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ABSTRACT

This paper shows how to obtain accurate and efficient trajectory calculations for spherical geodesic grids in
Cartesian space. Determination of the departure points is essential to characteristic-based methods that trace the
value of a function to the foot of the characteristics and then either integrate or interpolate at this location. In
this paper, the departure points are all computed in relation to the spherical geodesic grids that are composed
of a disjoint set of unstructured equilateral triangles. Interpolating and noninterpolating trajectory calculation
approaches are both illustrated and the accuracy of both methods are compared. The noninterpolating method
of McGregor results in the most accurate trajectories. The challenge in using McGregor’s method on unstructured
triangular grids lies in the computation of the derivatives required in the high-order terms of the Taylor series
expansion. This paper extends McGregor’s method to unstructured triangular grids by describing an accurate
and efficient method for constructing the derivatives in an element by element approach typical of finite element
methods. An order of accuracy analysis reveals that these numerical derivatives are second-order accurate.

1. Introduction

The solution of partial differential equations on the
sphere is of prime importance in meteorology and
oceanography. The proper coordinate system would ap-
pear to be the spherical coordinates but this system poses
some challenging problems at the poles not only for
Eulerian formulations of the equations but for Lagrang-
ian formulations as well. The pole problem can be over-
come in a variety of ways, such as the use of Cartesian
rather than spherical coordinates to write the differential
equations. This approach was used in Giraldo (1997)
for the advection equation. This approach may also be
used for the shallow water equations by using the La-
grange multiplier formulation of Côté (1988). Côté
writes the equations in Cartesian coordinates but then
includes an extra forcing term obtained by using La-
grange multipliers. This forcing term constrains the mo-
tion of all fluid particles to remain on the sphere. We
are very much interested in this formulation as we are
currently developing a weak Lagrange–Galerkin shal-
low water model on the sphere using Cartesian coor-
dinates [see Giraldo (1997) for details of the weak La-
grange–Galerkin method]. For this reason, this paper
only deals with the determination of the departure points
in Cartesian space.

Corresponding author address: Francis X. Giraldo, Naval Research
Laboratory, 7 Grace Hopper Ave., Monterey, CA 93943.
E-mail: giraldo@nrlmry.navy.mil

McGregor (1993) introduced an economical departure
point calculation procedure that does not involve inter-
polation. His scheme is very efficient and accurate but
the implementation of the method was only illustrated
for rectangular grids. This paper shows the implemen-
tation of McGregor’s approach on unstructured trian-
gular grids such as those composing the spherical geo-
desic grids.

2. Governing equation

Let us consider a simple equation for our study such
that we have analytic values for the solution and the
trajectories. In spherical coordinates the advection equa-
tion for the variable w is

]w ũ ]w ỹ ]w
1 1[ ]]t a cosu ]l a ]u

1 ]ũ 1 ]ỹ ỹ
1 w 1 2 tanu 5 0, (1)1 2[ ]a cosu ]l a ]u a

where a is the radius of the sphere, are the zonal(ũ, ỹ)
and meridional velocity components, and (l, u) are the
longitudinal and latitudinal coordinates. The first brack-
eted term represents the operator u · =w and the second
term represents w= · u. However, instead of using this
form, let us look at the Cartesian form
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]w ]w ]w ]w ]u ]y ]w
1 u 1 y 1 w 1 w 1 11 2[ ] [ ]]t ]x ]y ]z ]x ]y ]z

5 0 (2)

used in Giraldo (1997). This equation can now be writ-
ten in the following compact form:

]w
1 = · (uw) 5 0, (3)

]t

which is the conservation form of the advection equa-
tion where w is some conservation variable, and u is
the velocity vector. In Giraldo (1997), this equation was
solved using the weak Lagrange–Galerkin method. Be-
ginning with the method of weighted residuals with
weight (i.e., basis) function c

]w
c 1 = · (uw) dV 5 0,E [ ]]t

V

on domain V and integrating by parts such that

]w ]wc ]c
c 5 2 w

]t ]t ]t

and

c= · (uw) 5 = · (uwc) 2 (uw) · =c,

we get

]wc ]c
1 = · (uwc) 2 w 1 u · =c dV 5 0.E 1 2[ ] [ ]]t ]t

V

The basis functions c are chosen such that the second
term in brackets disappears. In other words, the basis
functions are chosen such that they are constant along
the characteristics. This results in the simplified system

]wc
1 = · (uwc) dV 5 0 (4)E ]t

V

along with

]c
1 u · =c 5 0

]t

dx
5 u(x, t),

dt

where

d ]
5 1 u · =

dt ]t

denotes the total (or Lagrangian) derivative. By virtue
of the Reynolds transport theorem, (4) now becomes

d
wc dV 5 0,Edt

V

which, after integrating along the characteristics, gives

w(x , t 1 Dt)c(x , t 1 Dt) dVE A A A

VA

5 w(x , t)c(x , t) dV , (5)E D D D

VD

where A and D denote arrival and departure points. [For
further details on this method, refer to Giraldo (1997).]
However, this is clearly not the only method of solving
this equation using characteristic-based methods. In the
case of a divergence-free flow, the Lagrangian form of
(3) is

dw
5 0 (6)

dt

dx
5 u(x, t). (7)

dt

Discretizing this equation by the semi-Lagrangian meth-
od and then applying the finite element method, yields
the following relation:

w(x , t 1 Dt)c(x , t 1 Dt) dVE A A A

VA

5 w(x , t)c(x , t 1 Dt) dV , (8)E D A A

VA

which is equivalent to

w(xA, t 1 Dt) 5 w(xD, t),

which is the typical semi-Lagrangian formulation for
this equation regardless of which spatial discretization
method we select. Note that the resulting equations for
both methods are equivalent if and only if the flow is
divergence free. The main difference between the two
approaches is that (5) depends on integration while (8)
on interpolation. The integration can be carried out ex-
actly or by Gaussian quadrature. The interpolations, on
the other hand, are a bit more complex on unstructured
grids and perhaps the best approach is to use the kriging
method described in Le Roux et al. (1997), although
Lagrange interpolation on the triangles could certainly
be used. However, the accuracy of both methods relies
mainly on how accurate the trajectories are calculated;
namely, how best to solve (7). The solution of this equa-
tion on unstructured triangular grids is the scope of this
paper.

3. Test case

Numerical experiments are performed on the advec-
tion equation on the sphere, which is defined by (1).
The initial condition is given as in Williamson et al.
(1992) by the cosine wave
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
h pr 1 1 cos if r , Rw(x, 0) 5  1 22 R
0 if r $ R,

where

h 5 1,

r 5 a arccos[sinu sinu 1 cosu cosu cos(l 2 l )],c c c

a 3p 2pa
R 5 , l 5 , u 5 0, v 5c c3 2 12 days

and the velocity field is assumed to be constant and
given by

ũ 5 1v(cosu cosa 1 sinu cosl sina)

ỹ 5 2v sinl sina,

where a determines the axis of rotation of the flow with
respect to the poles. As an example a 5 0 yields flow
along the equator. The results are reported for one rev-
olution of the initial wave that takes 12 days to complete
one full revolution about the sphere. By using the map-
ping from spherical to Cartesian space

x 5 a cosu cosl

y 5 a cosu sinl

z 5 a sinu, (9)

where

y
l 5 arctan1 2x

z
u 5 arcsin , (10)1 2a

we can write the initial conditions in terms of Cartesian
coordinates. This results in the following velocity field:

u 5 2ũ sinl 2 ỹ sinu cosl

y 5 1ũ cosl 2 ỹ sinu sinl

w 5 1ỹ cosu,

along with the following analytic solution:

wexact(x, t) 5 w(x 2 tu, 0),

which is the solid body rotation of the cosine wave about
the axis defined by a. Note that the mapping from spher-
ical to Cartesian space is only done once at the begin-
ning in order to define the problem. From then on, the
problem is solved in Cartesian space. The L2 error norm
is defined as

1/2 
2[w(x, t) 2 w (x, t)] dVE exact V

 \w\ 5 , (11)L2

2[w (x, t)] dV E exact

V 

where V represents the element triangles, in a finite
element sense. In addition to the L2 norm, two more
measures are used, namely, the first and second moments
of the conservation variable, which are defined as

w(x, t) dVE
V

M 5 (12)1

w (x, t) dVE exact

V

and

2w(x, t) dVE
V

M 5 . (13)2

2w (x, t) dVE exact

V

These values measure the conservation properties and
dissipation of the numerical method, respectively.

4. Trajectory calculations

The exact solution to (3) can be written as

wexact(x, t 1 Dt) 5 w(x 2 Dtu, t).

By applying a rotation transformation as in McDonald
and Bates (1989), we get the arrival points in the rotated
space

l9 5 arctan[cosu sin(l 2 l ),A A A a

cosu cos(l 2 l ) cosu 1 sinu sinu ]A A a a A a

u9 5 arcsin[sinu cosu 2 cosu cos(l 2 l ) sinu ],A A a A A a a

which now consist of motion about the equator, only.
Note that since all the points are stored in Cartesian
space we must use (10) in order to get the arrival points
in terms of spherical coordinates. The departure points
in the rotated space are

Dtv
l9 5 l9 2D A a

u9 5 u9,D A

where la 5 0 and ua 5 a. Using the inverse transfor-
mation, we get

l 5 l 1 arctan[cosu9 sinl9 ,D a D D

cosu9 cosl9 cosu 2 sinu9 sinu ]D D a D a

u 5 arcsin[cosu9 cosl9 sinu 1 sinu9 cosu ],D D D a D a (14)

which are the departure points in the original (unrotated)
spherical space. The departure points in Cartesian space
can now be obtained using the mapping (9). Equation
(14) gives us the exact trajectories and so we must devise
a scheme that best approximates this solution.



1654 VOLUME 127M O N T H L Y W E A T H E R R E V I E W

a. Ritchie’s method

There are many ways of integrating (7) but the most
common form in plane space has been the midpoint rule,
namely

Dt Dt
x 5 x 2 u x , t 1 , (15)M A M1 22 2

which defines a recursive scheme because xM is given
implicitly in the relation. In addition, this scheme also
requires interpolation because xM will generally not fall
on a grid point. Usually, between three and five iteration
loops [see Ritchie (1987)] are required to converge to
the solution at which point, the departure point is calcu-
lated by

Dt
x 5 x 2 Dtu x , t 1 .D A M1 22

However, we have said nothing about the order of the
interpolations but obviously the higher the order of the
interpolant, the better the trajectory accuracy, but the
greater the computer time as well. The midpoint rule
yields second-order accuracy and has been used quite
successfully in 2D planar space.

On the sphere, the midpoint rule has to be modified
such that the new departure points computed by (15)
remain on the surface of the sphere. In other words,
after each iteration we must apply the projection

a
x 5 x ,D D|x |D

where a is the radius of the sphere.
In fact, Ritchie’s method simplifies to the midpoint

rule on the surface of a sphere. In his method, we start
with a Taylor series expansion about the midpoint (t 1
Dt/2) up to second order to get

Dt Dt ]x Dt
2x(t 1 Dt) 5 x t 1 1 t 1 1 O(Dt) .1 2 1 22 2 ]t 2

Now, let xA 5 x(t 1 Dt) and xM 5 x(t 1 Dt/2) be the
arrival and midpoints, respectively. After rearranging,
we get

Dt
x 5 x 2 u ,M A M2

which is exactly equal to (15), where uM 5 u(xM, t 1
Dt/2). However, we need to add a correction factor b in
order to constrain the new iterated point to remain on
the sphere. Thus, we require

Dt
x 5 b x 2 u (16)M A M1 22

such that

|xM| 5 a.

Taking the magnitude of (16) and rearranging we get

a
b 5 ,

1/22
Dt

2a 2 Dtx · u 1 u · uA M M M1 2[ ]2

which is similar to the result in Ritchie (1987) but for
a two-time-level scheme. From Ritchie (1987), we get
the departure points from the relation

2x · xM Ax 5 x 2 x ,D M A2a

which can be simplified by using the definition of a dot
product

xM · xA 5 |xM| |xA| cosu

to

x 1 xD Ax 5 .M 2 cosu

If we take the midpoint to be the average between the
arrival and departure points and then project it on to the
sphere, we arrive at the relation

x 1 xD Ax 5 b .M 1 22

By once again enforcing that the point remains on the
sphere, we get

1/2
2

b 5 [ ]1 1 cos2u

and by using the trigonometric identity cos2u 5 2 cos2u
2 1 we now get

1
b 5 ,

cosu

which recovers Ritchie’s result. Thus, Ritchie’s method
is exactly the midpoint integration rule with a modifi-
cation that projects the iterated point onto the surface
of the sphere.

b. McGregor’s method

Another possibility for integrating (7) is the noniter-
ative scheme of McGregor. From McGregor (1993), we
write a Taylor series expansion for the departure point
x(t) about the arrival point x(t 1 Dt) along the char-
acteristics as

N n n(2Dt) d x
x(t) 5 x(t 1 Dt) 1 (t 1 Dt)O nn! dtn51

N111 O(Dt, Dx) ,

where

d ]
5 1 u · = ø û · =

dt ]t

and
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Dt
û 5 u x(t 1 Dt), t 11 22

[see McGregor (1993)]. Therefore, the only thing left
to do is to obtain the derivatives in the gradient operator
=. If we are using rectangular grids then we can write
the derivatives in the standard centered finite difference
form

]w w(x 1 Dx, y, z) 2 w(x 2 Dx, y, z)
(x, y, z) 5

]x 2Dx

]w w(x, y 1 Dy, z) 2 w(x, y 2 Dy, z)
(x, y, z) 5

]y 2Dy

]w w(x, y, z 1 Dz) 2 w(x, y, z 2 Dz)
(x, y, z) 5 ,

]z 2Dz

yielding a second-order accurate derivative in space.
Higher derivatives are also readily available reapplying
this relation. But what if the grid is unstructured? In
this case, we must compute the derivatives in a finite
element sense. But first, let us introduce the linear tri-
angular finite element basis functions on the sphere.

5. Basis functions

Linear natural coordinates on a triangle in 3D Car-
tesian space can be written as

a x 1 b y 1 c zi i ic (x, y, z) 5 , (17)i deter D

where

a 5 y z 2 y z , b 5 x z 2 x z ,i j k k j i k j j k

c 5 x y 2 x y ,i j k k j

and

)x x x )1 2 3) )
) )deter D 5 y y y ,1 2 3) )
) )z z z1 2 3

where i, j, k are cyclical, that is, if i 5 1, then j 5 2,
and k 5 3, and so on. By using the definition of the
natural coordinates (17) and the fact that the three nodes
on each triangle define a plane

N · (x 2 x1) 5 0,

where N is the outward pointing normal to the triangle
and defined by

N 5 (x 2 x ) 3 (x 2 x )2 1 3 1

) î ĵ k̂ )
) )
) )5 x 2 x y 2 y z 2 z , (18)2 1 2 1 2 1) )
) )x 2 x y 2 y z 2 z3 1 3 1 3 1

it can be shown that the natural coordinates satisfy the
condition

c1(x, y, z) 1 c2(x, y, z) 1 c3(x, y, z) 5 1

(see the appendix for the proofs and derivations con-
cerning these basis functions). This is a necessary con-
dition for a consistent and monotonic interpolation.
These natural coordinates can now be used as the finite
element basis functions. Integration by parts reveals that
any integral of the following form involving these basis
functions can be obtained in closed form by the relation

deter Da!b!g!
b gac c c dV 5 . (19)E 1 2 3 (a 1 b 1 g 1 2)!

This relation is almost identical to the closed form so-
lution for linear triangles on the plane given by Silvester
(1969). For the special case that the three-dimensional
domain lies entirely on a plane, both integration rules
are equivalent. Using these basis functions, we can now
construct the derivatives at the grid points in a finite
element sense.

Derivatives

We can construct the derivatives in the following
manner: let

3

ew (x, y, z) 5 c (x, y, z)w (20)O j j
j51

denote the value of w e within the element, cj the basis
functions, and wj the value of the conservation variable
at the vertices (grid points) of the element in question.
From (20) we get the derivatives within the element to be

3e ]c]w j
(x, y, z) 5 (x, y, z)wO j]x ]xj51

3e ]c]w j
(x, y, z) 5 (x, y, z)wO j]y ]yj51

3e ]c]w j
(x, y, z) 5 (x, y, z)w , (21)O j]z ]zj51

where

]c aj j
(x, y, z) 5

]x deter D

]c bj j
(x, y, z) 5

]y deter D

]c cj j
(x, y, z) 5 ,

]z deter D

from (17).
However, we need the derivatives on the grid points

and not within the elements. If we knew these deriva-
tives, then we could write them as
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3e ]w]w j
(x, y, z) 5 c (x, y, z)O j]x ]xj51

3e ]w]w j
(x, y, z) 5 c (x, y, z)O j]y ]yj51

3e ]c]w j
(x, y, z) 5 c (x, y, z) . (22)O j]z ]zj51

Equating these relations with (21) and employing the
finite element method, we can construct a set of integral
equations, namely

]w ]cj j
c c dV 5 c dVwE i j E i j]x ]x

V V

]w ]cj j
c c dV 5 c dVwE i j E i j]y ]y

V V

]w ]cj j
c c dV 5 c dVw , (23)E i j E i j]z ]z

V V

for i, j 5 1, . . . , 3 which is symmetric and, depending
on the node number ordering, tightly banded. Using Eqs.
(17) and (19), Eq. (23) results in the following elemental
matrix equations:

 ]w1

]x
 2 1 1   deter D ]w2 1 2 1 

24 ]x 
1 1 2  ]w3 

]x 

 a w 1 a w 1 a w1 1 2 2 3 3 deter D
 5 a w 1 a w 1 a w , (24)1 1 2 2 3 324 deter D  
a w 1 a w 1 a w 1 1 2 2 3 3

with similar relations for the y and z terms. The global
system composed of these elemental matrix equations
requires the inversion of a sparse but tightly banded
matrix. This potential bottleneck can be bypassed by
diagonalizing the elemental equations yielding

 ]w1

]x
  1 0 0 a w 1 a w 1 a w1 1 2 2 3 3     ]w 12   0 1 0 5 a w 1 a w 1 a w ,  1 1 2 2 3 3]x 4 deter D   

0 0 1 a w 1 a w 1 a w 1 1 2 2 3 3  ]w3 
]x 

which can be solved explicitly for the derivatives. The
second derivatives within the element can now be writ-
ten as

3 22 e ] w] w j
(x, y, z) 5 c (x, y, z)O j2 2]x ]xj51

3 22 e ] w] w j
(x, y, z) 5 c (x, y, z)O j2 2]y ]yj51

3 22 e ] w] w j
(x, y, z) 5 c (x, y, z) ,O j2 2]z ]zj51

that is, assuming we knew the second derivatives at the
grid points. Taking the derivatives of (22) we get

32 e ]c ]w] w j j
(x, y, z) 5 (x, y, z)O2]x ]x ]xj51

32 e ]c ]w] w j j
(x, y, z) 5 (x, y, z)O2]y ]y ]yj51

32 e ]c ]w] w j j
(x, y, z) 5 (x, y, z) ,O2]z ]z ]zj51

where the derivatives of wj are the first derivatives at
the grid points obtained from (24). Equating these two
sets of relations and once again employing the finite
element method, we obtain the equations

2] w ]c ]wj j j
c c dV 5 c dVE i j E i2]x ]x ]x

V V

2] w ]c ]wj j j
c c dV 5 c dVE i j E i2]y ]y ]y

V V

2] w ]c ]wj j j
c c dV 5 c dV , (25)E i j E i2]z ]z ]z

V V

which simplify to the following element matrix relations

2 ] w1

2]x
 2 1 1

2  deter D ] w2 1 2 1 
224 ]x 

1 1 2  2] w3 
2]x 

 ]w ]w ]w1 2 3a 1 a 1 a1 2 3]x ]x ]x deter D ]w ]w ]w1 2 3 5 a 1 a 1 a , (26)1 2 324 deter D ]x ]x ]x

]w ]w ]w1 2 3 a 1 a 1 a1 2 3]x ]x ]x 

where once again, the relations for the y and z terms
are immediately obvious. The diagonalized version
yields
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FIG. 1. The element-wise contribution of the surrounding elements
to the grid points.

TABLE 1. Derivative accuracy using centered finite differences for
the cosine function in planar space on the crisscross grid.

Grid points

] f( (]x L2

] f( (]y L2

2] f
2( (]x L2

2] f
2( (]y L2

2] f( (]x]y L2

11 3 11
21 3 21
41 3 41
61 3 61
81 3 81

0.2498
0.1127
0.0346
0.0174
0.0108

0.2498
0.1127
0.0346
0.0174
0.0108

0.5076
0.3655
0.2146
0.1602
0.1325

0.5076
0.3655
0.2146
0.1602
0.1325

0.5174
0.3288
0.2113
0.1667
0.1430

2   ] w ]w ]w ]w1 1 2 3a 1 a 1 a1 2 32]x ]x ]x ]x
 1 0 0

2     ] w 1 ]w ]w ]w2 1 2 3   0 1 0 5 a 1 a 1 a ,  1 2 32]x 4 deter D ]x ]x ]x 
0 0 1  2] w ]w ]w ]w3 1 2 3   a 1 a 1 a1 2 32]x ]x ]x ]x   

which, again, does not require the inversion of a large
global matrix. Higher-order derivatives can be obtained
by continuing this process. Note that Eqs. (24) and (26)
may appear to imply that ]w1/]x 5 ]w2/]x 5 ]w3/]x
and similarly for all derivatives. However, these are el-
emental equations and the global equations are obtained
by summing the contribution of all the triangular ele-
ments surrounding each node point. Because the basis
functions are linear, then the derivatives within the el-
ement will be constants so that Eqs. (24) and (26) say
that the contribution of each triangular element to its
three vertices is a constant value. In Fig. 1 we can see
that grid point 5 will get contributions from elements
1–6, while grid point 6 will get contributions from el-
ements 5–10. As a result, all of the gridpoint derivatives
will have unique values.

6. Derivative accuracy

Before we study the accuracy of the trajectory cal-
culations using the results from the previous two sec-
tions it is wise to first know the accuracy of the deriv-
atives themselves. Let us apply the 3D linear basis func-
tions on a plane. We perform these numerical experi-
ments on the plane using a structured grid in order to
compare our finite element derivatives with the standard
centered finite differences. On this plane, let z 5 c where
c is some constant. Therefore our basis functions sim-
plify as follows:

a x 1 b y 1 ci i ic 5 ,i deter D

where

a 5 y 2 y , b 5 x 2 x , c 5 x y 2 x y ,i j k i k j i j k k j

and

)x x x )1 2 3) )
) )deter D 5 y y y ,1 2 3) )
) )1 1 1

where z 5 c has been factored out from all of the re-
lations. Recall that these functions have the exact in-
tegration rules obtained by

deter Da!b!g!
b gac c c dV 5 ,E 1 2 3 (a 1 b 1 g 1 2)!

which now yields the usual linear triangular finite ele-
ment basis functions on the plane as in Silvester (1969).
To test the accuracy of the numerical derivatives, we
shall use the cosine function


h pr 1 1 cos if r , Rf (x) 5  1 22 R
0 if r $ R

with
2 2r 5 Ï(x 2 x ) 1 (y 2 y ) , (x , y ) 5 (0, 0),c c c c

1
[x, y] ∈ [21, 11], R 5 .

2

By defining a normalized L2 norm such as

2 1/2 ] f ] f
(x) 2 (x) dVE [ ]]x ]x exactV]f

 5 ,
2( (]x L2 ] f

(x) dV E [ ]]xexactV 

for all of the derivatives, we can now measure the ac-
curacy of our numerical derivatives. Tables 1, 2, and 3
list the first and second derivative results for various
grid sizes using centered finite differences, finite ele-
ments with a full matrix, and finite elements with a
diagonalized matrix, respectively. An example of the
structure of the grids used is illustrated in Fig. 2 for the
11 3 11 point case. The tabulated results show that the
finite element derivatives are superior to the finite dif-
ferences but this approach requires the inversion of a
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TABLE 2. Derivative accuracy using finite elements with a full
matrix for the cosine function in planar space on the crisscross grid.

Grid points

] f( (]x L2

] f( (]y L2

2] f
2( (]x L2

2] f
2( (]y L2

2] f( (]x]y L2

11 3 11
21 3 21
41 3 41
61 3 61
81 3 81

0.1536
0.1047
0.0262
0.0162
0.0087

0.1536
0.1047
0.0262
0.0162
0.0087

0.5678
0.3806
0.2251
0.1712
0.1422

0.5678
0.3806
0.2251
0.1712
0.1422

0.3170
0.2959
0.1886
0.1508
0.1263

FIG. 2. The 11 3 11 point crisscross grid used for the derivative
analysis.

FIG. 3. The first type of element contribution to the grid points of
the crisscross grid.

TABLE 3. Derivative accuracy using finite elements with a diago-
nalized matrix for the cosine function in planar space on the crisscross
grid.

Grid points

] f( (]x L2

] f( (]y L2

2] f
2( (]x L2

2] f
2( (]y L2

2] f( (]x]y L2

11 3 11
21 3 21
41 3 41
61 3 61
81 3 81

0.2879
0.1341
0.0382
0.0207
0.0121

0.2879
0.1341
0.0382
0.0207
0.0121

0.7452
0.4519
0.2718
0.2095
0.1764

0.7452
0.4519
0.2718
0.2095
0.1764

0.6645
0.3874
0.2402
0.1884
0.1618

matrix. For this reason, we have also included the di-
agonalized version, which does not require this inver-
sion. The results show that the diagonalized version is
inferior to the full matrix version but if we are concerned
with efficiency, then this faster version is more appro-
priate. Let us now look at the formal order of accuracy
analysis of the finite element type numerical derivatives.

Order of accuracy analysis

The structured crisscross grid illustrated in Fig. 2 was
selected for our study because it has the least amount
of biasing. This is important because the spherical geo-
desic grid has little or no biasing on the sphere. The
crisscross grid has two types of gridpoint contributions
from the surrounding elements that are illustrated in
Figs. 3 and 4. The first type of contribution (illustrated
in Fig. 3) has derivatives given by

] f ( f 2 f )i, j i11, j i21, j 25 1 O(Dx )
]x 2Dx
2] f ( f 2 2 f 1 f )i, j i12, j i, j i22, j 25 1 O(Dx )

2 2]x 4Dx
2] f ( f 2 f 2 f 1 f )i, j i11, j11 i21, j11 i11, j21 i21, j21

5
]x]y 4DxDy

2 21 O(Dx , Dy ),

where the derivatives in y are immediately obvious. The
orders O given in these relations denote the order of
accuracy of the derivatives. These derivatives are all
second-order accurate in both x and y. In fact, they yield
the exact same derivative formulas obtained with cen-

tered finite differencing. The second type of contribution
(Fig. 4) has the derivatives

] f ( f 2 f ) 2( f 2 f )i, j i11, j11 i21, j11 i11, j i21, j
5 1

]x 8Dx 8Dx

( f 2 f )i11, j21 i21, j21 2 21 1 O(Dx , Dy ),
8Dx
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FIG. 4. The second type of element contribution to the grid points
of the crisscross grid.

FIG. 5. The differencing stencil for the finite element derivatives
on the spherical geodesic grid.

2] f ( f 2 2 f 1 f )i, j i12, j12 i, j12 i22, j12
5

2 2]x 64Dx

4( f 2 2 f 1 f )i12, j11 i, j11 i22, j11
1

264Dx

6( f 2 2 f 1 f )i12, j i, j i22, j
1

264Dx

4( f 2 2 f 1 f )i12, j21 i, j21 i22, j21
1

264Dx

( f 2 2 f 1 f )i12, j22 i, j22 i22, j22 2 21 1 O(Dx , Dy ),
264Dx

and

2] f ( f 2 f 2 f 1 f )i, j i12, j12 i12, j22 i22, j12 i22, j22
5

]x]y 64DxDy

2( f 2 f 2 f 1 f )i12, j11 i12, j21 i22, j11 i22, j21
1

64DxDy

2( f 2 f 2 f 1 f )i11, j12 i11, j22 i21, j12 i21, j22
1

64DxDy

4( f 2 f 2 f 1 f )i11, j11 i11, j21 i21, j11 i21, j21
1

64DxDy
2 21 O(Dx , Dy ),

which are all second order. Thus even with the diago-
nalized version of the derivatives, we are guaranteed an
order of accuracy similar to centered finite differences,
regardless of the structure of the grid. This order of
accuracy analysis is given only to compare the finite
element derivatives to the finite difference derivatives.

However, the real interest is in determining the finite
element derivatives on the hexagonal-type stencils that
arise in the spherical geodesic grids and is illustrated in
Fig. 5. In this case, we arrive at the following deriva-
tives:

] f ( f 2 f ) 2( f 2 f )i, j i1(1/2), j11 i2(1/2), j11 i11, j i21, j
5 1

]x 6Dx 6Dx

( f 2 f )i1(1/2), j21 i2(1/2), j21 2 21 1 O(Dx , Dy ),
6Dx

] f ( f 2 f ) ( f 2 f )i, j i1(1/2), j11 i1(1/2), j21 i2(1/2), j11 i2(1/2), j21
5 1

]y 4Dy 4Dy
2 21 O(Dx , Dy ),

2] f ( f 2 2 f 1 f )i, j i11, j12 i, j12 i21, j12
5

2 2]x 36Dx

4( f 2 f 2 f 1 f )i1(3/2), j11 i1(1/2), j11 i2(1/2), j11 i2(3/2), j11
1

236Dx

2(2 f 1 f 2 6 f 1 f 1 2 f )i12, j i11, j i, j i21, j i22, j
1

236Dx

4( f 2 f 2 f 1 f )i1(3/2), j21 i1(1/2), j21 i2(1/2), j21 i2(3/2), j21
1

236Dx

( f 2 2 f 1 f )i11, j22 i, j22 i21, j22 2 21 1 O(Dx , Dy ),
236Dx

2] f ( f 2 2 f 1 f )i, j i11, j12 i11, j i11, j22
5

2 2]y 16Dy

2( f 2 2 f 1 f )i, j12 i, j i, j22
1

216Dy

( f 2 2 f 1 f )i21, j12 i21, j i21, j22 2 21 1 O(Dx , Dy ),
216Dy
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TABLE 4. Trajectory accuracy for the exact trajectories, midpoint
rule, and McGregor’s noninterpolating scheme for values of N 5 1,
. . . , 4 with s 5 1.13 on the spherical geodesic grid with 642 points
after one revolution for a 5 0.

Trajectory method \x \D L2
\w\L2

M1 M2

Exact
Midpoint rule
N 5 1
N 5 2
N 5 3
N 5 4

0.0000
0.0026
0.0358
0.0041
0.0003
0.0002

0.0917
0.1132
0.4743
0.1724
0.0918
0.0917

1.0071
1.0069
1.0127
1.0064
1.0069
1.0069

0.9783
9.9809
0.6064
0.9764
0.9854
0.9844

TABLE 5. Trajectory accuracy for the exact trajectories, midpoint
rule, and McGregor’s noninterpolating scheme for values of N 5 1,
. . . , 4 with s 5 2.27 on the spherical geodesic grid with 2562 points
after one revolution for a 5 0.

Trajectory method \x \D L2
\w\L2

M1 M2

Exact
Midpoint rule
N 5 1
N 5 2
N 5 3
N 5 4

0.0000
0.0008
0.0358
0.0041
0.0003
0.0002

0.0195
0.0386
0.4684
0.1506
0.0210
0.0206

0.9988
0.9988
1.0050
0.9980
0.9987
0.9987

0.9996
0.9995
0.6271
1.0001
1.0057
1.0057

FIG. 6. The spherical geodesic grid with 2562 points.

and
2] f ( f 2 f 2 f 1 f )i, j i11, j12 i11, j22 i21, j12 i21, j22

5
]x]y 24DxDy

2( f 2 f 2 f 1 f )i1(3/2), j11 i1(3/2), j21 i2(3/2), j11 i2(3/2), j21
1

24DxDy

2( f 2 f 2 f 1 f )i1(1/2), j11 i1(1/2), j21 i2(1/2), j11 i2(1/2), j21
1

24DxDy
2 21 O(Dx , Dy ),

which are also second-order accurate.

7. Trajectory accuracy

In a similar manner described in McGregor (1993),
we define the accuracy of the trajectories by the nor-
malized L2 norm

1/2 
exact 2[x 2 x ] dVE D D V

 \x \ 5 . (27)D L2

2[x 2 x ] dV E D A

V 

The results for various methods of obtaining the trajec-
tories are illustrated in Tables 4 and 5 where the spher-
ical geodesic grid contains 642 points with a Courant
number s 5 1.13, and 2562 points with s 5 2.27,
respectively. These results are all shown for a 5 0
meaning that the wave moves along the equator. A sche-
matic of the grid containing 2562 grid points is illus-
trated in Fig. 6. The results point toward the same con-
clusions, namely, that McGregor’s scheme is extremely
good and that it increases in accuracy as the number of
terms in the Taylor series N is increased. However, very
little is gained beyond values of 4, which is in agreement
with the findings in McGregor (1993). For this reason,
results for N . 4 are not shown.

8. Conclusions

The determination of departure points are explored
for spherical geodesic grids in Cartesian space. The mid-

point rule, which is an interpolating and iterative
scheme, is compared against McGregor’s noninterpo-
lating and noniterative method. McGregor’s method
yields better results but no benefits are gained by using
more than four terms in the Lagrangian Taylor series
expansion. McGregor (1993) showed how to apply this
scheme on rectangular grids. This paper extends
McGregor’s method to unstructured triangular grids.
The difficulty in applying McGregor’s method to un-
structured grids is that derivatives at the grid points need
to be obtained in order to get the higher-order Taylor
series expansion terms. This can be done for unstruc-
tured grids by constructing the derivatives in an element
by element approach. This approach is illustrated for
the unstructured triangular grids composing the spher-
ical geodesic grids by using the linear triangular basis
functions introduced in Giraldo (1997). Once these
functions have been defined, we can then apply the strat-
egy for forming derivatives illustrated here. The nu-
merical derivatives are compared against analytic so-
lutions for the cosine hill function and its derivatives.
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These results show that the numerical derivatives are
quite accurate especially for the low-order derivatives.
An order of accuracy analysis is performed that dem-
onstrates the order of accuracy of this strategy to be
second order. Therefore, it is quite similar to the cen-
tered finite difference approach used in McGregor
(1993), but for unstructured triangular grids.
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APPENDIX

3D Triangular Basis Function

Theorem 1. The basis functions

a x 1 b y 1 c zi i ic (x) 5 , (A1)i deter D

where

a 5 y z 2 y z , b 5 x z 2 x z , c 5 x y 2 x y ,i j k k j i k j j k i j k k j

and

)x x x )1 2 3) )
) )deter D 5 y y y ,1 2 3) )
) )z z z1 2 3

define a set of linear cardinal basis functions, that is,

1 if i 5 j
c (x ) 5i j 50 if i ± j.

Proof. The conditions to be satisfied by a linear in-
terpolation on a triangle in three-dimensional space are
the following:

x 5 c (x)x 1 c (x)x 1 c (x)x1 1 2 2 3 3

y 5 c (x)y 1 c (x)y 1 c (x)y1 1 2 2 3 3

z 5 c (x)z 1 c (x)z 1 c (x)z , (A2)1 1 2 2 3 3

which just says that the coordinates within the triangular
element are dependent on the vertices of that element.
Equation (A2) can be written in the following matrix
form:

     x x x c (x) x1 2 3 1     
y y y c (x) 5 y .     1 2 3 2     
z z z c (x) z1 2 3 3     

Using Cramer’s rule to invert this matrix system yields
the following relations for the natural coordinates,

)x x x ) )x x x )2 3 1 3) ) ) )
y y y y y y) ) ) )2 3 1 3) ) ) )
z z z z z z) ) ) )2 3 1 3

c (x) 5 , c (x) 5 ,1 2)x x x ) )x x x )1 2 3 1 2 3) ) ) )
) ) ) )y y y y y y1 2 3 1 2 3) ) ) )
) ) ) )z z z z z z1 2 3 1 2 3

)x x x)1 2) )
y y y) )1 2) )
z z z) )1 2

c (x) 5 ,3 )x x x )1 2 3) )
) )y y y1 2 3) )
) )z z z1 2 3

which can be written more compactly in terms of scalar
and vector products as

x · (x 3 x ) x · (x 3 x )2 3 1 3c (x) 5 , c (x) 5 2 ,1 2x · (x 3 x ) x · (x 3 x )1 2 3 1 2 3

x · (x 3 x )1 2c (x) 5 ,3 x · (x 3 x )1 2 3

(A3)

and finally we can write (A3) as

x · (x 3 x )j k
c (x) 5 , (A4)i x · (x 3 x )i j k

where the following identities have been used:

(x 3 x ) 5 2(x 3 x ) andi j j i

x · (x 3 x ) 5 x · (x 3 x ) 5 x · (x 3 x ).i j k j k i k i j

From (A31)

x · (x 3 x )i j k
c (x ) 5 5 1i i x · (x 3 x )i j k

x · (x 3 x ) x · (x 3 x )j j k k j j
c (x ) 5 5 5 0i j x · (x 3 x ) x · (x 3 x )i j k i j k

x · (x 3 x ) x · (x 3 x )k j k j k k
c (x ) 5 5 5 0.i k x · (x 3 x ) x · (x 3 x )i j k i j k

Q.E.D.

Theorem 2. Furthermore, the basis functions (A1) sat-
isfy the relation for a monotonic interpolant

3

c (x) 5 1 ∀x ∈ T ,O i 1,2,3
i51

where T1,2,3 represents the triangle composed of the ver-
tices (x1, x2, x3).

Proof. Taking the sum of the basis functions in (A3)
and using the identity (xi 3 xi) 5 0 gives
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3

c (x)O i
i51

x · [(x 3 x ) 2 (x 3 x ) 2 (x 3 x ) 1 (x 3 x )]2 3 2 1 1 3 1 15 .
x · (x 3 x )1 2 3

(A5)

The numerator of (A5) can now be factored to yield
3 x · [(x 2 x ) 3 (x 2 x )]2 1 3 1c (x) 5 .O i x · (x 3 x )i51 1 2 3

The denominator can be handled in a similar fashion to
yield

3 x · [(x 2 x ) 3 (x 2 x )]2 1 3 1c (x) 5 , (A6)O i x · [(x 2 x ) 3 (x 2 x )]i51 1 2 1 3 1

where the identity

xi · (xj 3 xi) 5 xj · (xi 3 xi) 5 0

has been used. The terms inside the brackets of (A6)
are exactly the components of the normal vector to the
triangle (x1, x2, x3). In other words

N 5 (x2 2 x1) 3 (x3 2 x1).

From the definition of the plane defined by this triangle
which is

N · (x 2 x1) 5 0

we get

x · N 5 x1 · N,

which gives for (A6)
3 x · N

c (x) 5 5 1.O i x · Ni51 1

Q.E.D.

Theorem 3. The integral of any combination of the
basis functions ci(x) within each triangle can be given
in closed form as follows:

deter Da!b!g!
b gac c c dV 5 , (A7)E 1 2 3 (a 1 b 1 g 1 2)!

where

)x x x )1 2 3) )
) )deter D 5 y y y . (A8)1 2 3) )
) )z z z1 2 3

Proof. From (A2), the mapping from (x, y, z) → (c1,
c2, c3) is

     dx x x x dc1 2 3 1     
dy 5 y y y dc .     1 2 3 2     
dz z z z dc1 2 3 3     

Let j 5 c1, h 5 c2 and from theorem 2,

c3 5 1 2 c1 2 c2

and so c3 5 1 2 j 2 h. Therefore, the integral becomes

b gac c c dVE 1 2 3

V(x,y,z)

1 12j

a b g5 deter D j h (1 2 j 2 h) dh dj,E E[ ]
0 0

which gives for the first integral in brackets by virtue
of integration by parts

12j

b gh (1 2 j 2 h) dhE
0

g!
b1g115 (1 2 j) ,

(b 1 1)(b 1 2) · · · (b 1 g 1 1)

but by completing the factorial in the denominater, we
get

12j b!g!
b g b1g11h (1 2 j 2 h) dh 5 (1 2 j) .E (b 1 g 1 1)!0

Integrating the remaing terms, we get

b gac c c dVE 1 2 3

V(x,y,z)

deter Db!g!(b 1 g 1 1)!
5 ,

(b 1 g 1 1)!(a 1 1)(a 1 2) · · · (a 1 b 1 g 1 2)

and simplifying and completing the factorial yields

deter Da!b!g!
b gac c c dV 5 .E 1 2 3 (a 1 b 1 g 1 2)!

V(x,y,z)

Q.E.D.
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