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Abstract
A systematic method of selecting sensors and actuators is produced,
efficiently selecting inputs and outputs that guarantee a desired level
of performance in the

�
∞-norm sense. The method employs an ef-

ficiently computable necessary and sufficient existence condition,
using an effective search strategy. The search strategy is based on
a method to generate all so-called minimal dependent sets. This
method is applied to tensegrity structures. Tensegrity structures are
a prime example for application of techniques that address struc-
tural problems, because they offer a lot of flexibility in choosing
actuators/sensors and in choosing their mechanical structure. The
selection method is demonstrated with results for a 3 stage planar
tensegrity structure where all 26 tendons can be used as control de-
vice, be it actuator, sensor, or both, making up 52 devices from which
to choose. In our set-up it is easy to require devices to be selected as
colocated pairs, and to analyze the performance penalty associated
with this restriction. Two performance criteria were explored, one
is related to the dynamical stiffness of the structure, the other to vi-
bration isolation. The optimal combinations of sensors and actuators
depend on the design specifications and are really different for both
performance criteria.

Keywords: mechanical systems, tensegrity structures,
�

∞-control,
input/output selection, combinatorial optimization, maximal inde-
pendent set, minimal dependent set

1. Introduction
The ultimately achievable performance of a controlled plant
depends on plant characteristics, on controller architecture,
and on controller tuning. Normally plant and controller are
designed separately, which may lead to a suboptimal perfor-
mance of the closed loop. Concurrently designing plant and
control, an integrated design, is therefore important. An inter-
esting topic is the selection of sensors and actuators, because
they define the interface between plant and controller. Here,
issues are the type, number, and place of devices for actuation
and sensing or, more generally, of input and output signals
used for the closed loop. Inappropriate selection of sensors
may, for instance, lead to zeros in the right-half-plane, a well
known performance limiting factor. Other limitations are a
high relative degree, unmatched disturbance/model error in-
puts, and a large model uncertainty near cross-over. Therefore,
one aims at selecting an appropriate controller structure, e.g.,
those input/output devices for which a controller exists that
will deliver a desired level of performance, which will exclude
combinations with performance limitations. Besides perfor-

mance, also considerations like complexity and cost should
be considered.
A prime application of integrated design techniques is tenseg-
rity structures. These are web-like mechanical structures that
consist of two types of elements: tensile members (tendons)
and compressive members (bars) [1]. This class of systems has
been studied for a long time, see, e.g., [2], whose terminology
consisted of ties and struts instead of tendons and bars. In a
class 1 tensegrity structure the bar endpoints, or nodal points,
are only connected to tendons, not to other bars. Tendons are
exclusively loaded in tension, otherwise they would buckle
because they are very slender. Bars are normally loaded in
compression only and not in tension. The integrity (stability)
of a tensegrity structure is due to the tensile forces in the
tendons, hence the name tensegrity.
Tendons in tensegrity structures have multiple roles, they:
• rigidize and stiffen the structure (pretension),
• carry structural loads,
• provide opportunities for actuation/sensing [3].

Actuation can improve properties like stiffness or stiffness-to-
mass ratio and damping. Sensing provides information about
the geometry of the structure, the deformations, and the like.
Actuation can be carried out by changing the length of the
tendons or the bars. This can be done in several ways, by:
• shape memory alloys that enable the tendons to shorten

and lengthen by changes in temperature,
• linear or rotary motors that can shorten a tendon by hauling

it, e.g., inside hollow bars,
• extensible bars.

A target area of application for tensegrity structures is where
the shape of a structure needs to be changed dynamically, e.g.,
in space technology with deployable structures or in medicine
with expandable inserts.
Here we consider only the tendons as elements that can sense
their own length and can change that length. Changing the
unstressed length of tendons also changes the shape of the
structure or eliminates deformations that occur due to external
loads. The sensed information can be used in a control loop
to send appropriate signals to the actuation system.
Due to the large number of possibilities to assign actuators
and sensors, tensegrity structures need an efficient method for
input/output selection. Solutions to input/output selection are
abundant, for an overview see [4]. Selection of the devices or
signals based on a full candidate-by-candidate feasibility test
is a combinatorial problem. The selection can be simplified



by not using a candidate-by-candidate approach, but then it
is likely to be less effective and favorable combinations of
actuators and sensors can be missed. Finding a good method
for input/output selection is like a balancing act. Aiming at
generality and rigor makes it quite hard (��� -hard, to be
precise, see [5]) to find a solution, and therefore hardly prac-
tical for large systems. Making it easy to find an answer may
lead to sloppy results, which cannot really be trusted or are
not very specific. A selection using a single shot approach is
possible, but only with a crude selection criterion or with an
approximate solution.
In previous work [6], we applied an approach that is more re-
fined than brute force methods. The selection is still based on
a candidate-by-candidate like test. It uses a streamlined rigor-
ous feasibility test combined with an efficient search strategy,
but needs an additional, in general easily fulfilled, assump-
tion. Large scale problems may then be tackled in acceptable
time, because only a limited number of combinations need to
be tested. The search strategy is based on an efficient imple-
mentation of an algorithm to generate all maximal indepen-
dent sets (or minimal dependent sets) [7], which is a standard
problem in combinatorial optimization. Although with this
approach the problem is theoretically still combinatorial in
the number of devices, in practice the complexity is affine
in the number of inputs and outputs and in the size of the
solution.
We consider a 3 stage planar tensegrity structure with 26 ten-
dons and two different closed loop specifications. Available
computer hardware did not allow for the selection from 52
devices simultaneously, so only 32 devices are allowed. To
accommodate this restriction, the selection was split in three
steps. First selecting actuators, assuming all sensors to be
used. Then selecting sensors, assuming all actuators to be
used. From the most promising results of these selections, a
combination of 32 devices is selected to find solutions with a
lower number of devices that still meets the required perfor-
mance level. This is performed for several performance levels,
to get insight in the relation between the number of devices
and the achievable performance. This procedure is repeated
for both design specifications. Alternatively, a problem with
colocated sensor/actuator pairs, giving only 26 independent
devices, has been the starting point for the, now much easier,
selection.
The goal of the paper is to address the problem of efficient
and effective input/output selection for planar tensegrity struc-
tures. The results depend on the design criteria, can be ex-
plained qualitatively, and make sense physically.
The paper is structured as follows. First, we discuss tensegrity
structures and a dynamic model of planar tensegrity. Then we
explain the search strategy and feasibility tests, and show
how these methods can be applied on a large scale selection
problem. Conclusions finish the paper.

2. Planar tensegrity structures
A tensegrity structure consists of bars and tendons, arranged
in such a way that the structure has integrity and is not a
mechanism. This is achieved by pre-stressing the tendons by
a tensile force. A planar tensegrity structure is one that only
extends in the plane. A tensegrity structure can be of class 1,
where bars are only connected to tendons, or of class 2, where
a connection can connect up to two bars and a number of
tendons. This can be generalized to a class k definition. Often a
tensegrity structure is made up of nested tensegrity structures,
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Figure 1: Single stage of planar tensegrity structure. Bars: —,
tendons: - -
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Figure 2: Left stage of planar tensegrity structure, i = 1

giving it a fractal character. This is beneficial for analysis and
design, because only a limited number of structures needs to
be investigated. Those structures can then be used to build up
a more complex structure.
An elementary stage, numbered i , of a planar tensegrity struc-
ture of class 1 is given in Fig. 1. This stage can be repeated
indefinitely, by replicating it, shifted some distance of the hor-
izontal dimension, to build up a planar structure in x-direction.
It could also be replicated in y-direction or both.
Indicated are the numbering of the tendons that belong to
stage i , given by t i

α , with 1 ≤ α ≤ 10. Also indicated are
tendons of stages i −1 and i +1 that are connected to the four
endpoints (nodes) ni

1−4 of the two bars of stage i . Note that the
number of tendons is not minimal. For instance, all diagonal
tendons t i

4,5,8,9 can be removed, while the structure still has
integrity and does not become a mechanism. Diagonal tendons
are included because it avoids infinitesimal movements of the
stages relative to each other without causing infinitesimal
correcting forces. Without diagonal tendons the stiffness is
derived from second order effects (i.e., it is zero in the linear
approximation, except for pre-stress). So, a better approach
to get a minimal number of tendons is to eliminate vertical
tendons and keep some diagonal tendons.
The left side of the structure has to be modified, and is given
in Fig. 2. Besides modification for the differences in boundary
geometry, the left side removes the three degrees-of-freedom
of the rigid body, in effect, it restricts movement of the upper
left node in both x and y-coordinate direction, i.e., the node
is translationally fixed, and of the lower left node in the x-
direction. A result of the restrictions is that the vertical left
tendon t1

1 of the structure cannot rotate, although both bars of
stage i = 1 are still free to rotate. Note that tendons t i

6−9 do
no longer appear for i = 1 and that some tendons connect to
other nodes than in the previous figure.
The right side is in Fig. 3. There are no restrictions specified
at this boundary. Only differences in geometry are taken into
account, the connection of some tendons is to different nodes
than in Fig. 1.
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Figure 3: Right stage of planar tensegrity structure, i = n
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Figure 4: Elementary bar in planar tensegrity structure

3. Tensegrity structure models
Two models are developed, a nonlinear model for arbitrary
displacements and a linearized model, valid for small dis-
placements only, for use in a linear plant model. The nonlinear
model can be used to evaluate the results with simulations,
and to get access to robustness issues.
The basic assumptions in setting up the nonlinear model are
1. a bar is straight and of uniform cross section and density,
2. the central moment of inertia of a bar for rotation around

its principle axis is zero,
3. a bar is of fixed length, so infinitely stiff axially,
4. a tendon is massless,
5. a tendon has no torsional or bending stiffness, but axial

stiffness,
6. a bar has two nodal points, which are of zero dimension,
7. a tendon is connected to a bar at a nodal point only,
8. external loads are only applied at a nodal point,
9. external loads do not include bending or torsional loads,

10. there are no potential fields (e.g., gravity).
Due to these assumptions, the bars are axially loaded only,
except during transients. Although elements in a tensegrity
structure are axially loaded only, the structure itself has a
finite stiffness for bending and torsion.
The model of the complete structure is quite elementary, be-
ing built up of bars that are connected by elastic tendons,
and can best be developed by a classical Newtonian formula-
tion, because we are also interested in forces internal to the
structure.
The model for a single bar, see Fig. 4, moving in the plane is

m p̈ = Fb

J φ̈ = Mb

using as the three generalized coordinates the position p of
the center of mass and the orientation angle φ around this
center. The mass m and central moment of inertia J are the
physical parameters that specify the dynamics of the bar.
We can compute the forces Fb and moment Mb from the
nodal force vectors fn1 and fn4 , assumed given in Cartesian

components, by

Fb = fn1 + fn4

Mb =
lb

2

[

sin φ − cos φ
]

fn1 +
lb

2

[

− sin φ cos φ
]

fn4 .

The model for a tendon can be derived from classical contin-
uum mechanics. A simple model, linear elastic, for material
behavior is σ = Eε with E the modulus of elasticity, and
where σ = F/A, the stress, is the ratio of force and cross-
sectional area, and ε = 1l/ l0, the strain, is the elongation
1l = l − l0 divided by the unstressed length l0. This gives

F =
E A

l0
(l − l0) = kt(l − l0)

to compute the force F given l0 and l. To compute the un-
stressed length when both F and l are known,

l0 =
l

1 + F
E A

.

Note that the length l can be computed as the Euclidean norm
of a tendon vector t , l = ‖t‖.
A tendon vector t is computed as the difference of the two
nodal point vectors that the tendon connects to, and taken
to point in up/right direction, where right takes precedence,
t = pn j − pnk .
The Cartesian coordinates pn of the nodal points can be com-
puted as

pn1 = p −
lb

2

[

cos φ
sin φ

]

, pn4 = p +
lb

2

[

cos φ
sin φ

]

.

The stressed length l determines the tendon force magni-
tude F . The direction of the tendon force vector f t comes
from the tendon vector t because those vectors are aligned

ft =
F

‖t‖
t

where the tendon vector needs to be scaled by its Euclidean
norm.
Nodal forces fn are computed by summing tendon forces
ft for those tendons connected to a particular node, taking
account of the sign convention,

fn =
∑

± ft + wn,

where wn is a load acting on nodal points.
The equations for individual bars can be taken together to
form the following differential equations

q̈ = T (q, w)

qT =
[

p1x p1y φ1 . . . φ2n
]

where q gathers the positions p and orientations φ, the gen-
eralized force T gathers the forces Fb and moments Mb , and
the load w gathers wn . For a static model q̈ is equated to zero
and the resulting algebraic equations, T (q, w) = 0, represent
the equilibrium conditions.
The linearized model is obtained by taking finite differences
around an equilibrium. The exogenous inputs are measure-
ment noise and the external loads w. The to-be-controlled
variables are displacements or accelerations of designated
nodes, pn or p̈n, and control inputs u.



4. The IO selection method
We address the selection of actuating/sensing tendons that are
useful to achieve a desired level of closed-loop performance.
The performance criterion is based on the � ∞-norm of a
closed-loop generalized linear system. Design specifications
are embodied in selected weighting filters.
The goal is to characterize the full set of feasible solutions, i.e.,
combinations of actuators and sensors for which a controller
exists that can guarantee the desired level of performance
for the closed-loop system. Now an ��� -hard problem, the
maximal independent set problem, has to be solved.
To select combinations of inputs and outputs (also called IO
sets), we need two things: an algorithm to efficiently search for
promising combinations and a feasibility test that assesses a
single candidate IO set. The feasibility test should be efficient
because it is called often. The test we employ should tell
something about control relevant performance. The remainder
of this section addresses the following points
• Strategy for taming the combinatorially explosive search.
• A simple approach to circumvent time-consuming steps

in the feasibility test.

4.1. Search strategy
The search strategy is based on an algorithm to generate all
maximal independent or all minimal dependent sets. The algo-
rithm was proposed in [5] and implemented in [7]. We briefly
explain the problem setup and the usefulness of the algorithm.
Let E be the finite set of all sensors and actuators that are
considered, with cardinality |E| = n, and let � be a nonempty
family of subsets of E that satisfies the following rule: if
I ∈ � and I ′ ⊆ I then I ′ ∈ � . Now, (E, � ) is called an
independence system and � is its family of independent sets.
An independent set I is called maximal if there is no I ′ ∈ �
such that I ′ ⊃ I . Subsets of E that are not in � are dependent
sets. All dependent sets form the family � . A dependent set
J is minimal if J ′ ∈ � for all J ′ ⊂ J .
The IO selection problem with a monotonous selection crite-
rion exactly fits an independence system problem. A monoto-
nous selection criterion is one where the performance always
improves, or stays the same, when an IO set is expanded
with additional devices. The family of subsets � gathers all
actuator/sensor combinations that are not acceptable and �
characterizes all acceptable ones. The power set P(E) con-
tains all possible combinations of actuators and sensors and
P = � ∪ � . The sets can be graphically represented in a
so-called Hasse diagram.
Now the problem is to establish the structure of the indepen-
dence system, i.e., to find � and/or � . To do this, an oracle is
available that decides whether a subset of E belongs to � or � .
The oracle is expensive and its visits should be minimized. In
general, it suffices to find the K maximal independent sets of

� or the M minimal dependent sets of � , because with these
sets one can generate the families � and/or � without visiting
the oracle. Because both K and M are bounded by

( n
n/2

)

, one
cannot guarantee to obtain a solution in time polynomial in n.
One may wonder if a solution in time polynomial in n and K
or M is possible. Lawler et al. [8] state that the problem of
finding the K maximal independent or M minimal dependent
sets is ��� -hard and there is no solution possible in time
polynomial in n, K , and M . However, in [5] it is shown to be
possible to establish all K maximal independent sets and all M
minimal dependent sets visiting the oracle only O(nK + M)

or O(K + nM) times. This means that a complete solution
with visits affine in n, K , and M is possible. An algorithm
that achieves this has been used.
When the number of possible devices is large, also the number
of feasibility tests is large, because in general M and K will
be large, except in those cases were either a very small or
a very large fraction of the devices is needed to meet the
performance level. In general, when n >≈ 32 one needs to
consider alternative strategies. A possibility is to extract from
separate input and output selection, with a smaller number of
devices for each, those devices that are most promising, e.g.,
by selecting those that
• occur often in minimal dependent sets,
• occur in minimal dependent sets with a low number of

devices,
• occur in maximal independent sets with a low number of

devices,
• do not occur in maximal independent sets with a large

number of devices.
By eliminating devices that are not expected to add much, the
size of the problem is reduced and a combined selection is
tractable. The application section gives examples of the use
of these heuristic rules.

4.2. Feasibility test
The selection of IO sets with guaranteed performance is based
on existence conditions for controllers that achieve a speci-
fied � ∞ performance bound. There are other methods that
could be considered, like linear matrix inequalities (LMI).
� ∞-techniques have the advantages of a sound theoretical
foundation, of readily available analysis and synthesis soft-
ware, and of necessary and sufficient existence conditions.
The feasibility test consists of checking conditions for the
existence of an � ∞ controller achieving a specified perfor-
mance level. Efficient tools for this task are available and may
be based on Riccati equations [9] or on conditions expressed
in terms of LMI [10,11]. We employ Riccati equations, being
more efficient.
The feasibility test consists of several necessary conditions,
that together are sufficient. This leads itself naturally to a
streamlined computation. If one of the necessary conditions
is not fulfilled, the remaining conditions do not need to be
checked. So only for feasible combinations all checks are
done. By using a pre-set performance level, the γ -iteration
usually employed in � ∞ designs is not needed.

5. Application
The selection method is illustrated for a 3 stage planar tenseg-
rity model with twenty-six actuators and twenty-six sensors,
so with n = 52 input/output devices, making ≈ 252 or
≈ 4.5·1015 unique combinations possible. This is much larger
than any other application of rigorous techniques considered
before.
Two typical design specifications are explored. The first is to
stiffen a planar tensegrity structure, shaped like a cantilever
beam, for external loads. The second is to dampen vibrations
when the structure is considered as an erected building loaded
by ground excitations. Results are therefore presented for the
following two cases:
1. dynamic stiffness improvement
2. vibration reduction.

For both cases the standard plant setup, using four types of
signals (exogenous signals, controller inputs, to-be-controlled



variables and measurements), is selected for our purposes,
because it is general and embraces a lot of control problems,
like setpoint regulation, tracking, and disturbance rejection,
all in the face of model errors. The feasibility conditions
are placed on a generalized linear plant that depends on the
controller inputs and outputs.
To simplify matters, the weighting functions are chosen to
be static weights. The weights are chosen so all weighted
signals (measurement noise, external load, control input, dis-
placement or acceleration) have an appreciable influence on
the achievable � ∞-norm. Now, the number of states of the
generalized plant is not that large, namely 36, to speed up
computations.
To use the independence system setup, noise present in the
input signal should vanish if the signal’s amplitude is zero.

5.1. Dynamic stiffness improvement
For the full IO set the achievable value of the � ∞-norm is
slightly smaller than γ = 0.3. For a required performance
level of γ = 0.3, IO selection has been carried out for a sub-
set of 16 from the 26 tendons, so n = 32, and the number of
sensors and actuators in the base set is equal and allows colo-
cation. The tendons selected were those that during separate
input and output selection often yielded promising actuators
or sensors. Giving results in a Hasse diagram does not make
sense, due to the large number of IO sets, that need more pix-
els than available on a sheet of paper. So, a more condensed
representation is chosen that only sums the number of occur-
rences of a device in the minimal dependent sets. Figure 5
is therefore a compact representation of the 40960 minimal
dependent sets that completely characterize the feasible and
infeasible IO sets. There are four devices (2–5) that are al-
ways needed. Note that more actuators (devices numbered
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Figure 5: Results for minimal dependent IO sets for γ = 0.3
1–16) than sensors are needed, so not only colocated devices
are selected.
Another way to present the results is by showing how many
devices are in the minimal dependent or maximal independent
sets. This information is in Fig. 6. The smallest feasible IO
set has 14 devices, and there are 545 of these sets, mostly
permutations of a slightly larger number of devices.
The most useful information is now available from the data
for the maximal independent IO sets. Two of those sets have
13 devices and adding any of the remaining 19 devices makes
them feasible, so the devices in those two sets are ranked high.
There are 4 maximal independent sets of size n − 1, which
implies that 4 of the devices appear in all minimal dependent
sets, because they are always needed, and rank therefore high.
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Figure 6: Number of devices for γ = 0.3; “o”:minimal de-
pendent, “x”: maximal independent IO sets

This agrees with Fig. 5. A similar reasoning will prefer devices
that are not included in maximal independents sets of size
n −2. In this way also the most promising devices in separate
input and output selection were chosen.
A physical interpretation of the results indicates that hori-
zontal tendons, those “perpendicular” to the disturbance, are
preferred, both for actuation and sensing. Not all selected IO
sets were colocated ones.

5.2. Vibration reduction
For the full IO set the achievable value of the � ∞-norm is
slightly smaller than 1, namely γ = 0.9849. Here we first
present results for actuator selection (so n = 26) that show
how the search for the minimal dependent or maximal inde-
pendent sets is accomplished. For a performance level γ = 5,
M and K are rather small, permitting presenting those re-
sults. The main purpose is to show how the search direction
influences the number of feasibility tests to be performed.
Figure 7 presents results for finding minimal dependent sets,
using a top-down search direction. The figure illustrates the
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Figure 7: Search for minimal dependent inputs sets for γ = 5;
“o”: feasible one, “x”: infeasible ones
depth first search strategy. Starting from the top (with l =

n = 26), devices from the full IO set are eliminated, until no
further elimination is possible without becoming infeasible.
Then another base IO set is chosen, with l = n − 1 devices
or with another permutation of devices, and the elimination
starts again, until for all 226 possible IO sets it is clear that
they are feasible or not. Each vertical sequence is thus a
trace of evaluated IO sets which ends in finding a minimal
dependent set. For this case the number of evaluations is 815



and M = 108.
Figure 8 presents results for finding maximal independent
sets, employing a bottom-up search direction. Here we start
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Figure 8: Search for maximal independent input sets for γ =

1.5: “o”: feasible ones, “x”: infeasible one
with the empty IO set (the open loop), which is not feasible,
and add devices until no device can be added without the
resulting IO set becoming feasible. The number of evalua-
tions is 348 and K = 31, so this search direction needs less
evaluations.
The combinatorial part of the search is in guaranteeing that
IO sets are not evaluated when from the available results it
is clear that they are feasible or infeasible. Details of how
this can be done efficiently are in [7]. This part is easier for
small values of K and M . In general K and M are relatively
small when either the specs are very tight (needing almost any
device) or very loose (only a few devices are needed).
Combining the most promising actuators with similar results
for sensor selection gives a selection problem with 8 input
and 24 output devices, so n = 32. In this case we do not
use an equal number of sensors and actuators in the base set,
because more sensors are needed than actuators to achieve a
desired level of performance, as will become clear from the
results presented. The selection is solved for γ = 1, so only
slightly worse than achievable with the full set of devices.
The most promising devices are indicated with large bars in
Fig. 9, because they appear in all 136 minimal dependent
sets. The 8 actuators have device numbers 1–8. Note that the
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Figure 9: Results for minimal dependent IO sets for γ = 1

number of sensors needed is much larger than the number of
actuators. This is due to the relatively large weighting for the
measurement noise. It shows that a restriction for actuators
and sensors to appear as colocated pairs would require a larger
number of devices to achieve the same performance.

A physical interpretation of the results indicates that actuators
and sensors connected and “parallel” to the disturbance are
selected, and devices not directly connected to the disturbance
are eliminated. Note that these results differ from the results
for dynamic stiffness. With the different goals targeted by the
control specifications, this is not surprising.
Given the straightforward physical interpretation of the re-
sults, we do not expect a search based on all 52 devices to
give results that are significantly different from the results ob-
tained by a staged approach (first input and output selection
separately, then a combined IO selection).

6. Conclusions
An efficient method for input/output selection was shown to be
readily applicable to tensegrity structures with a larger number
of potential IO sets. Modifications with minor consequences
were needed to deal with the relatively large number of devices
from which to choose.
The trend revealed for vibration reduction problems is to
choose actuators in strings parallel to the disturbance vector,
whereas, for dynamic stiffness improvement, the best actuator
strings are perpendicular to the disturbance vector. The same
holds for sensors. This shows that the set of feasible solutions
depends largely on the goal of the controlled system.
The results are also beneficial when making choices in the
design of tensegrity systems, because they indicate which
tendons are needed and which can be eliminated when there
is some redundancy in the tendons, i.e., in case not all of the
original tendons are needed to assure integrity.
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