Tracer diffusion in colloidal gels
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Computer simulations were done of the mean square displacement (MSD) of tracer particles in
colloidal gels formed by diffusion or reaction limited aggregation of hard spheres. The diffusion

coefficient was found to be determined by the volume fraction access

ible to the spherical tracers

(o) independent of the gel structure or the tracer size. In all cases, critical slowing down was
observed at ¢, = 0.03 and was characterized by the same scaling laws reported earlier for tracer
diffusion in a Lorentz gas. Strong heterogeneity of the MSD was observed at small ¢, and was

related to the size distribution of pores.

PACS numbers:

Irreversible aggregation of colloidal particles such as
proteins [1], clay [2] or oil droplets [3] in solution often
leads to the formation of a percolating structure that
can resist stress. Recently, the colloidal gel formation
has been studied in detail for diffusion limited cluster ag-
gregation of hard spheres using off-lattice computer sim-
ulations [4] and [3]. The gels have locally a self-similar
structure characterized by a fractal dimension and are
homogeneous beyond a characteristic length scale that
decreases with inereasing volume fraction of the particles
().

The transport properties of tracer particles in colloidal
gels obviously depend on the volume fraction of the gels
that is accessible to the particles (¢,). The accessible
volume, or porosity, depends on the size of the tracers;
if the tracers are very small compared to the colloids,
¢y is close to 1 — ¢ [6], but it decreases for a given ¢
with increasing size of the tracers. Consequently, the
long time diffusion coefficient () of the tracers decreases
with increasing ¢ or tracer size and goes to zero at a
critical value of ¢,. When the accessible volume is small
it consists of randomly branched pores that can be of
finite size or else percolate through the system.

It has long been known that transport close to the dy-
namical arrest can be described in terms of diffusion on a
percolating network [7]. The geometrical and transport
properties of percolation have been investigated exten-
sively on lattices using computer simulations [8] [9] and
[10]. The diffusion coefficient of particles was found to
£o to zero at the percolation threshold following a power
law: D o e¥, where ¢ = (¢ — ¢5)/¢S is the relative
distance of the accessible volume fraction to the thresh-
old value (¢%). Close to the threshold the mean square
displacement (MSD) of the tracers becomes sub-diffusive
meaning that the MSD has a power law dependence on
time: (r?) oc t* with k < 1 [7] and [11].

In standard lattice simulations the probability to move
between neighbouring sites of the network is constant.
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However, in real systems the pores have a broad contin-
uous range of channel diameters and therefore the local
mobility of tracers varies in space. In order to account
for this effect, the lattice model was extended to include
a power law distribution of probabilities to move between
sites [8]. If the exponent of this power law is less than
unity, the mobility over large distances is dominated by
the lowest probability, which decreases with increasing
distance. For this reason g and k are reduced to an extent
that depends on the exponent. Two different estimates of
g and k were given for the ease of randomly distributed
overlapping spherical obstacles, i.e. obstacles forming a
so-called Lorentz gas, leading to slightly different values
of p and k: 2.38 and 0.36 [8] or 2.88 and 0.32 [9].

Recently, detailed off-lattice simulations were reported
on the tracer diffusion in porous media formed by a
Lorentz gas at different densities very close to the perco-
lation threshold. [11]. The aim was to verify the ad-
equacy of the extended lattice model for this system.
Anomalous diffusion was observed at the threshold and
the exponents p and k were found to be consistent with
the predictions by Machta et al [9]. The critical value of
the accessible volume fraction was ¢f = 0.0298 close to
values found with other simulations [10] and in experi-
ments on real systems [12].

However, a Lorentz gas of overlapping spherical ob-
stacles is not a realistic model for particle gels. Here
we investigate the transport in particle gels formed by
irreversible aggregation of hard spheres using computer
simulations. Two limiting cases are gels formed by diffu-
sion limited aggregation (DLCA) in which a rigid bond
is formed at each collision and reaction limited aggre-
gation (RLCA) in which the bond formation probability
goes to zero. Irreversible aggregation leads to the forma-
tion of self-similar aggregates with a fractal dimension
1.8 for DLCA and 2.1 for RLCA [13]. When the aggre-
gates have grown to the extent that they fill up the space
they connect into a system spanning structure. Such gels
can actually be made and the diffusion of tracer particles
in such systems can be determined experimentally using
e.g. confocal laser scanning microscopy [14] or pulsed
field gradient NMR [15]. In order to investigate the ef-
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FIG. 1: The accessible volume fraction as a function of ¢ for
tracer spheres in FHS (D), and DLCA (A) and RLCA (O)
gels of spheres with the same diameter as the tracers. The
inset shows the same data on a logarithmic scale for ¢.. The
solid line represents values calculated using the Carnahan-
Starling equation. The dashed lines represent the limiting
low concentration behaviour, see text.

fect of spatial correlation caused by aggregation, we also
studied tracer self-diffusion in systems of frozen randomly
distributed hard spheres (FHS).

Gels were simulated by irreversible cluster-cluster ag-
gregation starting from a random distribution of hard
spheres with unit diameter until all particles are con-
nected, see [4] for details. The diffusion of tracers was
simulated by small displacements in a random direction.
If the displacement led to overlap the movement was ei-
ther refused or truncated at contact. The step size was
chosen sufficiently small so that reducing it further had
no significant effect on the results. The time unit was
chosen as the time needed for a tracer to diffuse over its
diameter at infinite dilution, which is about 0.4s for a
particle with a diameter of lpm in water at room tem-
perature. Simulations were done in a box with length 50
using periodic boundary conditions. We checked for finite
size effects by varying the box size, and all results shown
here are not influenced by finite size effects. We averaged
over several hundred paths of randomly inserted tracers
and 10 independent system configurations. ¢, was calcu-
lated as the probability that a tracer could be randomly
inserted without overlap.

We present first results for the case that the tracer
particles have the same diameter (d) as the obstacle par-
ticles, after which we discuss the effect of varying the
tracer size. In Fig. 1 the dependence of ¢, is plotted
as a function of ¢ for randomly distributed hard spheres

and gels formed by DLCA and RLCA. In the latter case,
by increased with decreasing bond formation probability,
but the variation became negligible below 10~%, which
we have taken as the RLCA limit. For a given con-
centration, ¢, is larger for RLCA gels than for DLCA
gels which in turn is larger than for the hard sphere sys-
tem. Gels have a larger ¢,, because the particles are con-
nected and therefore have a larger fraction of overlapping
excluded volume. ¢, is larger for RLCA than DLCA,
because RLCA clusters are denser. For non-interacting
hard spheres ¢ is directly related to the chemical poten-
tial (fres): tha = dexp(—pies) [16], and can be calculated
using the so-called Carnahan-Starling equation [17] for
Mes, see solid line in Fig 1. For randomly distributed
hard spheres the initial dependence of ¢, on ¢ is given
by: ¢ = 1 — (1 + b)*, where b is the size ratio of the
tracers over the obstacles [6]. For gels the initial depen-
dence can be estimated by assuming that the gels consist
of strands of touching spheres: ¢, = 1—@(1+3b+ 1.56%).
The dashed lines in Fig 1 show that these estimates are
only valid for small ¢,.

Images of the accessible volume in DLCA gels at dif-
ferent ¢ are shown in Fig. 2. At low volume fractions
(Fig. 2a), almost all pores percolate through the system
(yellow), but with increasing ¢ (Figs 2b and 2e) the frac-
tion of finite pores increases until above a critical value
(¢¢) (Fig. 2d) there is no longer a percolating pore. For
clarity, we have shown the percolating pore separately in
Figs 2c and 2f.

The MSD averaged over all tracers is shown in Fig. 3
for DLCA gels at different ¢. The results are similar to
those obtained by Héfling et al [11] for the Lorentz gas.
Initially, the tracers diffuse freely until they hit the ob-
stacles. Then the displacement of tracers is anomalous
until (r?) exceeds a characteristic value (£?) after which
it becomes again diffusional with a reduced diffusion co-
efficient. £ represents the correlation length of the perco-
lating pores and diverges at the threshold. The tracers
in finite size pores are trapped and do not contribute to
{(r?} at long times. For ¢ > ¢, all the tracers are trapped
and {r’) stagnates at twice the averaged squared radius
of gyration of the pores ((R:j)). This follows from the fact
that the average distance a tracer has moved in a finite
size pore at ¢ — oo is the same as the average distance
between two randomly placed tracers.

In Fig. 4, the dependence on ¢ of the long time dif-
fusion coefficient relative to the free diffusion coefficient
(D) is compared for DLCA and RLCA gels and frozen
random hard spheres. For a given volume fraction, D is
close for the two gels, but is smaller for FHS. We note that
for systems of freely moving obstacles D decreases much
more slowly with increasing ¢ [18]. D goes to zero at ¢,
equal to 0.248 £+ 0.003, 0.279 £+ 0.001 and 0.295 + 0.005,
for FHS, DLCA and RLCA, respectively.

The same results are plotted as a function of ¢, in Fig.
5. For comparison we have included in Fig. 5 results
obtained for the Lorentz gas from [11]. Here, and in [11],
only the diffusion of tracers in the pores is considered.



FIG. 20 Images of the acecssalbbe volome for DLOCA gels ar
different vnlues of &, Percolating and isolated pores are in-
dicated in vellow and red, respectively. For clarity figures 2o
and 2f show just the pevcolating pore of systems shawn in
Hgures 3 and 2o, respectively,

Other results for the Lorentz gas wore obtained in the
eontext of the conductivity that is proportional to point
tracer diffusion [6] and [19). In these simokations the
average was taken over all tracers ineluding the immabile
omes placed 1y the obstacles so that D s veduced by a
factor dy. Alver correction, these esults are close to the
resulis shown in Fig. 5. Experimental results derived
from conductivity measuremments on fused gpherical glass
Dsscds i water [12] are close to the stmulition resulis,
For oy close to unity £ should decrease as 5 [240].
The full dependetnee can be deseribed approcinately by
the following empirical equation which has the predicted
limitiog bebawvior for dy =+ 1 amd oy — &5 2
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FIG. 3: M50 of tracer spheres in DLCA gels of spheres with
the same diameter as the trweers ot different o, indicated in
ther figuire.

with of, = (L03 and g = 2.8 see solid lines in Fig. 5

It appears that ¢ is the parameter that determines
the dilfusion coclicient for all these dilferent syvstems;
the variation of ¢y fora given D is less than 205, In
each case [ goes (o 2ero at a eritical value (0] close to
0,03, bue the setual value of ¢ & not universal as noted
virrlier by Rintoul [10]. The inset of Fig. 5 shows the data
plotted as a function of the distanes @0 the percolation
threshold 2. For the Lorentz gas we have used the precize
value of ¢f caleulated by Rintoul; ¢f = 00301 £ 00003,
For the ather systems we do not have the same precision,
bt wer fonned that the data superimpose close o &) 10 we
choose o) = (L0209 fur FHS, ) = 0.002655 for DLOA gels
and of, = 0,033 for RLCA gels.

The elopendenee of L2 elose b the percalation Uaresbkl
is compatible with a power law: I} x . However, there
i eonsiderabile pocertainty i the value of the expoient
due fo the strong correlation between f and o For
instance, Hifling et al. [11] fixed g ar 2.88 predicted by
Machta ot al. [9] and found in this way @ = 00208
Fixing ¢ st 00300 we find g = 2.5, In faet prodictions
for g from [8] and [9] are both eompatible with the data,
see Fig, 5, and we are not in the position to decide which,
il any, s correct. Nevertheless, g s clearly larper than the
wvidue 188 obtaines] from Iattice simalations of diffusion
in percolating svatems [7].

The power law exponent, k, of the anomalous MSD at
the tlireshold i celated voopoas [T & = 20— 8/2) /(20 +
ji= 4, where @ characterizes the dependenes of the vol-
wme fraction of the percolating poves (oF) close to the
threshold: @ x = and ¢ characterizes the divergence
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FIG. 4: Relative diffusion coefficient of tracer spheres as a
function of ¢ in FHS (), and DLCA (A) and RLCA (O)
gels of spheres with the same diameter as the tracers. The
inset shows the same data on a logarithmic scale for D.

of the correlation length: & oc e™. If one only considers

the displacement of tracers in the percolating pore the
exponent is larger:k’ = 2v/(2v + p — ). Fig. 6 com-
pares the average MSD at the percolation threshold of
tracers placed anywhere in the accessible volume with
that of tracers placed in the percolating pore. Utilizing
the values for v = 0.88 and /4 = 0.41 obtained from lat-
tice simulations [21] gives & = 0.36 and k' = 0.47 for
po=233 and k = 0.32 and ¥ = 0.42 for p = 2.88.
The latter appear to describe the data better, but unfor-
tunately, accurate determination the limiting power law
hehaviour is largely beyond the current computer capaci-
ties, given the fact that the limiting power law behaviour
of the cluster size distribution is not yet observed even
for lattice sinulations with a box size of 1023 [22].

The displacement of tracers is highly heterogeneous
close to the percolation threshold and can be character-
ized in terms of the probability distribution that tracers
have moved a distance r? at time t (P(r?)). For ¢, > ¢¢,
we need to distinguish between the fraction (¢2) of trac-
ers in the percolating pore and the fraction (1 — ¢?) in
finite size pores. P(r?) of tracers in the percolating pores
is Gaussian if the MSD is much larger than &2 and {r?)
increases linearly with time. On the other hand, P(r?, t)
of tracers trapped in a finite size pore becomes indepen-
dent of £ and (r?) stagnates at 2(R?7). Therefore P(r?)
splits up into two peaks: P, representing tracers in the
percolating pore that displaces linearly with ¢ and P,
representing tracers in finite size pores that stagnates,
with amplitudes ¢ and (1 — ¢), respectively. The split-
up is illustrated in Fig.7a where P(r?) is shown at three
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FIG. 5: Relative diffusion coefficient of tracer spheres as a
function of ¢, in FHS (), and DLCA (A) and RLCA (O)
gels of spheres with the same diameter as the tracers. The
results for the Lorentz gas from [11] (V) and experimental
from [12] (e) are also shown for comparison. The solid line
represents Eq. 1 where we have used ¢; = 0.03 and p = 2.8.
The inset shows the same data plotted as a function of ¢ =
(da — ¢a)/ ¢4 on a logarithmic scale. The straight lines in the
inset represent the predicted power law dependences from [8]

(short dashed) and [9] (long dashed).

times for a DLCA gel just above the percolation threshold
(ga = 0.0276). At the shortest time the MSD is still much
smaller than £°, and one observes a single distribution.
The split-up starts when (r®) ~ £2 and is clearly visible
at the longest time when (r?) is much larger than &2, Fig.
7h shows the distributions at t+ = 105 for three values of
ta. At ¢ = 0.0265, i.e. smaller than ¢f. only one peak
is observed representing the pore size distribution, which
is broad close to the threshold. At ¢, = 0.056 almost all
accessible volume percolates and a narrow peak is seen
that shifts to larger r? with time. For ¢, = 0.032, i.e.
just above ¢f, both peaks representing freely diffusing
and trapped tracers are observed.

The same features were found when ¢, was varied by
varying the tracer size at constant obstacle volume frac-
tion. As mentioned ahove, ¢, decreases with increasing
tracer size starting from ¢, = 1 — ¢ for point tracers see
inset of Fig. 8. Examples of the dependence of D on ¢,
are given in Fig. 8 for different tracer diameters between
0.1 and 1 for gels and FHS at fixed volume fractions.
For the Lorentz gas there is a strict equivalence between
the diffusion of point tracers and finite size tracers at the
same ¢, [6]. Similar equivalence exists between finite size
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FIG. 6: Comparison of the MSD of tracers in a DLCA gel at
the percolation threshold placed anywhere in the accessible
volume () or just in the percolating pore (V). The straight
lines represent the predicted power law dependences in the
system and in the percolating pore from [8] (short dashed)
and [9] (long dashed).
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FIG. 7: Distribution of the MSD of tracers in a DLCA gel
for a fixed ¢, = 0.0276 close to the percolation threshold at
different times () and for a fixed ¢ = 10° at different ¢, (b),
as indicated in the figure.

tracers in FHS and point tracers in randomly distributed
semi-penetrable spheres. It was found, for a limited range
of ¢, that D was the same for a given ¢, for tracers with
different sizes in FHS [6]. Fig. 8 shows that the effect of
tracer size on D is essentially determined by ¢, also for
gels, but the relationship is not exact.

In conclusion, tracer diffusion in colloidal gels is slower

than in systems of freely diffusing hard spheres, but faster
than in frozen randomly distributed spheres. The latter
effect is due to the increase of the accessible volume when
the particles gel. D is mainly, but not fully, determined
by ¢. independent of the gel structure and the tracer
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FIG. 8: Relative diffusion coefficient of tracer spheres with
different diameters between 0.1 and 1 as a function of ¢, in
FHS at ¢ = 0.35 (circle), a DLCA gel at ¢ = 0.49 (triangle)
and a RLCA gel at ¢ = 0.29 (square) formed by spheres of
unit diameter. The solid line is the same as in Fig. 5. The
inset shows the dependence of ¢ on the tracer diameter.

size. ¢, can thus be deduced from a measurement of D.
The tracer diffusion becomes zero at a critical value of
accessible volume ¢, ~ 0.03 that is almost the same for
gels and frozen hard spheres. The dependence of D on
¢, close to ¢¢ can be described in terms of a power law
dependence on the distance to ¢5. The MSD at ¢¢ is
anomalous and increases as a power law with time with
an exponent less than unity. The exponents of the two
power law relationships are related and are consistent
with the percolation model.
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