
Predictive Caching and Prefetching of Query Resultsin Search EnginesRonny Lempel Shlomo MoranDepartment of Computer ScienceThe Technion,Haifa 32000, Israelemail: frlempel,morang@cs.technion.ac.ilABSTRACTWe study the caching of query result pages in Web search engines. Popular search engines receivemillions of queries per day, and e�cient policies for caching query results may enable them to lowertheir response time and reduce their hardware requirements. We present PDC (probability drivencache), a novel scheme tailored for caching search results, that is based on a probabilistic modelof search engine users. We then use a trace of over seven million queries submitted to the searchengine AltaVista to evaluate PDC, as well as traditional LRU and SLRU based caching schemes.The trace driven simulations show that PDC outperforms the other policies. We also examine theprefetching of search results, and demonstrate that prefetching can increase cache hit ratios by 50%for large caches, and can double the hit ratios of small caches. When integrating prefetching intoPDC, we attain hit ratios of over 0:53.1 IntroductionPopular search engines receive millions of queries per day on any and every walk of life. Whilethese queries are submitted by millions of unrelated users, studies have shown that a small set ofpopular queries accounts for a signi�cant fraction of the query stream. Furthermore, search enginesT
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may also anticipate user requests, since users often ask for more than one page of results per query.It is therefore commonly believed that all major search engines perform some sort of search resultcaching and prefetching. An engine that answers many queries from a cache instead of processingthem through its index, can lower its response time and reduce its hardware requirements.1.1 Search Engine UsersJ�onsson et al. [7], in their work on bu�ering inverted lists for query evaluations, noted that knowl-edge of the access patterns of the retrieval algorithm to the bu�ers can be tapped for devisinge�ective bu�er replacement schemes. By analogy, understanding the access patterns of searchengine users to query results can aid the task of caching search results.Users submit queries to search engines. From a user's point of view, an engine answers eachquery with a linked set of ranked result pages, typically with 10 results per page. All users browsethe �rst page of results, and some users scan additional result pages, usually in the natural orderin which those pages are presented.Three studies have analyzed the manner in which users query search engines and view resultpages: a study by Jansen et al. [6], based on 51; 473 queries submitted to the search engine Excite1;a study by Markatos [11], based on about a million queries submitted to Excite on a single day in1997; and a study by Silverstein et al. [14], based on about a billion queries submitted to the searchengine AltaVista2 over a period of 43 days in 1998. Two �ndings that are particularly relevant tothis work concern the number of result pages that users view per query, and the distribution ofquery popularities. Regarding the former, the three studies agree that at least 58% of the usersview only the �rst page of results (the top-10 results), at least 15% of the users view more thanone page of results, and that no more than 12% of users browse through more than 3 result pages.Regarding query popularities, it was found that the number of distinct information needs of users isvery large. Silverstein et. al report that 63:7% of the search phrases appear only once in the billionquery log. These phrases were submitted just once in a period of six weeks. However, popularqueries are repeated many times: the 25 most popular queries found in the AltaVista log account1http://www.excite.com/2http://www.altavista.com/ 2T
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for 1:5% of the submissions. The �ndings of Markatos are consistent with the later �gure - the 25most popular queries in the Excite log account for 1:23% of the submissions. Markatos also foundthat many successive submissions of the same query appear in close proximity (are separated by asmall number of other queries in the query log).1.2 Caching and Prefetching of Search ResultsCaching of results was noted in Brin and Page's description of the prototype of the search engineGoogle3 as an important optimization technique of search engines [2]. Markatos [11] used themillion-query Excite log to drive simulations of query result caches using four replacement policies- LRU (Least Recently Used) and three variations. He demonstrated that warm, large caches ofsearch results can attain hit ratios of close to 30%.Saraiva et al. [13] proposed a two-level caching scheme that combines caching query results andinverted lists. The replacement strategy they adopted for the query result cache was LRU. Theyexperimented with logged query streams, testing their approach against a system with no caches.Overall, their combined caching strategy increased the throughput of the system by a factor ofthree, while preserving the response time per query.In addition to storing results that were requested by users in the cache, search engines may alsoprefetch results that they predict to be requested shortly. An immediate example is prefetching thesecond page of results whenever a new query is submitted by a user. Since studies of search engines'query logs [14, 6] indicate that the second page of results is requested shortly after a new queryis submitted in at least 15% of cases, search engines may prepare and cache two (or more) resultpages per query. The prefetching of search results was examined in [10], albeit from a di�erentangle: the objective was to minimize the computational cost of processing queries rather than tomaximize the hit ratio of the results cache.The above studies, as well as our work, focus on the caching of search results inside the searchengine. The prefetching discussed above deals with how the engine itself can prefetch results fromits index to its own cache. The caching or prefetching of search results outside the search engineis not considered here. In particular, we are not concerned with how general Web caches and3http://www.google.com/ 3T
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proxy servers should handle search results. Web caching and prefetching is an area with a wealthof research; see, for example, [16] for a method that allows proxy servers to predict future userrequests by analyzing frequent request sequences found in the servers' logs, [15] for a discussionof proxy cache replacement policies that keep a history record for each cached object, and [4] fora proposed scheme that supports the caching of dynamic content (such as search results) at Webproxy servers. In both [17] and [9], Web caching and document prefetching is integrated using(di�erent) prediction models of the aggregate behavior of users. Section 3.2.1 has more details onthese two works.1.3 This workThis work examines the performance of several cache replacement policies on a stream of over sevenmillion real-life queries, submitted to the search engine AltaVista. We integrate result prefetchinginto the schemes, and �nd that for all schemes, prefetching substantially improves the caches'performance. When comparing each scheme with prefetching to the naive version that only fetchesthe requested result pages, we �nd that prefetching improves the hit ratios by more than what isachieved by a fourfold increase in the size of the cache.Another contribution of this paper is the introduction of a novel cache replacement policy thatis tailored to the special characteristics of the query result cache. The policy, which is termed PDC(Probability Driven Cache), is based on a probabilistic model of search engine users' browsingsessions. Roughly speaking, PDC prioritizes the cached pages based on the number of users whoare currently browsing higher ranking result pages of the same search query. We show that PDCconsistently outperforms LRU and SLRU (Segmented LRU) based replacement policies, and attainshit ratios exceeding 53% in large caches.Throughout this paper, a query will refer to an ordered pair (t; k) where t is the topic of thequery (the search phrase that was entered by the user), and k � 1 is the number of result pagerequested. For example, the query (t; 2) will denote the second page of results (which typicallycontains results 11� 20) for the topic t.The rest of this work is organized as follows. Section 2 describes the query log on whichwe conducted our experiments. Section 3 presents the di�erent caching schemes that this work4T
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examined, and in particular, de�nes PDC and the model on which it is based. Section 4 reportsthe results of the trace-driven simulations with which we evaluated the various caching schemes.Concluding remarks and suggestions for future research are brought in Section 5.2 The Query LogThe trace contained 7175151 keyword-driven search queries, submitted to the search engine Al-taVista during the summer of 2001. AltaVista returns search results in batches whose size is amultiple of 10. For r � 1, the results whose rank is 10(r� 1)+ 1; : : : ; 10r will be referred to as ther'th result page. A query that asks for a batch of 10k results will be thought of as asking for klogical result pages (although, in practice, a single large result page will be returned). Each querycan be seen as a quadruple q = (�; t; f; `) as follows:� � is a time stamp (date and time) of q's submission.� t is the topic of the query, identi�ed by the search phrase that was entered by the user.� f and ` de�ne the range of result pages requested (f � `). In other words, the query requeststhe 10(f � ` + 1) results ranking in places 10(f � 1) + 1; : : : ; 10` for the topic t. AltaVistaallowed users to request up to 100 results (10 logical result pages) in a single query.In order to ease our simulations, we discarded from the trace all queries that requested result pagesbeyond result page number 32 (results whose rank is 321 or worse). There were 14961 such queries,leaving us with a trace of 7160190 queries. These queries contained requests for 4496503 distinctresult pages, belonging to 2657410 distinct topics.The vast majority of queries (97:7%) requested 10 results, in a standard single page of results(in most cases, f = `). However, some queries requested larger batches of results, amounting to asmany as 10 logical result pages. Table 1 summarizes the number of logical result pages requested bythe various queries. Table 1 implies that the total number of requested logical pages, also termedas page views, is 7549873.As discussed in the Introduction, most of the requests were for the �rst page of results (thetop-10 results). In the trace considered here, 4797186 of the 7549873 views (63:5%) were of �rst5T
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No. result pages 1 2 3 4 5 6 7; 8; 9 10No. queries 6998473 31477 84795 939 42851 125 0 1530Table 1: Number of queries requesting di�erent bulks of logical result pagespages. The 885601 views of second pages accounted for 11:7% of the views. Figure 1 brings threehistograms of the number of views for result pages 2� 32. The three ranges are required since thevariance in the magnitude of the numbers is quite large. Observe that higher ranking result pagesare generally viewed more than lower ranking pages. This is due to the fact that the users whoview more than one result page, usually browse those pages in the natural order. This sequentialbrowsing behavior allows for predictive prefetching of result pages, as will be shown in Section 4.

Figure 1: Views of result pages 2� 326T
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Figure 1 shows a sharp drop between the views of result pages 20 and 21. This drop is explainedby the manner in which AltaVista answered user queries during the summer of 2001. \Regular"users who submitted queries were allowed to browse through 200 returned results, in 20 resultpages containing 10 results each. Access to more than 200 results (for standard search queries) wasrestricted by the engine.Having discussed the distribution of views per result page number, we examine a related statistic- the distribution of the number of distinct result pages viewed per topic. We term this as thepopulation of the topic. In almost 78% of topics (2069691 of 2657410), only a single page wasviewed (usually the �rst page of results), and so the vast majority of topics have a population of1. Figure 2 shows the rest of the distribution, divided into three ranges due to the variance in themagnitude of the numbers. Note the unusual strength of topics with populations of 10, 15 and 20.

Figure 2: Population of Topics (number of pages requested per topic)7T
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From topic populations we turn to topic (and page) popularities. Obviously, di�erent topics(search phrases) and result pages are requested at di�erent rates. Some topics are extremelypopular, while the majority of topics are only queried once. As mentioned earlier, the log containedqueries for 2657410 distinct topics. 1792104 (over 67%) of those topics were requested just once, ina single query (the corresponding �gure in [14] was 63:7%). The most popular topic was queried31546 times. In general, the popularity of topics follows a power law distribution, as shown inFigure 3. The plot conforms to the power-law for all but the most popular topics, which are over-represented in the log. A similar phenomenon is observed when counting the number of requestsfor individual result pages. 48% of the result pages are only requested once. However, the 50 mostrequested pages account for almost 2% of the total number of page views (150131 of 7549873).Again, the distribution follows a power law for all but the most oft-requested result pages (also inFigure 3)4.

Figure 3: Popularity of Topics/Pages (log-log plot)4The power law for page[topic] popularities implies that the probability of a page[topic] being requested x timesis proportional to x�c. In this log, c is approximately 2:8 for page popularities and about 2:4 for topic popularities.8T
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The log contained exactly 200 result pages that were requested more than 29 = 512 times. Asseen in Figure 3, these pages do not obey the above power law. However, they have a distinctivebehavior as well: the number of requests for these pages conforms to a Zipf distribution, as Figure 4shows 5. This is consistent with the results of Markatos [11], who plotted the number of requestsfor the 1000 most popular queries in the Excite log, and found that the plot conforms to a Zipfdistribution. Saraiva et. al [13], who examined 100000 queries submitted to a Brazilian searchengine, report that the popularities of all queries follow a Zipf distribution.Studies of Web server logs have revealed that requests for static Web pages follow a power lawdistribution [1]. The above cited works and our �ndings show that this aggregate behavior of userscarries over to the browsing of dynamic content, where the users de�ne the query freely (instead ofselecting a resource from a �xed \menu" provided by the server). We also note that the complex,distributed social process of creating hyperlinked Web content gives rise to power law distributionsof inlinks to and outlinks from pages [3]. See [12] for a general survey of power law, Pareto, Zipfand lognormal distributions.
Figure 4: Zip�an behavior of the 200 most popular result pages5The number of requests for the r'th most popular page is proportional to r�c, for c � 0:67.9T
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3 Caching and Prefetching Schemes3.1 Fetch units and result prefetchingIn many search engine architectures, the computations required during query execution are notgreatly a�ected by the number of results that are to be prepared, as long as that number isrelatively small. In particular, it may be that for typical queries, the work required to fetch severaldozen results is just marginally larger than the work required for fetching 10 results. Since fetchingmore results than requested may be relatively cheap, the dilemma is whether storing the extraresults in the cache (at the expense of evicting previously stored results) is worthwhile. Roughlyspeaking, result prefetching is pro�table if, with high enough probability, those results will berequested shortly - while they are still cached and before the evicted results are requested again.One aspect of result prefetching was analyzed in [10], where the computations required for queryexecutions (and not cache hit ratios) were optimized.In our simulations, all caching schemes will fetch results in bulks whose size is a multiple of k,a basic fetch unit. Formally, let q be a query requesting result pages f through ` for some topic.Let �; � be the �rst and last uncached pages in that range, respectively (f � � � � � `). Ak-fetch policy will fetch pages �; �+ 1; : : : ; �+mk � 1, where m is the smallest integer such that�+mk�1 � �. Recall that over 97% of the queries request a single result page (f = `). When sucha query causes a cache fault, a k-fetch policy e�ectively fetches the requested page and prefetchesthe next k�1 result pages of the same topic. When k = 1, fetching is performed solely on demand.For every fetch unit k, we can estimate theoretical upper bounds on the hit ratio attainableby any cache replacement policy on our speci�c query log. Consider a cache of in�nite size, whereevictions are never necessary. For each topic t, we examine Pt, the subset of the 32 potentialresult pages that were actually requested in the log. We then cover Pt with the minimal numberof fetch units possible. This number, denoted by fk(t), counts how many k-fetch query executionsare required for fetching Pt. The sum Pt fk(t) is a close approximation to the minimal numberof faults that any policy whose fetch unit is k will have on our query log. Table 2 brings thesetheoretical bounds for several fetch units. Note the dramatic improvement in the theoretic hit ratioas the fetch unit grows from 1 to 3. 10T
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Fetch unit No. Fetches Hit Ratio Fetch unit No. Fetches Hit Ratio1 4496503 0.372 5 2861390 0.6002 3473175 0.515 10 2723683 0.6203 3099268 0.567 20 2658159 0.6294 2964553 0.586 32 2657410 0.629Table 2: Upper bounds on hit ratios for di�erent values of the fetch unit3.2 Caching Replacement PoliciesWe experimented with �ve cache replacement policies. The �rst four are adaptations of the well-known LRU and SLRU policies [8]. The complexity of treating a query is O(1) for each of thosepolicies. The �fth policy, which we call Probability Driven Cache (PDC), is a novel approach tailoredfor the task of caching query result pages. It is more complex, requiring �(log(size of the cache))operations per query. The following describes the data structures that are used in each scheme, andthe manner in which each scheme handles queries. For this we de�ne, for a query q that requeststhe set of pages P (q), two disjoint sets of pages C(q) and F (q):1. C(q) � P (q) is the subset of the requested pages that are cached when q is submitted.2. Let F 0(q) denote the set of pages that are fetched as a consequence of q, as explained inSection 3.1. F (q) is the subset of the uncached pages of F 0(q). 6Page LRU (PLRU) This is a straightforward adaptation of the Least Recently Used (LRU)policy. We allocate a page queue that can accommodate a certain number of result pages. For everyquery q, the pages of C(q) are moved back to the tail of the queue. They are joined there by thepages of F (q) , which are added to the tail of the queue. Once the queue is full, cached pages areevicted from the head of the queue. Thus, the tail of the queue holds the most recently requested(and prefetched) pages, while its head holds the least recently requested pages. PLRU with a fetchunit of 1 was evaluated in [11], and attained hit ratios of around 30% (for warm, large caches).6As a byproduct, the cached entries of the pages of F 0(q) n F (q) are refreshed.11T
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Page SLRU (PSLRU) The SLRU policy maintains two LRU segments, a protected segment anda probationary segment. The pages of F (q) are inserted into the (tail of the) probationary segment.The pages of C(q) are transfered to the tail of the protected segment. Pages that are evicted fromthe protected segment remain cached - they are demoted to the tail of the probationary segment.Pages are removed from the cache only when they are evicted from the probationary segment.It follows that pages in the protected segment were requested at least twice since they were lastfetched. PSLRU with a fetch unit of 1 was also evaluated in [11], where it consistently outperformedPLRU (in large caches, however, the di�erence was very small).Topic LRU (TLRU) This policy is a variation on the PLRU scheme. Let t(q) denote the topicof the query q. TLRU performs two actions for every query q: (1) the pages of F (q) are inserted intothe page queue, and (2) any cached result page of t(q) is moved to the tail of the queue. E�ectively,each topic's pages will always reside contiguously in the queue, with the blocks of di�erent topicsordered by the LRU policy.Topic SLRU (TSLRU) This policy is a variation on the PSLRU scheme. It performs two actionsfor every query q (whose topic is t(q)): (1) the pages of F (q) are inserted into the probationaryqueue, and (2) any cached result page of t(q) is moved to the tail of the protected queue.3.2.1 Probability Driven Cache (PDC)Cache replacement policies attempt to keep pages that have a high probability of being requestedin the near future, cached. The PDC scheme is based on a model of search engine users thatconcretely de�nes the two vague notions of \probability of being requested" and \near future".The model behind PDC Users submit queries to a search engine in an asynchronous manner.Every user u issues a series of fqui = (�ui ; tui ; fui ; `ui )gi�1 queries, where �ui is the time of submissionof qui , tui is the topic of the query, and fui � `ui de�ne the range of result pages requested. Considerqui and qui+1, two successive queries issued by user u. In this model, qui+1 may either follow-up onqui , or start a new search session of u that is unrelated to the previous query:12T
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1. qui+1 is a follow-up on qui (denoted qui ! qui+1) if both are on the same topic, qui+1 asks for theresult pages that immediately follow those requested in qui , and qui+1 is submitted no morethat W time units after qi. Formally, tui+1 = tui , fui+1 = `ui + 1 and �ui+1 � �ui +W . We saythat qui ; : : : ; quj (i � j) constitute a search session whenever quk ! quk+1 for all i � k < j, whilequi�1 6! qui and quj 6! quj+1.2. qui+1 starts a new search session whenever fui+1 = 1. 7This model of search behavior limits the \attention span" of search engine users to W time units:users do not submit follow-up queries after being inactive forW time units. Long inactivity periodsindicate that the user has lost interest in the previous search session, and will start a new sessionwith the next query. Following are several implications of this model:� The result pages viewed in every search session are pages (t; 1); : : : ; (t;m) for some topic tand m � 1.� At any given moment � , every user has at most one query that will potentially be followedupon. Formally, let U denote the set of users, and let qu� denote the most recent querysubmitted by user u 2 U prior to time � (qu� may be nil if u has not submitted queries priorto �). The set of queries that will potentially be followed upon is de�ned byQ 4= fqu� ; u 2 U : qu� was submitted after � �Wg (1)The model assumes that there are topic and user independent probabilities sm; m � 1 such thatsm is the probability of a search session requesting exactly m result pages. Furthermore, the modelassumes that it is familiar with these probabilities.For a query q 2 Q, let t(q) denote the query's topic and let `(q) denote the last result pagerequested in q. For every result page (t;m), we can now calculate PQ(t;m), the probability that(t;m) will be requested as a follow-up to at least one of the queries in Q:PQ(t;m) = 1� Yq2Q(1� P [(t;m) will follow-up on q]) = 1� Yq2Q:t(q)=t;`(q)<m(1� P [mj`(q)]) (2)7We assume that the �rst query of every user u; qu1 , requests the top result page of some topic.13T
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where P [mj`(q)] = Pi�m siPj�`(q) sjP [mj`] is the probability that a session will request result page m, given that the last result pagerequested so far was page `. PQ(t;m) depends on the number of users who are currently searchingfor topic t, as well as on the last t-page requested by every such user. PQ(t;m) will be large if manyusers have recently (within W time units) requested t-pages whose number is close to (but smallerthan) m. Note that for all t, PQ(t; 1) = 0; the model does not predict the topics that will be thefocus of future search sessions. PDC prioritizes cached (t; 1) pages by a di�erent mechanism thanthe PQ(t;m) probabilities.Kraiss and Weikum also mention setting the priority of a cached entry by the probability ofat least one request for the entry within a certain time horizon [9]. Their model for predictingfuture requests is based on continuous-time Markov chains, and includes the modeling of newsession arrivals and current session terminations. However, the main prioritization scheme thatthey suggest, and which is best supported by their model, is based on the expected number ofrequests to each cached entry (within a given time frame). Prioritizing according to the probabilityof at least one visit is quite complex in their model, prompting them to suggest a calculation whichapproximates these probabilities. As the model behind PDC is simpler than the more general modelof [9], the calculations it involves are also signi�cantly less expensive.Implementing PDC The PDC scheme is based on the model described above. PDC attemptsto prioritize its cached pages using the probabilities calculated in Equation 2. However, since theseprobabilities are zero for all (t; 1) pages, PDC maintains two separate bu�ers: (1) an SLRU bu�erfor caching (t; 1) pages, and (2) a priority queue PQ for prioritizing the cached (t;m > 1) pagesaccording to the probabilities of Equation 2. The relative sizes of the SLRU and PQ bu�ers aresubject to optimization, as will be discussed in Section 4.2. For the time being, let CPQ denotethe size (capacity) of PQ. In order to implement PQ, PDC must set the probabilities si; i � 1 andkeep track of the set of queries Q, de�ned in Equation 1:� Every search engine can set the probabilities si; i � 1 based on the characteristics of its log.In our implementation, we approximated si by the proportion of views of i'th result pages in14T
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the �rst million queries. 8 In light of this, the PDC simulations whose results are reported inSection 4.2 skip these queries, and are driven by the remaining 6160190 queries of the log.� PDC tracks the set Q by maintaining a query window QW, that holds a subset of the queriessubmitted during the lastW time units. The exact subset that is kept in QW will be discussedshortly. For every kept query q = (�; t; f; `), its time � and last requested page (t; `) are saved.Each query q = (�; t; f; `) is processed in PDC by the following four steps:1. q is inserted into QW, and queries submitted before � �W are removed from QW. If thereis a query q0 in QW such that the last page requested by q0 is (t; f � 1), the least recent suchquery is also removed from QW. This is the heuristic by which we associate follow-up querieswith their predecessors, since the queries in our log are anonymous.2. Let T denote the set of topics whose corresponding set of QW queries has changed (t belongsto T , and other topics may have had queries removed from QW). The priorities of all T -pagesin PQ are updated according to Equation 2, with the set of queries in QW assuming the roleof the query set Q.3. If f = 1 and page (t; 1) is not cached, (t; 1) is inserted at the tail of the probationary segmentof the SLRU. If (t; 1) is already cached, it is moved to the tail of the protected segment ofthe SLRU.4. Let (t;m); 1 < m � ` be a page requested by q that is not cached. Its priority is calculatedin light of the window QW, and if it merits so, it is kept in PQ (causing perhaps an evictionof a lower priority page).In order to implement the above procedure e�ciently, PDC maintains a topic table, where everytopic (1) links to its cached pages in PQ, (2) points to its top result page in the SLRU, and (3)keeps track of the QW entries associated with it. When the number of di�erent result pages thatmay be cached per topic is bounded by a constant, and when PQ is implemented by a heap, the8The behavior of the number of views per result page number in the entire log was discussed in Section 2 andFigure 1. 15T
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amortized complexity of the above procedure is �(logCPQ) per query 9. See [5] for discussions ofthe heap data structure and of amortized analysis.As noted above, the cache in PDC is comprised of two separate bu�ers of �xed size, an SLRUfor (t; 1) pages and a priority queue for all other pages. Two bu�ers are also maintained in [17];there, the cache bu�er is dedicated to holding pages that were actually requested, while the prefetchbu�er contains entries that the system predicts to be requested shortly. Pages from the prefetchbu�er migrate to the cache bu�er if they are indeed requested as predicted.4 ResultsThis section reports the results of our experiments with the various caching schemes. Each schemewas tested with respect to a range of cache sizes, fetch units and other applicable parameters.Subsection 4.1 concretely de�nes the terms cache size and hit ratio in the context of this work.Subsection 4.2 discusses the schemes separately, starting with the LRU-based schemes, movingto the more complex SLRU-based schemes, and ending with the PDC scheme. A cross-schemecomparison is brought in Subsection 4.3.4.1 Interpretation of Reported StatisticsCache sizes Cache sizes in this work are measured by page entries, which are abstract unitsof storage that hold the information associated with a cached result page of 10 search results.Markatos[11] estimates that such information requires about 4 kilobytes of storage. Since the exactamount of required memory depends on the nature of the information stored and its encoding, this�gure may vary from engine to engine. However, we assume that for every speci�c engine, thememory required does not vary widely from one result page to another, and so we can regard thepage entry as a standard memory unit. Note that we ignore the memory required for bookkeepingin each of the schemes. In the four LRU-based policies, this overhead is negligible. In PDC, thequery window QW requires several bytes of storage per kept query. We ignore this, and only9Amortized analysis is required since the number of topics a�ected by the QW updates while treating a singlequery, may vary. Other implementations may choose to have QW hold a �xed number of recent queries withoutconsidering the time frame. Such implementations will achieve a non-amortized complexity of �(logCPQ).16T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t  

C
S-

20
02

-1
6 

- 
20

02



consider the capacity of the SLRU and PQ bu�ers of PDC.Hits and Faults As shown in Table 1, the queries in our trace �le may request several (up to10) result pages per query. Thus, it is possible for a query to be partially answered by the cache- some of the requested result pages may be cached, while other pages might not be cached. Inour reported results, a query counts as a cache hit only if it can be fully answered from the cache.Whenever one or more of the requested pages is not cached, the query counts as a cache fault, sincesatisfying the query requires processing it through the index of the engine. It follows that eachquery causes either a hit or a fault. The hit ratio is de�ned as the number of hits divided by thenumber of queries. It re
ects the fraction of queries that were fully answered from the cache, andrequired no processing whatsoever by the index.Cold and Warm caches We begin all our simulations with empty, cold caches. In the �rst partof the simulation, the caches gradually �ll up. Naturally, the number of faults during this initialperiod is very high. When a cache reaches full capacity, it becomes warm (and stays warm forthe rest of the simulation). The hit ratios we report are for full, warm caches only. The de�nitionof a full cache for the PLRU and TLRU schemes is straightforward - the caches of those schemesbecome warm once the page queue is full. The PSLRU and TSLRU caches become warm once theprobationary segment of the SLRU becomes full for the �rst time. The PDC cache becomes warmonce either the probationary segment of the SLRU or the PQ component reach full capacity.4.2 Results - Scheme by SchemePLRU and TLRU Both schemes were tested for the eight cache sizes 4000�2i; i = 0; : : : ; 7, andfor fetch units of 1; 2; 3; 4; 5; 10 and 20 (56 tests per scheme). The results are shown in Figure 5.The qualitative behavior of both schemes was nearly identical. We therefore discuss them jointly.In the following, we denote the hit ratio of either policy with fetch unit f and cache size s byLRU(s; f).� The results clearly demonstrate the impact of the fetch unit: LRU(s; 3) is always higher thanLRU(4s; 1). In fact, LRU(16000; 3) is higher than LRU(512000; 1), despite the latter cachebeing 32 times larger. 17T
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Figure 5: Results of Page LRU and Topic LRU caching schemes� For s = 4000, the optimal fetch unit is 3, and LRU(4000; 3) is about 2 � LRU(4000; 1). Forlarge sizes, optimizing the fetch unit can increase the hit ratio by about 0:17 as comparedwith LRU(size; 1) - an increase of over 50% in the hit ratio.� The optimal fetch unit increases as the size of the cache increases. For the three smallestsizes, the optimal fetch unit was 3. As the caches grew, the optimal fetch unit (of thoseexamined) became 4, 5 and 10.� The increase in performance that is gained by doubling the cache size is large for small caches(an increase of 0:05 and beyond in the hit ratio for caches holding 16000 pages or less).However, for large sizes, doubling the cache size increases the hit ratio in just about 0:02.Table 3 summarizes the e�ect of the fetch unit on the hit ratios of PLRU and TLRU. For each cachesize s, the hit ratio LRU(s; 1) is compared to the hit ratio achieved with the optimal fetch unit(fopt). Note that the former ratios, which are between 0:3 and 0:35 for the large cache sizes, areconsistent with the hit ratios reported by Markatos [11]. Also note that PLRU outperforms TLRUfor small caches, while TLRU is better for large caches (although the di�erence in performance isslight). 18T
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Cache size PLRU(s,1) PLRU fopt, TLRU(s,1) TLRU fopt,(s) resulting hit ratio resulting hit ratio4000 0.113 3, 0.224 0.107 3, 0.2288000 0.176 3, 0.278 0.168 3, 0.27616000 0.215 3, 0.350 0.215 3, 0.34932000 0.239 5, 0.410 0.241 4, 0.41164000 0.261 5, 0.442 0.265 5, 0.445128000 0.284 5, 0.465 0.288 10, 0.469256000 0.308 10, 0.488 0.314 10, 0.491512000 0.336 10, 0.508 0.343 10, 0.511Table 3: Impact of the fetch unit on the performance of PLRU and TLRUPSLRU and TSLRU These two schemes have an additional degree of freedom as comparedwith the LRU based schemes - namely, the ratio between the size of the protected segment andthat of the probationary segment. Here, we tested four cache sizes (s = 4000 � 4i; i = 0; : : : ; 3)while varying the size of the probationary segment of the SLRU from 0:5s to 0:9s, in 0:1s increases.Having seen the behavior of the fetch unit in the LRU-based schemes, we limited these simulationsto fetch units of 2; 3; 4; 5 and 10. Overall, we ran 100 tests 10 per scheme. As with PLRU andTLRU, here too there was little di�erence between the behavior of PSLRU and TSLRU. Therefore,Figure 6 shows results of a single scheme for each cache size. The label of each plot describes thecorresponding relative size of the probationary SLRU segment.The e�ect of the fetch unit is again dramatic, and is similar to that observed for the PLRU andTLRU schemes. As before, the optimal fetch unit increases as the cache size grows. Furthermore,the optimal fetch unit depends only on the cache size, and is independent of how that size ispartitioned among the two SLRU segments.The e�ect of the relative sizes of the two SLRU segments on the hit ratio is less signi�cant. Tosee that, we �x the optimal fetch unit for each cache size s, and examine the di�erent hit ratios thatare achieved with di�erent SLRU partitions. For s = 4000 and s = 16000, the hit ratio increased104 cache sizes � 5 fetch units � 5 probationary segment sizes19T
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Figure 6: Results of the PSLRU and TSLRU caching schemesas the probationary segment grew. However, the increase in hit ratio between the best and worstSLRU partitions was at most 0:025. For the larger sizes of s = 64000 and s = 256000, the resultswere even tighter. The optimal sizes of the probationary segment were 0:7s and 0:6s respectively,but all �ve examined SLRU partitions achieved hit ratios that were within 0:01 of each other. Weconclude that once the fetch unit is optimized, the relative sizes of the two cache segments aremarginally important for small cache sizes, and hardly matter for large caches.PDC This scheme has two new degrees of freedom which were not present in the SLRU-basedschemes: the length of the window QW, and the ratio between the capacity of the SLRU, whichholds the (t; 1) pages of the various topics, and the capacity of the priority queue PQ, that holds allother result pages. We tested three window lengths (2:5; 5 and 7:5 minutes), four cache sizes (s =4000 � 4i; i = 0; : : : ; 3), and 7 fetch units (1; 2; 3; 4; 5; 10; 20). For every one of the 84 combinationsof window length, cache size and fetch unit, we tested 20 partitionings of the cache: four PQsizes (0:3s; 0:35s; 0:4s and 0:45s), and the same 5 internal SLRU partitionings as examined for thePSLRU and TSLRU schemes. To summarize, 560 di�erent simulations were executed for each20T
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window size, giving a total of 1680 simulations. Our �ndings are described below.The most signi�cant degree of freedom was, again, the fetch unit. As with the previous schemes,the optimal fetch unit grew as the size of the cache grew. Furthermore, the optimal fetch unitdepended only on the overall size of the cache, and not on the speci�c boundaries between thethree storage segments. When limiting the discussion to a speci�c cache size and the correspondingoptimal fetch unit, the hit ratio is quite insensitive to the boundaries between the three cachesegments. The di�erence in the hit ratios that are achieved with the best and worst partitions ofthe cache was no more than 0:015. As an example, we bring the hit ratios for a PDC of 64000 totalpages, with a window of 5 minutes. The optimal fetch unit proved to be 5. Figure 7 brings thehit ratios of 20 di�erent partitionings of the cache - four PQ sizes (corresponding to 0:45; 0:4; 0:35and 0:3 of the cache size), and �ve partitionings of the remaining pages in the SLRU (the x-axiscorresponds to the relative size of the probationary segment of the SLRU). The trends are clear- a large PQ and an equal partitioning of the SLRU outperform smaller PQs or skewed SLRUpartitionings. However, all 20 hit ratios are above 0:453 and below 0:468.
Figure 7: Insensitivity of the PDC scheme to internal partitions of the cacheTable 4 brings the optimal parameters for the 12 combinations of cache sizes and window lengthsthat were examined, along with the achieved hit ratio. The PQ size is relative to the size of thecache, while the size of the probationary segment of the SLRU is given as a fraction of the SLRUsize (not of the entire cache size). The results indicate that the optimal window length grows as the21T
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window cache size fetch PQ size SLRU probationary hit ratio(minutes) (result pages) unit segment size2:5 4000 3 0:45 0:8 0:2432:5 16000 4 0:45 0:6 0:37282:5 64000 5 0:45 0:5 0:46682:5 256000 10 0:35 0:5 0:535 4000 3 0:45 0:8 0:2295 16000 5 0:45 0:6 0:36915 64000 5 0:45 0:5 0:4685 256000 10 0:35 0:5 0:53097:5 4000 3 0:45 0:9 0:21657:5 16000 5 0:45 0:6 0:36277:5 64000 5 0:45 0:5 0:46277:5 256000 10 0:35 0:5 0:5319Table 4: Optimal parameters and hit ratios for the tested PDC settingscache size grows. For the smaller two caches, the 2:5-minute window outperformed the two largerwindows (with the margin of victory shrinking at 16000 pages). The 5-minute window proved bestwhen the cache size was 64000 pages, and the 7:5-minute window achieved the highest hit ratios forthe 256000-page cache. With small cache sizes, it is best to consider only the most recent requests.As the cache grows, it pays to consider growing request histories when replacing cached pages.As for the internal partitioning of the cache, all three window sizes agree that (1) the optimal PQsize shrinks as the cache grows, and (2) the probationary segment of the SLRU should be dominantfor small caches, but both SLRU segments should be roughly of equal size in large caches.4.3 Cross-Scheme ComparisonFigure 8 shows the optimal hit ratios achieved by 7 cache replacement policies: PLRU, TLRU,PSLRU, TSLRU and PDC schemes with windows of 2:5; 5 and 7:5 minutes. Results for 4 cachesizes are shown: 4000 � 4i; i = 0; : : : ; 3. For each cache size and policy, the displayed hit ratiosare the highest that were achieved in our experiments (with the optimal choice of the fetch unit22T
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and the partitioning of the cache). The optimal fetch unit was consistent almost throughout theresults - for cache sizes of 4000; 64000 and 256000 pages, the optimal fetch units were 3; 5 and 10respectively, in all schemes. For caches of 16000 pages, the optimal fetch unit varied between 3 and5, depending on the scheme.

Figure 8: Comparison of all PoliciesAs Figure 8 shows, the best hit ratios for all cache sizes were achieved using PDC. In fact, the2:5 and 5 minute PDCs outperformed the four LRU and SLRU based schemes for all cache sizes,with the 7:5-minute PDC joining them in the lead for all but the smallest cache. Furthermore,in all but the smallest cache size, the hit ratios are easily clustered into the high values achievedusing PDC, and the lower (and almost equal) values achieved with the other four schemes. Forlarge cache sizes, The comparison of PDC and TLRU (which is better than PLRU at large sizes)reveals that PDC is competitive with a twice-larger PLRU: the optimal 64000-page PDC achievesa hit ratio of 0:468 while the 128000-page TLRU has a hit ratio of 0:469, and all three 256000-page23T
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PDC schemes outperform the 512000-page TLRU (0:53 to 0:51).The hit ratios of all three 256000-page PDC schemes were above 0:53, and were achieved usinga fetch unit of 10. Recall that Table 2 brought upper bounds on the hit ratio that is achievable onthe query log examined. These bounds correspond to in�nite caches with prior knowledge of theentire query stream. For a fetch unit of 10, the upper bound was 0:62, and the bound for any fetchunit was 0:629. Thus, PDC achieves hit ratios that are beyond 0:84 of the theoretic upper bound.When limiting the discussion to the LRU and SLRU based schemes, Page SLRU is the bestscheme for all but the smallest cache size. This is consistent with the results of Markatos[11], wherePSLRU outperformed PLRU (with the fetch unit �xed at 1).5 Conclusions and Future ResearchWe have examined �ve replacement policies for cached search result pages. Four of the policies arebased on the well-known LRU and SLRU schemes, while the �fth is a new approach called PDC,which assigns priorities to its cached result pages based on a probabilistic model of search engineusers. Trace-driven simulations have shown that PDC is superior to the other tested cachingschemes. For large cache sizes, PDC outperforms LRU-based caches that are twice as large. Itachieves hit ratios of 0:53 on a query log whose theoretic hit ratio is bounded by 0:629.We also studied the e�ect of other parameters, such as the fetch unit and the relative sizes ofthe various cache segments, on the hit ratios. The fetch unit proved to be the dominant factor inoptimizing the caches' performance. Optimizing the fetch unit can double the hit ratios of smallcaches, and can increase these ratios in large caches by 50%. With optimal fetch units, small cachesoutperform much larger caches whose fetch unit is not optimal. In particular, a size-s cache with anoptimal fetch unit will outperform caches of size 4s whose fetch unit is 1. The impact of the fetchunit on the hit ratio is much greater than the impact achieved by tuning the internal partitioningof the cache. Furthermore, the optimal fetch unit depends only on the total size of the cache, andnot on the internal organization of the various segments.An important bene�t that a search engine enjoys when increasing the hit ratio of its queryresult cache, is the reduction in the number of query executions it must perform. However, whilelarge fetch units may increase the hit ratio of the cache, the complexity of each query execution24T
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grows as the fetch unit grows [10]. Although the increase in the complexity of query executionsmay be relatively small in many search engine architectures, it should be noted that the hit ratiois not the sole metric by which the fetch unit should be tuned.An important and intuitive trend seen throughout our experiments is that large caches can takeinto account longer request histories, and prepare in advance for the long term future. Planningfor the future is exempli�ed by the increase of the optimal fetch unit as the cache size grows. In allschemes, the optimal fetch unit grew from 3 to 10 as the cache size increased from 4000 to 256000pages. Since the fetch unit essentially re
ects the amount of prefetching that is performed, ourresults indicate that large caches merit increased prefetching. As for considering longer requesthistories, this is exempli�ed by the PDC approach, where the optimal length of the query windowincreased as the cache size grew.The schemes employing some form of SLRU (PSLRU, TSLRU and PDC) also exhibit an in-creased \sense of history" and \future awareness" as their caches grow. In these schemes, therelative size of the protected segment increased with the cache size. A large protected segment is,in a sense, a manner of planning for the future since it holds and protects many entries againstearly removal. Additionally, only long request histories contain enough repeating requests to �lllarge protected segments.The following is left for future research:� The model of search engine users that gave rise to the PDC scheme is fairly simple. Inparticular, our modeling of the time that is allowed between successive queries in a searchsession is simplistic. While PDC outperformed the other schemes we tested, more elaboratemodels may result in further improvement in performance.� The query trace available to us held anonymous information - users (or user-IDs) were notassociated with queries. Search engines, however, can associate (to some extent) queries withusers through the use of session-IDs, cookies, and other mechanisms. Caching policies thatare aware of the coupling of queries and users can track the \active search sessions", and cantap this knowledge to improve performance.25T
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