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SPECTRAL PROPERTIES OF COMPACT

LATTICE HOMOMORPHISMS

BY

ANTHONY W. WICKSTEAD

Abstract. Given two nonzero eigenvalues of a lattice homomorphism on a relatively

uniformly complete vector lattice, of different moduli and with at least one isolated

in the set of all eigenvalues, we show that corresponding eigenvectors must be

disjoint. The analogous result for the approximate point spectrum of a lattice

homomorphism on a Banach lattice is deduced. We give an infinite spectral

decomposition for a lattice homomorphism, on a Banach lattice with order continu-

ous norm, which is compact and has an adjoint which is also a lattice homomor-

phism. From this we deduce that if it has nonnegative spectrum, then it is the direct

sum of a nilpotent lattice homomorphism and one that is central.

1. Introduction. Much work has been done on the spectra of lattice homomor-

phisms on Banach lattices ([7, 13, and 14] for example). There are also well known

nice properties of compact operators on an arbitrary Banach space. It is to be

expected that compact lattice homomorphisms will have particularly well-behaved

spectra. This indeed turns out to be the case. Although the present work was

prompted by the recent complete description of compact lattice homomorphisms of

Banach lattices (see [4] or [12]), the results do not make use of that description, so

the paper is relatively self-contained.

§2 contains a result on the location of eigenvectors of lattice homomorphisms. It is

valid without the assumption of compactness, but is especially significant in that

case. §3 investigates how close to being central a compact lattice homomorphism

with nonnegative spectrum must be.

We will work throughout with complex Banach lattices and the corresponding

classes of complex linear operators on them. An account of the complexification of a

real vector lattice, and of the linear operators on it, may be found in [5, Chapter 2,

§11]. We will adopt that book as our source of terminology and notation.

2. Disjointness of eigenvectors. The classical result that eigenvectors of a Hermi-

tian operator on a Hubert space, which correspond to distinct eigenvalues, must be

disjoint is so far fairly isolated in the mathematical literature. The simplest lattice

homomorphisms to study, namely those of the form /i-» h -fon C(X), are easily

seen to share this property (using, of course, an order theoretic definition of

disjointness). On the other hand, even the relatively simple operator T on C([ — l, 1]),

defined by Tf(x) =f( — x), does not. If g(x) = 1 and h(x) = x, then Tg = 1 ■ g and

Th = (—\)h, but g and h are not disjoint. Nevertheless, there does seem to be some
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general result lurking here. First let us recall that a vector lattice E is relatively

uniformly complete if, for every x G E, the ideal generated by | x | is complete for the

order unit norm induced by | x \. This is the same as Axiom (OS) of [5, Chapter 2,

Definition 1.8]. Po(T) will denote the set of all eigenvalues of the linear operator T.

If K is any subset of C then K~ will denote its isolated points.

Theorem 1. If T is a lattice homomorphism on a relatively uniformly complete vector

lattice E,XE Pa(T)\{0}, /x G Pa(T) \ {0}, Tx = Xx, Ty = ny and \ X \ ¥= \ n \, then

\x\ A|v|=0.

Proof. If | z |<p(\x \ +\y\), then

\Tz\=T\z\<p(T\x\+T\y\)=p(\Tx\+\Ty\)

<p(\r\x\+\py\)*p- max{| X \, | pj}(| x \ +| y |).

Thus we can restrict our attention to the ideal generated in £ by | x | + \y \. By

Kakutani's representation theorem for abstract M-spaces, this ideal is linearly order

isomorpbic to some C(ñ), where S2 is a compact Hausdorff space (see [5, Chapter 2,

Theorem 7.4]).

Suppose, therefore, that E is such a space C(fi) and that x, v G C(ß). T is of the

form

2H«) = #(«)/(*«),
where h G C(iï)+ and <¡>: fi -> ß is continuous on n\/i~'(0) [13, Proposition 1.1].

Let 0 < a < 1 and consider the function on fi defined by

z» = *(«) |y(to) IVI *(«) Ia        (*(«) ¥- 0),

-0       (*(«) = 0).

za G C(fi) and is identically zero only if x-y is identically zero, i.e. only if

I x I ^ I y I= 0, which is what we wish to establish. We therefore assume that each

za ¥= 0 and obtain a contradiction.

We know that

(1) h(u)x(<j>u) = Xx(u)

and that

(2) /i(w)v(<pw) = /iv(w)

for each to G ñ. Hence, if | x(<f>co) | Ve 0 and h(co) ¥= 0, then

Tza(w) = h(o>)za(<S,u>) = *(«)*(*«) | v(^W) M x(<>W) |«

= Xx(u) | f»K«)/A*(«) I" = À| M/A |%(«).

If A(w) = 0 or x(<pw) = 0 then 7za(w) = 0 and x(u) = 0 by (1), so that za(u) = 0.

Thus X ■ | n/X |° G Pa(7;) for each 0 < a < 1. Provided ft, A 9* 0 and | A | # | u |,

this contradicts \ being isolated in Pa(T) and completes the proof.

It will be clear from the proof that the relative uniform completeness of / could be

weakened to the assumption that the image of each principal ideal under the

Kakutani representation is an algebra. The condition cannot, however, just be

dropped. Nor can any of the others, as the following examples show.
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Example (1). Let E be the vector lattice PA[0,1] of piecewise affine functions on

[0,1]. Thus for each element / of E, [0,1] can be divided into a finite number of

subintervals on each of which / is affine. Define a function <p: [0,1] -» [0,1] by

specifying that </>(") = to/2. The linear operator T defined by Tf(u) = f(<t>u) is a

lattice homomorphism of E into itself. If / is an eigenvector of T corresponding to

the eigenvalue X, then suppose/has slope m, on some subinterval /, of [2~("+ n, 2~"]

(n > 0). On </>"'(/), Tf will have slope m/2. As Tf= A/,/will have slope m/2X on

</>"'(/). Thus if / somewhere has slope m, it will also have slopes (2Xfm (for each

k E N) on some subinterval of [0,1]. This will contradict / being in PA[0,1], as /

would have infinitely many different slopes, unless X = {-, or zero is the only value of

m. The second case implies that/is constant, and therefore that X = 1. It follows

that Po(T) = {1,1} as Tg = {g where g(w) = a, and Th = h where h(u) = 1. All

the hypotheses of Theorem 1 are satisfied except the relative uniform completeness

of E, yet the conclusion clearly fails.

Example (2). Define T on C2 by T(a, ß) = (a, a). Then T is a lattice homomor-

phism with eigenvalues 0 and 1. Corresponding eigenvectors are (0,1) and (1,1)

which are not disjoint. All the conditions of Theorem 1 are satisfied except that one

of the eigenvalues is zero.

Example (3). Take E to be c0 and define T on E by

(Tz)„ — z„. ,.V       >n n+1

Then Pa(T) = {A G C: |\|< 1} and the eigenvector corresponding to À is (X").

Taking X, /x G Pa(T) \ {0} with distinct moduli shows that the conclusion of Theo-

rem 1 fails, although all the conditions are satisfied except that the eigenvalues are

isolated.

Theorem 1 has particular relevance to compact lattice homomorphisms as all

nonzero points of the spectrum are then isolated eigenvalues.

For lattice homomorphisms on a Banach lattice we can use Theorem 1 and a

technique used in Lotz [2] to prove a related result. Recall that the complex number

X is an approximate eigenvalue of the linear operator T on a Banach space E if there

is a sequence (xn) in E with \\xn\\ = 1 and \\(T — X)xn\\ -> 0. The set of all

approximate eigenvalues of Jis denoted by Aa(T).

If £ is a Banach space, ¡^(E) will denote the space of all bounded sequences in E,

normed by \\(x„)\\ = sup{||x„||: n E N}, and c0(E) the closed subspace of null-

sequences in E. Let 9(E) denote the quotient space lx(E)/c0(E). If Tis a bounded

linear operator on E and (xn) E lx(E) (resp. c0(E)), then (Txn) G lx(E) (resp.

c0(E)). We may thus define 9(T) on 9(E) by

9(T)((xn) + c0(E)) = (Tx„) + c0(E),

to obtain a bounded linear operator on 9(E). This construction is of use as [2,

Theorem 2.4], Pa(9(T)) = Ao(9(T)) = Aa(T). If £ is a Banach lattice and we

extend the order to lx(E) term by term, then give 9(E) the quotient order, then

9(E) is also a Banach lattice [2, Theorem 2.5]. If Tis a lattice homomorphism on E,

then 9(T) is a lattice homomorphism on 9(E) [2, Theorem 2.6].
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Corollary 2. Let E be a Banach lattice and T a lattice homomorphism on E. If

X E Aa(T) \ {0}, p. G Aa(T) \ {0}, (xn) and (y„) are sequences of unit vectors in E

such that \\(T - X)xJ - 0 and \\(T - [i)y„\\ -» 0 and | X |#|/t |, then \\\xn\ A\yn\\\
-0.

Proof. X, n G Pa(9(T))\ {0} and

9(T)((xn) + c0(E)) = X((xn) + c0(E)),

9(T)((y„) + c0(E)) = n((x„) + c0(E)).

By applying Theorem 1 to the operator 9(T) on 9(E), we see that (xn) + c0(E)

and (yn) + c0(E) are disjoint, i.e. \xn\ A|yn | G c0(E), which is the desired conclu-

sion.

It should be noted that, since Aa(T) contains the boundary of o(T), the spectrum

of T, Aa(T)D o(T).

3. Compact central lattice homomorphisms. A linear operator T on a vector lattice

E is central if there exists a real p > 0 such that | Tx | < p \ x | for all x G E. These

have been studied in detail. A positive central operator is a lattice homomorphism

and has nonnegative spectrum. One known partial converse is that an invertible

lattice homomorphism with positive spectrum must be central [6, Theorem 2.1].

Once noninvertible operators are considered, such a result becomes impossible as

there are quasi-nilpotent noncentral lattice homomorphisms. The compact central

operators on a Banach lattice have been described in [10, Theorem 4.1] and [4,

Theorem 7.2]. When dealing with Banach lattices with order continuous norms, i.e.

those for which every net decreasing to 0 converges to 0 in norm, it is possible to

describe fairly completely those compact lattice homomorphisms with nonnegative

spectrum, provided we assume that the adjoint operator is also a lattice homomor-

phism. Although this condition may seem rather artificial, it is one that is satisfied

by central lattice homomorphisms, has already played a role in other results on the

spectral properties of lattice homomorphisms, and cannot be omitted as we show by

a simple example.

Theorem 3. Let E be a Banach lattice with an order continuous norm and let T be a

compact lattice homomorphism on E whose adjoint, T*, is also a lattice homomorphism.

E is a (possibly infinite) order direct sum (®rHr) © K, where r ranges over positive

reals in a(T) where each Hr and K are T-invariant ideals, T\K is quasi-nilpotent, each

H is finite dimensional and a(T \H ) = {X G a(T): \X\= r\.

Proof. Let

00        _

/=   Pi   Tn(E)    and   / =
n=\

If S is a compact lattice homomorphism and S* is also a lattice homomorphism,

then for each x > 0, S([0, x]) is dense in [0, Sx] by [3, Proposition 1.2] ([0, x]

denotes the order interval {y: 0=sy<x}). But £([0, jc]) is compact, so S([0, x]) =

[0, Sx], so SE is actually an ideal in E. Hence each T"E is an ideal in E, so is its

Ü (r-£)x
. «=i
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closure and hence their intersection I. The sets (T"E)X form an increasing set of

closed ideals, so is an ideal and hence also is J.

Each (£"£)x is orthogonal to I, so we see that I ± J. If x E E then we can write

x = yn + z„, whereyn E T"E and z„ G (£"£)x ; as in a Banach lattice with an order

continuous norm, every closed ideal is a projection band [5, Chapter II, Theorem

5.10]. This decomposition is unique, and if n > m then T"E G TmE (so that

(TnE)xD(TmE)-L), so that 0<y„<ym and x s= z„ s* zm. As £ has an order

continuous norm yn -> y G £ and z„ -» z G £, and clearly * = y + z. As £"£ is an

ideal in £ and 0 < y < y„ G T*E, y E T^E. Thus y E I. Also note that each z„ G /,

which is closed, so z G J. Thus / and J are complementary bands.

If x G T"E, then x = lim^^ r"xA for some xk G £, so

Tx = \imk_0CTn+xxk G £<"+1>£. Thus if x G £ then x G D ™=2T"E G I. Also

note that x -L £"£ imphes that Tx 1 Tn+XE, so U(£"£)x is £-invariant and by

continuity so is J.

T\j is compact, so if a(T\j) # {0}, there is a nonzero eigenvalue A of £ and a

corresponding eigenvector 7 G J. But then7 = (T"j)/X" G £"£ for all «,7 G /. This

implies that 7 = 0, so T\j is quasi-nilpotent.

If P denotes the band projection onto £ then we have established that PT — TP

as both / and J are £-invariant. Each x G / is in TE, so there is a sequence xk in £

with Txk -* x, and hence PTxk ^ Px — x. Thus T(Pxk) -» x, and £x¿ G /, so £J is

dense in £ In TI every order interval is compact, so it follows by [8, Theorem 1], [9,

Theorem 5], or [4, Theorem 4.9] that / may be identified with an ideal in lx which

contains each en (nth coordinate 1, the remainder 0) corresponding to an element of

/ of unit norm. We will now make such an identification for £

T\j may be identified with the operator (xn) -» (a„x^n) where <¡>: N -» N and a„ is

a sequence of nonnegative reals, because £is a lattice homomorphism. Since (£|,)*

is a lattice homomorphism <J> must be 1-1, and since T is compact a„ -» 0. Note also

that the definition of / implies that each an > 0.

Let i be an eigenvector of £ in / corresponding to a nonzero eigenvalue X. If

A — {n E N: in ^ 0} then clearly <¡>(A) G A. If n G A then the sequence n, <j>n,

<¡>2n,... can take only finitely many values, else §kn -* 00 as k -» 00 and hence

<Vn ~* 0 as ^ ~» °°- But men (^)n = an'*n = Ai« implies that

contradicting (in)Elx. Thus for some TV, </>"« = n. Clearly {n, <¡>n,...,<j>N~xn} is

¿«-invariant and as <t> is 1-1 so is its complement in A. It follows that i' defined by

i'k = ik,   ifkE {n,<l>n,...,<l>N-xn},

= 0,    otherwise,

is an eigenvector of T corresponding to X. If A were infinite we could obtain

infinitely many orthogonal eigenvectors of T corresponding to X, which would

contradict the compactness of T.

It follows that A is finite and that </> ^ is a bijection. Hence for each eigenvector /'

of £ in / which corresponds to a nonzero eigenvalue, the ideal generated by / is finite

dimensional and £ restricted to it is invertible.
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By Theorem 1 the ideals corresponding to eigenvalues of distinct modulus must be

orthogonal. We thus have that each ideal Hr generated by the set {/' E I: \Ti\= r\i\],

for positive r in a(T), is a finite-dimensional ideal in I, and that a(T\H) = a(T) n

{\GC:|A|=r}. The order continuity of the norm in £ guarantees that (2Hr)~ is a

projection band in / (and hence in £) which is £-invariant. Clearly the compact

operator T\(1Hr)± can have no nonzero eigenvalues, so is quasi-nilpotent. Taking

K = J ® (2//r)x gives the decomposition of the statement of the theorem.

Corollary 4. Let E be a Banach lattice with an order continuous norm and let T be

a compact lattice homomorphism on E whose adjoint T* is also a lattice homomor-

phism. If a(T) G R+ then there exist complementary T-invariant bands H and K in E

such that T\H is central and TK is quasi-nilpotent.

Proof. Once we show that in the decomposition of Theorem 3 each T\H is

central, then we can take H to be the closed ideal generated by the Hr, T\H will be

central as if h G Hr, \ Th |< ll£|w II ■ | h |< ||£|| • | h \, so T\$H is central. The

continuity of £ will then guarantee that £ \H is also central.

Theorem 2.1 of [6] in fact tells us that T\His simply r times the identity on H, so

is certainly central.

For this result to be true neither the condition that T* be a lattice homomorphism

nor that £ have an order continuous norm may be dropped.

Example (4). If £(x, y) = (x, x) on C2 then the desired decomposition is not

possible.

Example (5). Define on c a lattice-homomorphism £ by

(£x)„ = (x„/n)        (n even)

= (xn+2/n")        («odd).

Then £ is compact and £* is a lattice homomorphism. If / = {(x„) G c: x2k = 0 for

all k G N}, then T\¡ is readily seen to be quasi-nilpotent. We may identify c/I with

c and then £ takes (y„) to (yn/2n). Thus o(T,) = {1/2«: n E N} U {0}. Since each

1/2« clearly lies in o(T), we have that a(T) = {1/2«: « G N} U {0} (using the fact

that a(T) G a(Tr) U a(£|7)). Thus £has nonnegative spectrum. Any decomposition

c = H © K will have one of H or K finite dimensional. If K were finite dimensional

then T\H would not be central, whilst if H were finite dimensional then £|^ would

not be quasi-nilpotent.

It should be mentioned that the author knows of no example to show that the

compactness of £ is needed for the result of Corollary 4 to hold. The proof given

here of course uses it heavily.
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