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Abstract: In this paper, we focus on different convergence results of the long-term 

return 
1

t
rudu

0

t

∫ , where the short interest rate r  follows an extension of the Cox, 

Ingersoll and Ross1 model. Using the theory of Bessel processes, we proved the 

convergence almost everywhere of 
1

t
Xudu

0

t

∫ , where Xu( )
u≥0

 denotes a generalisation 

of a Besselsquare process with drift. We also studied the convergence in law of the 

long-term return in order to make some approximations. We observed the 
convergence in law of the sequence of processes Y n( )

n≥1
 with 

Yt
n( )

t ≥0
=

−2β 3

δn
Xu +

δ u

2β
 
 
  

 
0

nt

∫ du
 

 
 

 

 
 

t ≥0

. By Aldous' criterion, this sequence converges 

in law to a Brownian motion. These convergence results have some immediate 

applications. 
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1. Introduction 
 

In this paper, we concentrate on different convergence results of the long-term return 
1

t
rudu

0

t

∫ , where the short interest rate r  follows an extension of the Cox, Ingersoll 

and Ross1 model. Since it is reasonable to conjecture that the market will influence 

the reversion level and the volatility coefficient, we assume the reversion level to be 

stochastic and also take the volatility more general. 
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Using the theory of Bessel processes and more specifically results of Pitman-Yor2, 

we  proved in Deelstra-Delbaen3 the convergence almost everywhere of the long-

term return 
1

t
Xudu

0

t

∫ , where Xu( )
u≥0

 denotes the process defined by the stochastic 

differential equation dXs = 2βXs +δ s( )ds + g Xs( )dBs  with β < 0 , with g  a positive 

function, vanishing at zero and satisfying a Hölder condition of order 1/2, and with 
δ s( )

s≥ 0
 a stochastic process satisfying some hypotheses. In case of the generalized 

Besselsquare processes (g(x) = 2 x ) with drift parameter β < 0  and stochastic 

reversion level δ s( )
s≥ 0

, we found in Deelstra-Delbaen4 that - under the right 

assumptions - the sequence of processes Y n( )
n≥1

 with  

Yt
n( )

t ≥0
=

−2β 3

δn
Xu +

δ u

2β
 
 
  

 
0

nt

∫ du
 

 
 

 

 
 

t ≥0

 

converges in law to a Brownian motion for n  going to infinity. Both theorems have 

some straightforward applications. 

 
In section 2, we introduce the family of processes Xu( )

u≥0
. The convergence a.e. 

result is stated in section 3. An immediate application of this theorem is proposed. In 

the last section, we look at the convergence in law result and we discuss some 

approximations of the long-term return and of bond prices (see also Deelstra5). These 

approximations have applications in finance and in assurance.  

In this paper, we omit the long and technical proofs in order to obtain a clear 

summary of the different convergence results of the long-term return. 

 

2. Stochastic interest rate models 
 

We analyse the convergence of the long-term return, using an extension of the Cox, 

Ingersoll and Ross1 stochastic model of the short interest rate r . Cox, Ingersoll and 

Ross express the short interest rate dynamics as  
drt = κ(γ − rt )dt + σ rt dBt  

with Bt( )
t ≥0

 a Brownian motion and κ , γ  and σ  positive constants. It is a well-

known fact that this model has some empirically relevant properties. In this model, r   
never becomes negative and for 2κγ ≥ σ 2 , r  does not reach zero. For κ > 0 and 

γ ≥ 0 , the randomly moving interest rate is elastically pulled towards the long-term 

constant value γ . The volatility increases with the instantaneous interest rate. There 

is a steady state distribution.  

 

In a mathematical respect, the CIR  square root process r  is interesting since it is a 

transformation of a Besselsquare process with drift. Indeed, if we define X  by the 
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transformation X =
4

σ 2 r , then X  is a Besselsquare process with drift parameter 

−κ / 2 and dimension 
4κγ
σ2 . The many results known about these processes (see e.g. 

Pitman-Yor2 and Revuz-Yor6), convinced us that these processes are very tractable. 

 

However, it is reasonable to conjecture that the market will constantly change the 
reversion level γ  and the volatility σ . A lot of authors already have extended the 

CIR model in order to reflect the time-dependence caused by the cyclical nature of 

the economy or by expectations concerning the future impacts of monetary policies. 

For example, Hull and White7 assumed time-dependent parameters; Brennan and 

Schwartz8, Schaefer and Schwartz9 and Longstaff and Schwartz10 suggested two-

factor models with a fixed correlation. We take the volatility more general and we 

allow the reversion level to be stochastic and to have an arbitrary correlation with the 

short-term interest rate process. In this way, we treat two-factor models where the 

two factors may have a random correlation. 

 

We consider a family of stochastic processes X , which contains the Besselsquare 

processes with drift, namely X  satisfying the stochastic differential equation 
dXs = 2βXs +δ s( )ds + g Xs( )dBs  with δ  a non-negative measurable and adapted 

stochastic process, with β < 0  and g  a positive function, vanishing at zero and such 

that there is a constant b  such that g(x) − g(y) ≤ b x − y . This stochastic 

differential equation has a unique non-negative strong solution as soon as δ udu
0

t

∫ < ∞  

for all t ∈ℜ+ . 

 

3. Convergence a.e. of the long-term return 
 

Using the theory of Bessel processes, we found the following theorem, which is very 

useful for deducing the convergence almost everywhere of the long-term return in 

quite general situations:  

 

Theorem 1 
Suppose that a probability space  Ω, F t( )

t ≥0
,P( ) is given and that a Brownian motion 

Bt( )
t ≥0

 is defined on it. A stochastic process X:Ω × ℜ+ → ℜ+   is assumed to satisfy 

the stochastic differential equation  
dXs = 2βXs +δ s( )ds + g Xs( )dBs  

with β < 0  and g:ℜ → ℜ+  a function, vanishing at zero and such that there is a 

constant b  with  g(x) − g(y) ≤ b x − y . 
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The measurable and adapted process δ :Ω × ℜ+ → ℜ+  is assumed to satisfy: 
1

s
δ udu

0

s

∫ a.e. →   δ  with δ :Ω → ℜ+ . 

Under these conditions, the following convergence almost everywhere holds: 
1

s
Xudu a.e. →   

0

s

∫
−δ
2β

. 

 

The proof of the convergence a.e. result relies on the theory of stochastic differential 

equations and on Kronecker's lemma. The interested reader is referred to "Long-term 

returns in stochastic interest rate models"3. 

 

We immediately turn to an application of theorem 1. We consider the long-term 

return in the following CIR two-factormodel: 
drt = κ γ t − rt( )dt + σ rt dBt

dγ t = ˜ κ ˜ γ − γ t( )dt + ˜ σ γ t d ˜ B t
 

with Bt( )
t ≥0

 and ˜ B t( )
t ≥0

 two Brownian motions and with κ , ˜ κ , σ , ˜ σ  and ˜ γ  positive 

constants. The short interest rate process has a reversion level which is a stochastic 
process itself. Since the reversion level γ t( )

t≥ 0
 follows a CIR square root process, we 

know that the stochastic reversion level γ t( )
t≥ 0

 is elastically pulled towards the long-

term constant value ˜ γ . We are interested in the convergence of the long-term return 
1

t
rudu

0

t

∫ . 

 

We remark that we do not need any assumptions about the correlation between the 

Brownian motions of the instantaneous interest rate and of the stochastic reversion 

level process. They even may have an arbitrary random correlation. We stress this 

fact because it is not trivial. Most authors of two-factormodels require, for technical 

reasons, that the Wiener processes are uncorrelated or have a deterministic and fixed 

correlation.  

 
It is clear that γ t( )

t≥ 0
 satisfies the conditions of theorem 1 and that consequently  

1

s
γ udu

0

s

∫ a.e. →   ˜ γ . 

We now consider the instantaneous interest rate r  itself and verify whether the 

assumptions of theorem 1 are fulfilled by r . Trivially, the volatility function 
g(x) = σ x  satisfies a Hölder condition of order 1/2 and β = −κ / 2  is strictly 
negative. The process κγ t( )

t ≥0
 is measurable and adapted and clearly, 

 
1

s
κγ udu

0

s

∫ a.e. →   κ ˜ γ . 
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Therefore, we may invoke theorem 1 to obtain 
1

s
rudu

0

s

∫ a.e . →   ˜ γ . 

We conclude that the long-term return converges a.e. to ˜ γ , the long-term constant 
value towards which the reversion level process γ t( )

t≥ 0
 is pulled in this two-

factormodel. 

 

4. Convergence in law 

 

Encouraged by the convergence almost everywhere result, we analysed the 

convergence in law in "Long-term returns in stochastic interest rate models: 

Convergence in law"4. We are interested in the convergence in law since it is useful 

to know how the long-term return is distributed in the limit so that one can find 

approximations.  

 

We suppose the same hypotheses as in theorem 1, so that we can apply the previous 

convergence theorem. Adding some assumptions about the second moment of the 

stochastic reversion level process δ , we find the following theorem: 

 

Theorem 2 
Suppose that a probability space  Ω, F t( )

t ≥0
,P( ) is given and that a stochastic process 

X:Ω × ℜ+ → ℜ+   is defined by the stochastic differential equation  
dXs = 2βXs +δ s( )ds +2 Xs dBs  

with Bt( )
t ≥0

 a Brownian motion and β < 0 . Let us make the following assumptions 

about the adapted and measurable process δ :Ω × ℜ+ → ℜ+ : 

* 
1

s
δ udu

0

s

∫ a.e. →   δ  where δ  is a strictly positive real number; 

* supt ≥1

1

t
E[δ u

2 ]du
0

t

∫ ≤ k  with k  a constant independent of t ; 

* For all a ∈ℜ+   lim t→ ∞

1

t
E[δ u

2]du
t− a

t

∫ = 0 . 

Under these conditions, the following convergence in distribution holds: 

  

−2β 3

δn
Xu +

δu

2β
 
 
  

 
du

0

nt

∫
 

 
 

 

 
 

t≥0

L →  Bt
'( )

t≥0
 

with Bt
'( )

t ≥0
 a Brownian motion. 

 

Remark that there is no assumption about the correlation between the process X  and 

the reversion level process δ . 
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In order to prove the convergence in law, we have checked that the sequence Y n( )

n≥1
, 

defined by
 
Yt

n =
−2β 3

δn
Xu +

δ u

2β
 
 
  

 
0

nt

∫ du , converges to a Brownian motion Bt
'( )

t ≥0
 in 

the sense of finite distributions. Afterwards, we have shown that the sequence is 

weakly relatively compact by using Aldous' criterion for tightness. 

 

We now concentrate on some applications of the convergence in law. We consider 

the possibility of approximating rudu
0

t

∫  since this integral appears in bond prices, 

accumulation and discounting factors, etcetera. 

 

As an example, let us retake the generalized Cox-Ingersoll-Ross two-factor model, 

which is introduced in the previous section. Since we are interested in the 

convergence of the long-term return 
1

t
rudu

0

t

∫ , we verify whether the assumptions of 

theorem 2 are fulfilled. 

 

Defining X  by the transformation X =
4

σ 2 r , we find that X  satisfies the stochastic 

differential equation 

dXu =
4κγ u

σ 2 + 2 −
κ
2

 
 

 
 Xu

 
 

 
 du +2 Xu dBu . 

Since we know that the hypotheses of theorem 1 are fulfilled, it only remains to check 

the conditions about the second moment of δ t( )
t ≥0

=
4κγ t

σ 2

 
 

 
 

t ≥0

. Since γ t( )
t≥ 0

  follows 

a CIR square root process, its second moment is given by: 

E γ 0
[γ s

2 ] = 2 ˜ κ ̃  γ + ˜ σ 2( ) γ 0 − ˜ γ 
˜ κ 

e− ˜ κ s +
˜ γ 

2 ˜ κ 
 
  

 
  + e−2 ˜ κ s γ 0

2 +
˜ γ − γ 0

2

2 ˜ κ 
2 ˜ κ ̃  γ + ˜ σ 2( ) 

  
 
   

and a technical calculation leads to the results that for all a ∈ℜ+  

lim t→ ∞

1

t
E[δu

2]du
t− a

t

∫ = 0  

and that 

supt ≥1

1

t
E[δ u

2 ]du
0

t

∫ ≤ k  

with k  a constant independent of t . 

 

Consequently, we may apply theorem 2 and we find that 

  

κ
σ ˜ γ n

ru − γ u( )du
0

nt

∫
 

 
 

 

 
 

t ≥0

L →  Bt
'( )

t ≥0
. 
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This is not a trivial result since r  and γ  may have an arbitrary, random correlation. 

 

Given this convergence result, we consider the possibility of approximating rudu
0

t

∫  or, 

more general, of approximating Xudu
0

t

∫  where X  is defined as in theorem 2. The 

convergence in law result inspired us to approximate  
−2β 3

δn
Xu +

δ u

2β
 
 
  

 
0

nt

∫ du . 

by Bt
'  for n  large enough. 

Using the scaling property of Brownian motion, namely nBt /n
' =

d

Bt
' , we estimate  

Xudu
0

t

∫   by  −
δu

2β
du +

δ
−2β 3

0

t

∫ Bt
' . 

As 
1

t
δudu

0

t

∫ a.e . →   δ , we obtain for t  large enough that 

Xudu
0

t

∫    ≈    −
δ

2β
t +

δ
−2β 3 Bt

' . 

Therefore, we approximate Xudu
0

t

∫   by the constant convergence a.e. limit of the 

long-term return times t  plus a scaled Brownian motion. 

 

A drawback of this estimator is that the moments of Xudu
0

t

∫  do not equal those of the 

estimator, although they are the same asymptotically. If the period observed is large 

enough, this is satisfying. If the objective is to approximate the distribution of the 

long-term return of an investment made at time 0, it seems appropriate to 

approximate Xudu
0

t

∫  by a scaled Brownian motion with drift since the Central Limit 

Theorems are applicable on long-term. 

 

However, one of our objectives is to find approximations of bond prices for all 

maturities. Therefore, the moments of Xudu
0

t

∫  and of the estimator should be equal for 

all t ∈ℜ+ . If one looks at a zero-coupon bond price in a risk-neutral setting, namely 

EX0
exp − Xudu

0

t

∫( ) 
 

 
   ≈   exp

δ
2β

t −
δ

4β 3 t
 

 
  

 
 , 

a second drawback of the approximation immediately appears. It is not realistic that 

an estimation of a bond price is independent of the current short interest rate X0 . 
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In case of the Cox-Ingersoll-Ross one-factor model, the approximating bond price 

equals:  

E r0
exp − rudu

0

t

∫( ) 
 

 
  ≈   exp γ t

σ2

2κ 2 −1
 
 
  

 
 

 
  

 
 . 

This approximation is a decreasing function of the speed of adjustment parameter κ , 

where in the case of the Cox-Ingersoll-Ross model, two cases are distinguished: for 
r0 < γ , the bond price is a decreasing function of the parameter κ , and for r0 > γ , it 

is an increasing function of κ . In Deelstra-Delbaen4, we showed by comparing these 

approximating bond prices with the exact bond prices (see Pitman-Yor2 or Cox, 
Ingersoll and Ross1), that there is an underestimation of the bond prices if r0 < γ  and 

an overestimation if r0 > γ . 

 

Therefore, we searched for an improved approximation. In "Long-term returns in 

stochastic interest rate models: Applications"5, we propose the approximation  

Xudu
0

t

∫    ≈    E[ Xu ]du
0

t

∫ +
δ

−2β 3 Bt
' . 

In this case, the expectation value is equal for all t  and the variance still is 

asymptotically equal. 

The improved approximation has some interesting applications in insurance. For 

example, the expected values, the variances and the skewness of various insurance 

products can be approximated in quite general stochastic interest rate models. 

Following the method of Parker11,12, n -year temporary life assurances, whole-life 

assurances and endowment assurances have been treated in Deelstra5 in case of a 

generalisation of the Cox-Ingersoll-Ross model. 
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