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P. E. Meehl and N. G. Waller (2002) proposed an innovative method for assessing
path analysis models wherein they subjected a given model, along with a set of
alternatives, to risky tests using selected elements of a sample correlation matrix.
Although the authors find much common ground with the perspective underlying
the Meehl–Waller approach, they suggest that there are aspects of the proposed
procedure that require close examination and further development. These include
the selection of only one subset of correlations to estimate parameters when mul-
tiple solutions are generally available, the fact that the risky tests may test only a
subset of parameters rather than the full model of interest, and the potential for
different results to be obtained from analysis of equivalent models.

Meehl and Waller (2002) proposed an innovative
procedure for assessing verisimilitude, or truth-
likeness, of path analysis models by subjecting them
to a creative form of risky test. Model parameters are
estimated using only a subset of the elements of the
sample correlation matrix, and the resulting parameter
estimates are then tested by determining how well
they account for the other, unused, elements of the
correlation matrix. This procedure is conducted for
the original model as well as for a set of similar al-
ternative models, and the original model is then com-
pared with the alternatives with respect to results of
the risky tests. Support for verisimilitude of the origi-
nal model is enhanced to the degree that it outper-
forms the alternative models.

We find much to commend in the Meehl–Waller
(2002) approach, especially the general perspective
and principles that form its foundation. We are in full
agreement with their fundamental view about the im-

plausibility of exact fit for any model and the utility of
the concept of verisimilitude. This view underlies
some of our own work on representing and evaluating
models (e.g., Browne & Cudeck, 1993; MacCallum,
in press; MacCallum & Tucker, 1991). Some of the
most eminent contributors to our field have empha-
sized that we must recognize the inherent imperfec-
tion in our models (e.g., Box, 1979; Thurstone, 1930;
Tukey, 1961). We also commend Meehl and Waller
for their emphasis on the need to subject models to
risky tests and to evaluate alternative models. Assess-
ment of the fit of a single model to one set of data
does not provide adequate evaluation of the model,
and results may be strongly influenced by capitaliza-
tion on chance. Models must be evaluated with re-
spect to their ability to account for data other than that
used to estimate model parameters, and a model of
interest must be compared with alternatives rather
than be examined in isolation. Otherwise the investi-
gator learns nothing about the cross-validity of a
model or about its standing relative to alternative
models.

Although we fully agree with these principles
that guide the Meehl–Waller (2002) approach,
we wish to offer some comments about some as-
pects of their proposed procedure. We believe that
some features of their approach merit close atten-
tion and perhaps further development and that
an increased awareness of these issues will help
the user to make appropriate interpretations of
findings.

Robert C. MacCallum, Michael W. Browne, and Kris-
topher J. Preacher, Department of Psychology, The Ohio
State University.

Correspondence concerning this article should be ad-
dressed to Robert C. MacCallum. Through September 30,
2002, he will be at the Department of Psychology, The Ohio
State University, 1885 Neil Avenue, Columbus, Ohio
43210-1222. E-mail: maccallum.1@osu.edu. After January
1, 2003, he will be at the Department of Psychology, Uni-
versity of North Carolina, Chapel Hill, North Carolina
27599-3270.

Psychological Methods Copyright 2002 by the American Psychological Association, Inc.
2002, Vol. 7, No. 3, 301–306 1082-989X/02/$5.00 DOI: 10.1037//1082-989X.7.3.301

301

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/285667324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Estimation and Risky Tests

For purposes of subsequent discussion, it is useful
to provide a brief review of the Meehl–Waller (2002)
procedure. Given a model of interest, their procedure
involves construction of a set of equations relating the
elements of the correlation matrix, R, of the measured
variables to the model parameters. Let Q represent the
system of equations; note that there will be one equa-
tion for each distinct element of R. For Model C in
Figure 1 of the Meehl–Waller article, the set of equa-
tions Q is represented by Equations 6–10 in their ar-
ticle. Conventional parameter estimation would in-
volve estimating the parameters of this model (a, b, c,
and d) such that the resulting solution reconstructed
the elements of R as well as possible, according to
some discrepancy function such as maximum likeli-
hood or ordinary least squares. That is, the full set of
Equations 6–10 would be used to estimate the param-
eters. Meehl and Waller correctly recognized that the
parameters could be estimated using only a subset of
the equations. The set Q of equations can be split into
Subsets Q1 and Q2, where equations in Q1 are used to
estimate parameters. For instance, in their example,
the four parameters can be estimated using only Equa-
tions 6, 7, 9, and 10 (Set Q1) and not 8 (Set Q2).
Equation 8 could then be used to carry out a type of
risky test to determine how well the parameter esti-
mates obtained from the other equations will recon-
struct the correlation represented by Equation 8. The
closeness of that reconstruction is measured using a
root-mean-square residual (RMSr) statistic. Equiva-
lently, this procedure amounts to splitting the ele-
ments of R into two subsets, call them R1 and R2,
where R1 represents a minimally sufficient subset to
obtain parameter estimates. Resulting parameter esti-
mates are then used to reconstruct the correlation co-
efficients in R2. For Model C in their Figure 1, the
resulting RMSr is found to be 0.10, which is obtained
by substituting their estimate of parameter b into
Equation 8 and computing the difference between the
reconstructed and observed values of ry1x2

.
Meehl and Waller (2002) then generated a set of

alternative models using their delete 1–add 1 (D1-A1)
rule and carried out the same procedure for each such
alternative. They then compared the RMSr values for
the original model to the distribution of RMSr values
for the alternative models and assessed where the
original model fell in that distribution. See their Table
2 for an example. The verisimilitude of Model C in
their example is supported because it yields smaller
RMSr values than do the alternatives.

Some Issues of Concern

Obtaining Only a Single RMSr Value for
Each Model

It is creative of Meehl and Waller (2002) to have
recognized that model parameters can be estimated
using only a subset R1 of the elements of R and that
resulting parameter estimates can be subjected to a
risky test using the elements in Subset R2. A key
aspect of their approach involves choosing the subset
R1. Note that elements for R1 cannot be chosen ran-
domly from R, because the corresponding set of equa-
tions Q1 must constitute a sufficient set of equations
to estimate the parameters. Defining a general rule for
designating an appropriate R1 and corresponding Q1
is not a simple problem, and we commend Meehl and
Waller for developing a simple rule that accomplishes
this feat. According to their rule, for each path present
in the model of interest, R1 will include the simple
correlation for the pair of variables connected by that
path.

However, we emphasize that there generally will be
other ways to select R1 for assessment of any given
model. Let us return to the Meehl–Waller example
using Model C of their Figure 1, and their Equations
6–10. The Meehl–Waller procedure conducts estima-
tion using Equations 6–7–9–10 followed by a risky
test using Equation 8. However, there is an obvious
alternative. Note that Equations 7 and 8 each involve
only the b parameter. Thus, it would be possible to
estimate using Equations 6–8–9–10 and conduct the
risky test using Equation 7. This means that one could
obtain parameter estimates using a different splitting
of the elements of R into R1 and R2 than that used by
Meehl and Waller. When this is done, the resulting
estimate of b is 0.77, rather than the estimate of 0.43
obtained by Meehl and Waller. Completing the pro-
cess, the corresponding new RMSr is found to be 0.34,
rather than the value of 0.10 obtained by Meehl and
Waller. Both solutions are equally valid. Clearly, dif-
ferent designations of the R1 and R2 subsets may
result in very different values of RMSr for a given
model. For Model C, it happens that only two distinct
designations of R1 and R2 are possible, producing the
two values of RMSr just mentioned, 0.10 and 0.34.
However, for other models, there may well be a larger
number of valid RMSr values, depending on how
many ways the minimally sufficient subset R1 can be
defined.

This same phenomenon holds as well for each of
the alternative models generated by the D1-A1 pro-
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cedure. For each of the corrupted models D–G in
Figure 1 of Meehl and Waller (2002), those authors
provided a single RMSr value in their Table 2. How-
ever, it is in fact possible to obtain multiple values of
RMSr for each of these corrupted models. We carried
out this exercise. For each of Models D–G we speci-
fied the set of equations representing the correlation
structure, analogous to Equations 6–10 for Model C.
Because there are five equations (Set Q) and four
parameters for each model, it was necessary to choose
four of the five equations (Subset Q1) for estimation
and use the remaining equation (Subset Q2) for the
risky test. Therefore, for each model, we tested every
possible subset of four of the five equations to deter-
mine whether those equations were sufficient for es-
timation of the four parameters. For those acceptable
cases, we obtained parameter estimates and then, us-
ing the remaining equation, computed the recon-
structed correlation and the corresponding RMSr
value.

This exercise thus involved 30 attempted solutions
for RMSr (5 attempts for each of the six models) and
resulted in a variety of outcomes that are reported in
our Table 1. For 6 of these attempts, the system of
equations was not identified, thus yielding an infinite
number of solutions for the parameter estimates. For
the remaining 24 of the attempts, 2 attempts for
Model D yielded 2 distinct solutions each for the pa-
rameter estimates, along with corresponding RMSr

values. In addition, 2 attempts for Model G and 2 for
Model H yielded complex solutions for the parameter
estimates (i.e., solutions including an imaginary com-
ponent) and corresponding complex RMSr values.
Also, a total of 10 of the attempts yielded recon-
structed correlations outside of the bounds of 1.0 and
−1.0. This left a total of 12 solutions that yielded
reconstructed correlations that were in bounds, along
with corresponding RMSr values; this number in-
cludes the 6 RMSr values presented by Meehl and
Waller. Thus, in addition to the 6 valid RMSr values
of Meehl and Waller (2002), we obtained 6 additional
valid values, as seen in our Table 1.

We wish to emphasize several points regarding re-
sults of this exercise. First, when carrying out the
process of identifying a minimally sufficient subset of
equations to obtain parameter estimates and then con-
ducting the Meehl–Waller (2002) risky test using the
remaining equations, if one considers all possible
such solutions, it appears that quite a variety of solu-
tions can occur. Some of these solutions can be rea-
sonably deemed to be invalid because of recon-
structed correlations being out of bounds or other
reasons. However, even granting that, it is most im-
portant to recognize that completely valid solutions
may exist other than those arising via the Meehl–
Waller method of selecting which equations or corre-
lations to use for estimation and which to use for the
risky tests. The critical point here is that the Meehl–

Table 1
Original and Alternative Root-Mean-Square Residual (RMSr) Values for Example 1 of
Meehl and Waller (2002)

Model

RMSr

From Meehl
and Waller

From other
valid solutions to the
systems of equations

From invalid solutions
to the systems of

equations

C 0.10 0.34
D 0.32 0.47, 0.49,a 0.65, 0.80b 5.45,a 3.08b

E 0.55 1.14 0.80, 1.39, 4.97
F 0.36 1.20
G 0.59 1.51, 2.78,

0.78 ± 0.72i,
1.28 ± 1.02i

H 0.55 4.90, 2.20,
0.02 ± 1.84i,
0.43 ± 0.73i

Note. Valid solutions: Reconstructed r is �1 and �−1. Invalid solutions: Reconstructed r is >1 or <−1,
or complex. i � √−1.
a Two distinct solutions to a single set of equations; one yields a valid solution and the other an invalid
solution.
b Two distinct solutions to a single set of equations; one yields a valid solution and the other an invalid
solution.
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Waller procedure yields only a single value for RMSr
for each model, when in fact multiple valid solutions
may well exist, possibly in large numbers for more
complex models. Thus, there exists a source of vari-
ability in results that is not taken into account in the
Meehl–Waller procedure with respect to specification
of the R1 and R2 subsets of correlation coefficients.
As a result, the evaluation of the standing of a given
model relative to a set of alternatives may be affected.
For instance, Meehl and Waller evaluated Model C as
surviving its risky test better than did Model D be-
cause their RMSr for C is smaller than that for D (0.10
v. 0.32). However, another valid solution for RMSr
for C is 0.34, which changes the perspective of the
performance of C as compared with D. Of course,
other values for D exist as well.

An interesting feature of the results shown in our
Table 1 is that, of the alternative values of RMSr
obtained for each model, the value produced by the
Meehl–Waller (2002) approach is always the small-
est. It may be the case that the Meehl–Waller proce-
dure for choosing R1 and R2 will necessarily produce
the smallest RMSr, as compared with other choices of
R1 and R2. This would be a difficult, if not impos-
sible, property to prove, but we have not seen coun-
terexamples. If it is true, it is not clear whether this
would be a desirable property in that it would in some
sense bias the result for each model by yielding only
the best measure of performance rather than a repre-
sentative value. That is, the Meehl–Waller procedure
may be evaluating models by comparing the smallest
possible RMSr for each model and ignoring the rest of
the distributions of RMSr values. Regardless, we be-
lieve that the most desirable approach would be to
obtain all valid solutions rather than just one.

The issue just discussed leaves the user of the
Meehl–Waller (2002) procedure with a problem. A
full resolution of this problem would apparently re-
quire an exhaustive treatment of the system of equa-
tions, Q, representing each model so as to seek all
possible permissible designations of Q1 and Q2 and to
obtain parameter estimates and RMSr for each such
splitting. Such an exhaustive search probably be-
comes impractical when models and numbers of pa-
rameters become large. The number of systems of
equations to solve would become extremely large, and
the process of obtaining those solutions would likely
yield a mix of valid and invalid solutions as seen in
the example just presented. At this point, we simply
see this issue as an unresolved problem, but we are
not comfortable with a procedure that bases model

evaluation on only a single RMSr value when an un-
known number of alternative valid values exist.

Model Comparison Using RMSr Values

Meehl and Waller (2002) proposed comparing
RMSr values produced for different models as a basis
for assessing verisimilitude in terms of relative capac-
ity of each model to survive a risky test. A close
examination of the nature of the test to which each
model is subjected reveals that users must be ex-
tremely cautious about interpretation of these model
comparisons. Consider the first example presented by
Meehl and Waller. Model C in their Figure 1 is rep-
resented by the correlation structure given in their
Equations 6–10. For this model, the RMSr value of
0.10 produced by Meehl and Waller is obtained by
using Equations 6–7–9–10 to estimate parameters and
Equation 8 to conduct the risky test. Note that the only
parameter in Equation 8 is b. Thus, the outcome of
this risky test depends only on the estimate of b and
not at all on the estimates of the other parameters.
Likewise, the alternative RMSr value of 0.34 for
Model C in our Table 1 uses Equation 7 to conduct the
risky test and again depends only on the estimate of b.
Therefore, the risky tests for Model C do not reflect
on performance of the full model but rather just reflect
the capacity of the estimate of parameter b to account
for information other than that used to make the es-
timate. The estimates of the other three parameters are
irrelevant. Furthermore, because of the structure of
the equations representing Model C, it is impossible
to conduct any other risky tests of parameters other
than b.

In a similar manner, we can determine that risky
tests of other models in the set of alternative models
may depend on only subsets of the model parameters.
For instance, it can be shown that the RMSr values for
Model F in Figure 1 of Meehl and Waller (2002)
depend only on the estimate of parameter w in that
model. Again, because of the structure of this model,
it is impossible to conduct risky tests involving any of
the other parameters. Thus, a comparison of RMSr for
Models C and F does not reflect anything about the
full models but rather reflects only the results of risky
tests of different parameters of these two models.
Meehl and Waller’s finding that Model C produces a
smaller RMSr than Model F does not reflect better
verisimilitude of the entire Model C versus the entire
Model F but rather indicates only that the estimate of
parameter b in Model C survives a risky test better
than does the estimate of parameter w in Model F. For
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some models, such as Model D, it can be shown that
the RMSr values depend on estimates of all four of the
model parameters. Regardless, it is difficult to justify
use of these RMSr values for model comparison when
such values for different models often depend on dif-
ferent subsets of model parameters.

The same phenomenon applies to the multiple
RMSr values that can be obtained for a single model
as presented in our Table 1. For any single model, it
can be shown that the various RMSr values may not
represent outcomes of risky tests of the same param-
eter(s). For instance, for Model E, the Meehl–Waller
(2002) RMSr value of 0.55 represents the result of a
test involving all four parameters. Other RMSr values
for Model E in our Table 1 represent results of tests
involving only two parameters each. The values 1.14
and 0.80 arise from risky tests using equations that
involve only b and w, and the values 1.39 and 4.97
result from equations involving only c and d.

These observations must call into question the
Meehl–Waller (2002) approach of assessing the
standing of the original model relative to the set of
alternatives by determining the rank of the RMSr for
the original model in the distribution of RMSr values
representing all of the alternatives. In the sense just
explained, these various RMSr values do not all re-
flect outcomes of risky tests of entire models, but
rather different parts of the models. Interpretation of
the percentile rank of a given model, as presented by
Meehl and Waller, should not be taken as reflecting
an assessment of relative verisimilitude of the models
being considered.

Equivalent Models

It is interesting to consider the outcome of the
Meehl–Waller (2002) procedure when applied to
equivalent initial models. For present purposes, let us
define equivalent models as models that are param-
eterized differently but that fit any given data equally
well. Some rules for generating equivalent models
were described by Lee and Hershberger (1990), and
the routine occurrence of equivalent models in sub-
stantive research was examined by MacCallum, We-
gener, Uchino, and Fabrigar (1993). Ignoring for the
moment the issues discussed above, suppose that the
Meehl–Waller procedure were applied, in exactly the
manner they proposed, to two different initial models
that were equivalent in the sense just defined. The
RMSr values for those two models would be the same,
we expect. However, differences are likely to arise
with respect to the nature of the sets of alternative

models generated by the D1-A1 procedure. This could
occur in at least two ways. First, if the two equivalent
models differ with respect to which variables are ex-
ogenous, then the resulting sets of alternative models
may differ in number. This would occur because the
Meehl–Waller approach treats correlational paths be-
tween exogenous variables as inviolate, whereas di-
rectional paths involving endogenous variables can be
deleted during the D1-A1 procedure. Thus, if equiva-
lent Models M1 and M2 differed in that M1 contained
correlations between a number of exogenous variables
whereas M2 replaced some of those correlations with
directional paths, then the set of alternative models
generated by the D1-A1 procedure applied to M1 may
be smaller than the set generated for M2. Second, if
the two equivalent models differ by reversal of a path
between endogenous variables, application of the D1-
A1 procedure to these models may produce sets of
alternative models that are not equivalent to each
other. If Models M3 and M4 differ in this way, then
the models in the alternative set produced for M3 will
not be equivalent to those produced for M4.

We offer a small-scale illustration of this last point
by modifying the first example presented by Meehl
and Waller (2002). Ignoring their models, but using

Figure 1. Two equivalent models fit to the correlation ma-
trix in Table 1 of Meehl and Waller (2002).
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the correlation matrix in their Table 1, we constructed
two equivalent models, designated Models EQ1 and
EQ2 and shown in our Figure 1. Note that these mod-
els differ with respect to the reversal of a single path.
Application of the Meehl–Waller procedure using
each of these models in turn as the original model
yields the same RMSr value of 0.44 for EQ1 and EQ2,
along with results for 12 alternative models in each
case. However, the two distributions of RMSr values
for the alternative models are not the same, because
the 12 modified models in each set are not pairwise
equivalent. As a result, the percentile ranks of EQ1
and EQ2 are found to be different (0.33 vs. 0.50),
implying better relative verisimilitude of EQ1 even
though the two models are equivalent. We have car-
ried out other small-scale demonstrations showing
differences in the set of alternative models and cor-
responding distributions of RMSr values given
equivalent initial models. These findings suggest that
this phenomenon may be a significant matter for fur-
ther study. They also raise at least some concern in
that the Meehl–Waller procedure as proposed can in-
dicate differential performance for equivalent initial
models, simply as a function of the sets of alternatives
generated by their D1-A1 procedure.

Summary

As noted at the outset, we find much common
ground with the perspective underlying the Meehl–
Waller (2002) approach. However, we are not com-
pletely comfortable with a number of aspects of their
proposed procedure. These include the provision of
only a single RMSr value for each model when mul-
tiple such values generally exist, the fact that RMSr
values for different models may reflect the outcome of
risky tests for different parts of the models rather than
the full models, and the potential for different results
for equivalent models simply due to differences in the
sets of alternative models generated for comparison.
Although we commend Meehl and Waller for their
sound guiding principles and we admire the creativity

inherent in their proposed procedure, we do believe
that the matters we have discussed raise some cause
for concern about methods and interpretation of re-
sults. Users of the procedure should be aware of these
issues, and those of us who study and develop meth-
ods could perhaps contribute to refining the innova-
tive approach proposed by Meehl and Waller.
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