(h)¿�∗n (h)= 
min
√

�min
�max
max

(49)

where 
min is the smallest non-zero eigenvalue of G; �min is the smallest nonzero eigenvalue of
D; �max stands for the largest eigenvalue of D; and 
max is calculated as the largest eigenvalue
of the matrix T=GTG. Therefore, the following numerical procedure can be applied to study the
behaviour of �n:

(1) To de�ne the starting space �h, we choose the mesh which was used to obtain the �rst
point, k =1, on the graph for the inf–sup test in the �′h -norm. Next, we calculate the values
�∗n , n=1; 2; 4; 8; : : : ; M for some M , and plot lg(�∗n ) vs. lg(1=n).
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(2) The sequence described above is repeated for every point, k =2; 3; : : : , on the �′h -graph,
where M may decrease with k (see Section 5), and we check whether the value �∗n (h)
remains bounded from below by some positive constant as h→ 0.

We refer to this scheme as the �n-test. Note that since 
min and �max are associated with the
starting space �h, the values do not change with n, so that they should be calculated only once for
every point k (in fact, we can cancel out these terms, rescaling �n in (49) by

√
�max=
min = const).

Also, we note that T∈Rm × Rm; therefore, the only expensive calculation (i.e., solution for the
largest eigenvalue of an m-by-m matrix) is to get �min.
Finally, we note, in summary, that for our complete test to be passed, the inf–sup test in the

�′
h -norm must be passed and the �n-test must be passed as well.
This numerical test is performed, in the �rst instance, using uniform meshes, and if not passed,

clearly the inf–sup condition is not satis�ed. However, in practice, distorted meshes are employed,
and therefore the inf–sup test should also be passed in such situations.
While it is important to perform the inf–sup test in the �′h -norm for distorted meshes, we deem

it su�cient to perform the �n-test only for uniform meshes.
Hence, for the complete test to be passed, �∗(h) in (40) must stabilize at a value greater

than zero, and �∗n (h) in (49) must do so too. If this is not the case, strictly, the element under
consideration may still be a useful element, but our test was not able to identify it as such. In
theory, we then cannot make a de�nitive judgement regarding the reliability and optimality of
the element. However, we can be suspicious that these properties are not present, and indeed our
experience tells us that the element will not be reliable.

5. NUMERICAL EXAMPLES

5.1. Problem considered in the tests

In this section we consider a square plate with all edges clamped, loaded by a uniformly
distributed load p (see Figure 2). To compare the results of numerical simulations with our
predictions, we assume that the plate is thin enough to obey the Kirchho� theory. Then, for
Poisson’s ratio �=0:3, the maximal transverse displacement is

wmax =w(L=2; L=2)=0·00126pL
4

D
The geometry and material characteristics are L=100mm, E=2× 105 MPa, �=0·3, k =5=6.

5.2. Test predictions

Following the procedure developed in the previous sections, we apply the tests, given by equa-
tions (40) and (49) to meshes in the domain


= {(x1; x2)∈ (0; L)2}
to four- and nine-node displacement-based elements (the QUAD4 and QUAD9 elements) as well
as to the elements of the MITC family.
Figure 3 shows the numerical results of the inf–sup test in the �′

h -norm for uniform meshes, and
Figure 4 shows these results for distorted meshes. Figure 5 gives the results of the �n-test (using
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Figure 2. Problem considered in the tests; clamped plate subjected to a uniform load

Figure 3. Inf–sup test of quadrilateral plate bending elements in the �′h-norm (uniform meshes with square elements).
We used 1× 1; 2× 2; 4× 4; 8× 8 and 16× 16 meshes

uniform meshes). The distorted meshes used in all tests (and solutions reported below) are given
in Figure 6.
The �gures show that the inf–sup test in the �′h -norm is not passed for the displacement-based

elements when the distorted meshes of Figure 6 are considered. However, the test is passed by

? 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3639–3663 (1997)



3654 A. IOSILEVICH, K. J. BATHE AND F. BREZZI

Figure 4. Inf–sup test of quadrilateral plate bending elements in the �′h-norm (distorted meshes of Figure 6)

Figure 5. (a) �n-test of quadrilateral plate bending elements (uniform meshes with square elements). Starting mesh is the
2× 2 mesh (k =1)
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Figure 5. (b) �n-test of quadrilateral plate bending elements (uniform meshes with square elements). Starting mesh is the
4× 4 mesh (k =2)

Figure 5. (c) �n-test of quadrilateral plate bending elements (uniform meshes with square elements). Starting mesh is the
8× 8 mesh (k =3)
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Figure 5. (d) �n-test of quadrilateral plate bending elements (uniform meshes with square elements). �∗2 (h) values corre-
sponding to k =1; 2; 3

Figure 6. Distorted meshes used for the tests: (a) 2×2 mesh; (b) 4× 4 mesh; (c) 8× 8 mesh; and (d) 16× 16 mesh

the nine-node element using uniform meshes. This points out the importance of using distorted
meshes in the test.
The �n-test is also not passed by the four-node displacement-based element. While this test is

passed by the nine-node diplacement-based element using uniform meshes, the complete test is
not passed because the test in Figure 4 is failed.
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Figure 7. Finite element solution for the transverse displacement w (mm), for the case L=t=10; 000; p=1·454× 10−7 MPa;
the Kirchho� theory solution is wmax = 1mm; 8× 8 uniform meshes for four-node elements, 4× 4 uniform meshes for nine-

node elements: (a) QUAD4 element; (b) MITC4 element; (c) QUAD9 element; (d) MITC9 element

Hence, in summary, we see that the MITC4 and MITC9 elements pass the complete test, while
the displacement-based elements fail it.
Figures 7 and 8 show the numerical results for the transverse displacement w(x1; x2) for the case

L=t=10; 000, p=1·454× 10−7 MPa, using uniform and distorted meshes.† There are no surprises
in these results, including the observation that the nine-node element locks when the distorted
mesh is used. However, here we want to point out that these results are in complete agreement
with the results of the inf–sup test, and show once again that the MITC elements work well in
contrast to the displacement-based elements.

† The solution is depicted using linear interpolation between the mesh nodes, though in fact, the �nite element solution
for the nine-node elements is quadratic.
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Figure 8. Finite element solution for the transverse displacement w (mm), for the case L=t=10; 000; p=1·454× 10−7
MPa; the Kirchho� theory solution is wmax = 1mm; 8× 8 distorted meshes for four-node elements, 4× 4 distorted meshes
for nine-node elements (see Figure 6). (a) QUAD4 element; (b) MITC4 element; (c) QUAD9 element; (d) MITC9 element

6. CONCLUSIONS

A test methodology is proposed in this paper, which allows to numerically check whether the
inf–sup condition (15) is satis�ed for a particular �nite element discretization. The developed
methodology was applied to a number of elements; the obtained predictions are in agreement with
— and go beyond — existing analytical results, and agree with evidence from practical analyses.
Summarizing our �ndings, we report that:
The nine-node displacement-based element passed the complete test for uniform meshes, but

failed the test for a sequence of (reasonably) distorted meshes. This result underlines once more
that the element should not be used for the analysis of complex geometries and in general nonlinear
analysis. The result also explicitly demonstrates the importance of using distorted elements in the
test, in order to identify whether the element under consideration might be e�ective in general
analysis conditions.
The elements of the MITCn family (including the MITC4 element) passed all tests including

the test using a sequence of reasonably distorted meshes. While we can expect that the inf–sup
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condition in (15) is, therefore, satis�ed for uniform meshes, the e�ect of distortions should be
studied further, because, of course, di�erent kinds of distortions are possible and have di�erent
e�ects.1

The theoretical discussion and results presented in the paper show that our test methodology is
in general valuable for the evaluation of plate bending elements.

APPENDIX I

Optimality in the �′-norm

Here we present the important result of optimality of the �′-norm for the shear term in (3).

Theorem. There exists c¿0 independent of plate thickness t; such that

‖S(t)‖�′6c (50)

Proof. If we take W= R, �=w, and S= S in (3), and sum the two equations, we easily have

a(R; R) + t2

�k
(S; S)= (g; w) (51)

On the other hand, taking S=∇w in the second equation of (3), we have

(∇w;∇w)=
(
t2

�k
S;∇w

)
+ (R;∇w) (52)

Using twice the inequality ab6a2 + b2=4 (equivalent to (a− b=2)2¿0) in (52) we have

‖∇w‖2L26
t4

�2k2
‖S‖2L2 + ‖R‖2L2 +

1
2
‖∇w‖2L2 (53)

or

1
2
‖∇w‖2L26

t4

�2k2
‖S‖2L2 + ‖R‖2L2 (54)

If t is not too big, we have that (t4=�2k2)6(t2=�k), and (54) gives

‖∇w‖2L26
2t2

�k
‖S‖2L2 + 2‖R‖2L2 (55)

If we now use (51) and (55) with the Korn inequality

�‖R‖2H 16a(R; R)
the Poincar�e inequality

‖w‖2L26cP‖∇w‖2L2
and duality

(g; w)6‖g‖H−1‖w‖H 1
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with g independent of t, we can show that

‖R‖2H 1 + t2‖S‖2L2 + ‖w‖2H 16c (56)

with c independent of t.
Formula (56) is necessary to prove (50). Now we turn to the estimate for S. By the Riesz

Representation Theorem, we have that for all S∈�′ there exists a unique f∈�, such that

(S; f)= ‖S‖2�′ = ‖f‖2� = ‖S‖�′‖f‖� (57)

Our aim is to show that there exists W∈ [H 10 (
)]2 and �∈H 10 (
) such that

f= W−∇� (58)

and

‖W‖H 1 + ‖∇�‖L26c‖f‖� (59)

with c independent of t. It is clear that (56)–(59) immediately give the desired result: indeed,
taking in the �rst equation of (3) W and � as in (58), we obtain

(S; f)= (S; W−∇�) = a(R; W)− (g; �)
6 c(‖R‖H 1 + ‖g‖H−1 )(‖W‖H 1 + ‖∇�‖L2 )6const‖f‖�

and (50) follows using (57).
We are therefore left with the proof of (58) and (59). For this proof, we �rst consider an

auxiliary variational problem of the type (26):

Find X∈ [H 10 (
)]2 and p∈L2(
), such that
aS(X;X̃) + (p;∇ · X̃)= 0 ∀ X̃∈ [H 10 (
)]2
(q;∇ · X)= (q; rot f) ∀ q∈L2(
)

(60)

Note that (60) is solvable, since f∈� implies f · c=0 on @
 and, therefore,∫


rot f d
=

∫
@

f · c ds=0

In particular, we have

∇ · X= rot f (61)

and

‖X‖H 16c‖f‖� (62)

for some constant c depending only on 
.
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Now we simply set W= [−�2; �1]; then from (61) and (62) we have

rot W= @�1
@x1

+
@�2
@x2

=∇·X= rot f (63)

‖W‖H 1 = ‖X‖H 16c‖f‖� (64)

We remark that

rot(W− f)= 0 in 


(W− f) · c=0 on @


which implies the existence of a (unique) �∈H 10 (
) such that
∇�= W− f (65)

From (65) and (53) we immediately have (58) and (59), and the proof is complete.

APPENDIX II

Derivation of the inf–sup test in the �′
h-norm

Let us �rstly simplify the expression for ‖Sh‖�′h as given by equation (38). Since for a positive-
semide�nite real-valued n-by-n symmetric matrix A we have

√
�min ‖V‖26

√
VTAV6

√
�max ‖V‖2 ∀V∈D=Rn\ker(A) (66)

where �min and �max are the smallest nonzero and the largest eigenvalues of matrix A respectively,
we can rewrite (38) as follows:

‖Sh‖�′h = sup
W∈D

UTGW√
WTDW

6
1√
�min

sup
W∈D

UTGW
‖W‖2 =

1√
�min

‖GU‖2 (67)

where we made the second transformation invoking the Cauchy–Schwarz inequality for real
numbers‡ with W=U.
Substituting (67) into (39), we obtain

inf
U∈D

sup
V∈D

UTGV

sup
W∈D

UTGW√
WTDW

√
VTSV

¿
√
�min inf

U∈D
sup
V∈D

UTGV

‖GU‖2
√
VTSV

¿

√
�min
�max

inf
U∈D

sup
V∈D

UTGV
‖GU‖2‖V‖2

=

√
�min
�max

inf
U∈D

‖GU‖2
‖GU‖2 =

√
�min
�max

‡ The Cauchy–Schwarz inequality for two vectors U;V∈Rn, is
UTV6‖U‖2‖V‖2

and the equality is reached when U=V
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where the �rst inequality follows from (66); then we used the Cauchy–Schwarz inequality with
V=U, and invoked the condition U∈D to cancel out the in�mum expression. Summarizing, we
obtain

inf
V∈�h

sup
vh=(Wh; �h)∈Vh

(Sh; Rh(∇�h − �h))
‖V‖�′h ‖vh‖V

¿

√
�min
�max

APPENDIX III

Derivation of the �n-test

In order to obtain the in�mum in (48), we calculate a lower bound for the expression in
the numerator, and an upper bound for the denominator; to do that we �rstly apply (66) to
the corresponding norm matrices, and secondly, use the Cauchy–Schwarz inequality in the same
manner as we did to derive (40):

sup
V∈D

VTGU√
VTDV

¿
1√
�max

sup
V∈D

VTGU
‖V‖2

=
1√
�max

‖GU‖2¿ 
min√
�max

‖U‖2

sup
V∈D

VTGU√
VTDV

6
1√
�min

sup
V∈D

VTGU
‖V‖2 =

1√
�min

√
UTGTGU6

√

max
�min

‖U‖2

Substituting these expressions into equation (48), and invoking the condition U∈D, we obtain

�n= inf
Sh∈�h;

sup
fh∈�h

(Sh; fh)
‖fh‖�h

sup
Zh∈�h=n

(Sh; Zh)
‖Zh‖�h=n

¿
min

√
�min

�max
max
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