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GAMMA RAY BURSTS AND RADIO LOUD
ACTIVE GALACTIC NUCLEI

Gabriele Ghisellini

Osservatorio Astronomico di Brera, via Bianchi 46 I–23807 Merate Italy

Abstract. We believe that the radiation we receive from Gamma-Ray Bursts (GRBs) and radio
loud Active Galacti Nuclei (AGNs) originates from the transformation of bulk relativistic motion
into random energy. Mechanisms to produce, collimate and accelerates the jets in these sources are
uncertain, and it may be fruitful to compare the characteristics of both class of sources in search of
enlightening similarities. I will present some general characteristics of radio loud AGNs and GRBs
such as their bulk Lorentz factors and the power of their jets. I will also discuss the way in which
the energy in bulk relativistic motion can be transformed into beamed radiation, and consider the
possibility that both classes of sources can work in the sameway, namely by an intermittent release
of relativistic plasma at the base of the jet: shells ejectedwith slightly different velocities collide at
some distance from the central engine, dissipating part of their kinetic energy, and keeping the rest
to power the extended radio lobes (in AGNs) or to produce the afterglow (in GRBs).

INTRODUCTION

Radio loud Active Galactic Nuclei (AGNs) and Gamma Ray Bursts (GRBs) have very
little in common, at first sight. GRB are flashes ofγ–ray radiation, likely flagging the
birth of a stellar size black hole, while radio–loud AGNs, even if remarkable for their
rapid variability, live for hundreds millions years, producing spectacular and Mpc–size
jets and radio lobes, and are powered by supermassive black holes. On the other hand, in
both classes the emitting plasma is moving at relativistic bulk speeds, and the radiation
we see is likely the result of the transformation of part of this well ordered kinetic energy
into random energy and then into radiation. Furthermore, there are strong evidences that
also GBRs have collimated jets. And finally, consider that the dynamical timescale for
a GRB should be of the order the light travel time to cross the gravitational radius, i.e.
Rg/c∼ 10−4M1 seconds, whereM1 is the mass of the black hole in units of tens of solar
masses. A burst with a duration of 10 seconds therefore lastsfor 105 dynamical times:
it can be a quasi steady process (for a 109 solar mass black hole, this time is equivalenth
to 30 years). What we naively consider an “explosion" is instead a long event.

In both classes of sources we have non–thermal particles andmagnetic field, suggest-
ing that non–thermal radiation processes are the main contributors to the radiation we
see. This radiation, being produced by plasma in relativistic motion, is strongly beamed
in the velocity direction, and we have evidences that also inGRBs the emitting fireball
is collimated in a cone, i.e. a “jet". For these reasons it is instructive to compare them
looking for similarities and differences, to see if their physics is similar. In the follow-
ing I will briefly discuss some of the basic facts of blazars and GRBs, and discuss the
possibility that, at the origin of their phenomenology, there is a common engine.
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FIGURE 1. The blazar sequence: note the shift of the peak energies as the total power changes. From
Fossati et al. (1998) and Donato et al. (2002).

BLAZARS

Bulk Lorentz factor — The best evidences for bulk relativistic motion in blazars come
from VLBI observations of knots of radio emission moving superluminally. Apparent
speeds up toβapp = 30h−1 are measured (see e.g. Jorstad et al. 2001), at least in
those blazars that are powerfulγ–ray emitters, indicating even larger Lorentz factors
Γ (note thatΓ must always be larger thanβapp). Indications of a large degree of beaming
come also from spectral fitting, especially of low powerful,TeV emitting, blazars where
beaming factorsδ > 20 are derived (Tavecchio et al. 1998). There are also indications
that the jet could be structured, with a fast “spine" surrounded by a slower “layer" (Laing
1993; Chiaberge et al. 2001; Giroletti et al. 2003), explaining for example why the non–
thermal radiation of the core of radio–galaxies is not as faint as predicted if the plasma
is moving at the same large speed and if they are observed at large angles with respect
to the jet axis.

The blazar sequence —Fossati et al. (1998), collecting data from three complete sam-
ple of blazars, demonstrated that the SED is controlled by the bolometric observed lu-
minosity, with both peaks shifting at smaller frequences when increasing the luminosity
(see Fig. 1). Furthermore, the dominance of the high energy peak increases when in-
creasing the bolometric luminosity (but this latter inference was based on the few low



power BL Lacs detected by EGRET). This “blazar sequence" canbe explained by a dif-
ferent degree of radiative cooling: in powerful blazars electrons cool faster, producing a
break in the electron distribution functions at smaller andsmaller energies when increas-
ing the total (radiation plus magnetic) energy density in the comoving frame (Ghisellini
et al. 1998).

Jet power —The radio lobes of radio–galaxies and blazars are a sort of calorimeter: the
power required to feed them can be calculated dividing the total energy of a radio lobe by
its lifetime (estimated from spectral aging or from advancemotion). This estimate has
been done, among others, by Rawling & Saunders (1991): they find an average power
ranging from 1043–1044 erg s−1 for FR I radiogalaxies to 1046–1047 erg s−1 for FR II
radiogalaxies and radio–loud quasars.

One can also calculate the power carried by the jet by inferring its density through
modeling the observed SED and requiring that the jet carriesat least the particles and
the magnetic field necessary to make the radiation we see. This has been done on the pc
scale by Celotti & Fabian (1993), on sub–pc scale (theγ–ray emitting zone) by Celotti
& Ghisellini (2003, see also Ghisellini 2003), and on the hundreds of kpc scale (the
X–ray jets seen by Chandra) by Celotti, Ghisellini & Chiaberge (2001) and Tavecchio
et al. (2000). These studies suggest large values of the power transported by the jet and
require the presence of a dynamically dominating proton component (see also arguments
by Sikora & Madejski 2000).

GAMMA RAY BURSTS

The main breaktrough in GRB science was the precise localization of some of them
made possible by the coded mask of the wide field camera ofBeppoSAX, which in turn
made possible the prompt follow up in X–rays, optical and radio. Then it was possible to
measure the redshift and end a decade long discussion about the galactic or cosmological
origin of GRBs. Up to now, about 30 redshifts of GRBs have beenmeasured. Apart from
the controversial case of GRB 980425, possibly associated with the nearby SN 1998bw
(at z∼ 0.008), all other redshifts are within the 0.17–4.5 range. A particularly useful
updated link with all the relevant information about burstswith good localization is
maintained by Jochen Greiner at:www.aip.de/∼jcg/grbgen.html .

Duration — The majority of GRBs lasts for more than 2 seconds, while about one third
is shorter. All information derived from the precise localization of GRBs refer tolong
bursts. The bimodality of the distribution of their duration is confirmed by the associated
spectral shape, since short bursts, on average, appear harder than long GRBs. The light
curve of GRBs is erratic and sometimes highly variable: spikes as short as a fraction
of a millisecond have been detected (see Shaefer & Walker 1999). The extremely short
timescales we observe demand large Lorentz factors, and thefact that the spikes at early
and late times of the prompt emission have similar timescales (i.e. their duration does
not increase) are major proofs against external shocks (seebelow) causing the prompt
emission of GRBs (Fenimore, Ramirez–Ruiz & Wu 1999).

Spectra of the prompt emission —The spectra of GRBs are very hard, with a peak



(in a E–EFE plot) at an energyEpeak of a few hundreds keV. Some bursts have been
detected at very largeγ–rays energies (> 100 MeV) by the EGRET instrument (see the
review by Fishman & Meegan 1995, and references therein).

The GRB–Supernova connection —GRB 030329 is certainly associated with the
supernova 2003dh (see e.g. Stanek et al. 2003). This burst, exceptionally bright because
close by (z∼0.17), will probably be a Rosetta stone for GRB science. We now have
quite a secure confidence that the progenitors of GRBs are massive stars, most likely
exloding as SN Ic. What remains to do is to find if there is a lag between the SN and the
GRB explosion in some bursts, as envisaged by the SupraNova scenario (Vietri & Stella
1998).

Iron lines — For a few bursts, there are evidence for large amounts of X–ray line
emitting material around the site of the explosion. The detection of emission features
(albeit with relatively low significance) in the afterglow spectra of GRBs some hours
after the GRB event poses strong constraints on the properties of the line–emitting
material (see Lazzati 2003 for a recent review).

Jet breaks — Assume that the burst is collimated within a cone of semiaperture θ .
Assume also that, initially, the bulk Lorentz factor of the fireball is such that 1/Γ < θ .
Because of relativistic aberration, the observer (which iswithin the cone defined byθ )
will receive light only from a cone of aperture angle 1/Γ. This leads to the estimate of
how the received flux varies in time. If the fireball is spherical, this will continue as long
as the motion is relativistic. But if the fireball is collimated, there is a time when 1/Γ
becomes comparable toθ . After this time the observed solid angle will remain constant,
and then there will be a change in the slope of the light curve.An achromaticbreak is
predicted (“jet break"), This break allows to estimateθ and then to correct the isotropic
values of the energetics of GRBs. Frail et al. (2001) in this way obtain the remarkable
result that despite the “isotropic" energy values differ bysome orders of magnitude, the
corrected values are all very similar and cluster around a value of a few times 1051 erg.

Polarization — GRB 021206 was serendipitously observed by RHESSI (a satellite for
solar studies), showing a prompt emission (in the hard X–rays) linearly polarized at the
extraordinary level of(80±20)% (Coburn & Boggs 2003). Polarimetric observations
were performed for several afterglows in the optical, finding always a moderate (but
non–zero) linear polarization at the 1–3% level (see Covinoet al. 2003).

Bulk Lorenz factors — If the source is moving relativistically, then the observedphoton
energies are blueshifted, and the typical angles (as observed in the lab frame) between
photons are smaller, decreasing the probability for them tointeract. Bulk Lorentz factors
Γ > 100 are required to avoid strong suppression of high energyγ–rays due to photon–
photon collisions.

There is a second argument demanding for strong relativistic motion, concerning
the very fast observed variability. In fact the size associated with one millisecond is
R∼ 3× 107cm, which is much too small to be optically thin. To match the observed
timescales with the size at which the fireball becomes transparent (Rt ∼ 1013 cm) we
need a Doppler contraction of time given approximately byctvar ∼ Rt(1−β ), yielding
Γ ∼ 400.



FIGURE 2. The “standard" fireball model for GRBs.

The fireball

If there is a huge release of energy in a small volume, no matter in which form the energy
is initially injected, a quasi–thermal equilibrium (at relativistic temperatures) between
matter and radiation is reached, with the formation of electron–positron pairs accelerated
to bulk relativistic speeds by the high internal pressure. This is afireball (Cavallo & Rees
1978). See Fig. 2. When the temperature of the radiation (as measured in the comoving
frame) drops below∼50 keV the pairs annihilate faster than the rate at which theyare
produced. But the presence of even a small amount of barions,corresponding to only
∼ 10−6 M⊙, makes the fireball opaque to Thomson scattering: the internal radiation thus
continues to accelerate the fireball until most of its initial energy has been converted into
bulk motion. After this phase the fireball expands at a constant speed and at some point
becomes transparent.

If the central engine does not produce a single pulse, but works intermittently, it can
produce many shells (i.e. many fireballs) with slightly different Lorentz factors. Late
but faster shells can catch up early slower ones, producing shocks which give rise to the
observed burst emission. In the meantime, all shells interact with the interstellar medium,
and at some point the amount of swept up matter is large enoughto decelerate the
fireball and produce other radiation which can be identified with the afterglow emission
observed at all frequencies.

This is currently the most accepted picture for the burst andafterglow emission,
and it is called the internal/external shock scenario (Rees& Mészáros 1992; Rees &
Mészáros 1994; Sari & Piran 1997). According to this scenario, the burst emission is
due to collisions of pairs of relativistic shells (internalshocks), while the afterglow is
generated by the collisionless shocks produced by shells interacting with the interstellar
medium (external shocks).



INTERNAL SHOCKS FOR BLAZARS

Rees (1978) was the first to propose the internal shocks idea to transport energy from the
nucleuos to the outer jet of M87 (a famous AGN). As mentioned above, this idea then
became “standard" for GRBs. But it can work equally well, if not better, for blazars.
For powerful blazars, in fact, we require that most of the power is not dissipated and
transformed into radiation, but kept to feed the huge radio lobes. Internal shocks are not
very efficient in transforming bulk into random energies (the shells are both relativistic:
it is only the relative kinetic energy that can be dissipated). This is a problem for
GRBs, due to the theoretical desire to limit the total energetic amount of GRBs, but
it is welcome in the blazar field. Therefore Ghisellini (1999) and Spada et al. (2001)
applied these ideas to blazars, finding that the SED and the general behavior of blazars
could be well reproduced by this scenario. In addition, one can find a simple explanation
of why the jet is dissipationless in its first∼ 100 Schwarzchild radii: this is the minimum
distance required by a shell to catch up the previous one.

With respect to GRBs, there is an important difference: in the case of blazars the shell
cannot be accelerated, initially, by its internal radiation pressure: this would cause some
visible effects on their SED, which are not observed: the shells must be initially cold.

MATTER OR MAGNETICALLY DOMINATED JETS?

The internal shock scenario requires the jets to be matter dominated. The role of the
Poynting flux, at the scales of the dissipation regions, should be minor. On the other hand
Blandford (2003) and Lyutikov & Blandford (2003) propose analternative scenario both
for GRBs and radio loud AGNs, in which the jet is magneticallydominated at all scales.
The radiation could be produced, in this case, by reconnection. Since the magnetic field
is the dominant jet energy carrier, in this scenario the matter is less important, and the
jet could even be made by electron–positron pairs required to produce the radiation we
see, with a negligible proton component.

We have seen above that the bolometric luminosity ofblazars is often dominated by
the high energy peak: if this is due to the inverse Compton process, then the relative
importance of the synchrotron component must be minor. Therefore this “Compton
dominance" implies a modest role of the magnetic field in the emitting region, to limit
the synchrotron emitted power. This conclusion relies on the assumption that the high
energy peak of blazars is due to inverse Compton. It could be,instead, again due
to the synchrotron process, by ultrarelativistic electrons and positrons, resulting from
electromagnetic cascades involving relativistic protons. But in this case the cascading
process would result also in an overproduction of X–rays, atthe “valley" between the
two peaks (see Ghisellini 2003).

For GRBs the issue is much more controversial (and interesting) because of two
recent observational results: 1) in some burst the spectrumof the prompt emission can
be fitted by a blackbody, at least for the first seconds (Ghirlanda et al. 2003); 2) the
prompt emission of GRB 021206 was strongly linearly polarized (Coburn & Boggs
2003). Some blackbody radiation is expected in the standard, hot fireball, scenario: the



radiation responsible for the acceleration of the fireball can escape when the fireball
becomes transparent, and it can well be blackbody in shape, in close analogy with the
fossil cosmic background radiation. But the very large polarization, instead, would point
towards a very important, dominant, and very well ordered magnetic field.

THE SAME ENGINE?

The primary energy source of GBRs and blazars could well be the same. The main
store of energy is the spin of the black hole: for a maximally rotating Kerr hole, one
can extract the 29% of its total mass–energy, amounting to∼ 5×1053M/M⊙ erg. The
problem is how to extract this energy sufficiently fast (especially in the case of GRBs).
One promising way to extract this energy is the Blandford & Znajek (1977) process, in
which the rotational energy of a Kerr black hole can be extracted by a magnetic field
surrounding the hole providing a source of power:

LBZ ∼ 1051
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)2
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)2

ergs−1
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m

)2
(3Rs)
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where(a/m) is the specific black hole angular momentum (∼ 1 for maximally rotating
black holes),Rs is the Schwarzchild radius andUB = B2/(8π). The duration of a typical
GRB could be associated to the duration of the accretion process (a few seconds for long
bursts). To sustain such large magnetic fields, the torus surrounding them should be very
dense, but this is only natural, given the fact that it is the core of the progenitor star not
yet collapsed into the hole.

Even if this mechanism is purely magnetic, suggesting that the shells are born “cold"
also in GRBs, it is not clear if the shell can remain cold: the shell could be initially purely
magnetic and cold, but soon a fraction of the transported energy could be converted into
hot pairs and trapped radiation, forming a classical hot fireball. On the other hand, for
blazars, we do have observational contraints suggesting that this does not occur, but we
also have other convincing evidence that the shells in blazars have magnetic fields below
equipartition. The situation is rather puzzling, and this is an open issue.

One should also consider that short GRBs could be powered by the same basic
mechanism even if their progenitors are two merging neutronstars (with the possible
help of∼ 1051 ergs in neutrinos).

CONCLUSIONS

GRBs last for tens of thousands of dynamical times, and are not single explosions, as
supernovae, even if the association between GRBs and supernovae is now certain. It is
very likely that they are collimated, and their radiation iscertainly beamed. Their power
can exceed 1050 erg s−1 in γ–rays even accounting for collimation, and the total emitted
energy is of the order of 1052 ergs. Being so luminosus, albeit for a short time, they are
the best torchlights we have to illuminate the far universe.Since they are associated with
massive stars, there is the hope to study, through them, Pop III stars and the re–ionization



phases of the universe, at redshifts as large as 15–20. The basic physics of GRBs may be
similar to the physics of relativistic jets in general, and therefore share many aspects with
blazars, even if they are obviously more extreme. For both classes of sources we may
see, at action, the more efficient engine that nature invented to produce radiation, more
efficient than accretion. That this is the case is already clear considering those blazars
that although having powerful jets, do not show any sign of thermal emission coming
from accretion, such as lineless BL Lacs. But that jets can beorders of magnitude more
powerful than accretion becomes dramatically evident withGRBs.
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