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Abstract

We discuss an Ansatz for the neutrino mixing matrix and speculate

on the form and origin of the neutrino mass matrix.

1 Mixing Matrix

Thanks to heroic experimental efforts, the neutrino mixing matrix has now been
determined to be[1] (see the various experimental talks at this conference)

V =





0.72− 0.88 0.46− 0.68 < 0.22
0.25− 0.65 0.27− 0.73 0.55− 0.84
0.10− 0.57 0.41− 0.80 0.52− 0.83



 (1)

(The numbers given are absolute values of the matrix elements of V.) The mixing
matrix V relates the neutrinos current eigenstates (denoted by να (α = e, µ,
τ) and coupled by the W bosons to the corresponding charged leptons) to the
neutrino mass eigenstates (denoted by νi (i = 1, 2, 3)) according to





νe
νµ
ντ



 = V





ν1
ν2
ν3



 (2)

We will take the neutrinos to be Majorana[2] as seems likely, so that we have
in the Lagrangian the mass term

L = −ναMαβCνβ + h.c. (3)
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where C denotes the charge conjugation matrix. Thus, the neutrino mass matrix
M is symmetric. For the sake of simplicity we will assume CP conservation so
that M is real. Indeed, we have already written all the entries as real in (1).

With this simplification, M is diagonalized by an orthogonal transformation

V TMV =





m1 0 0
0 m2 0
0 0 m3



 (4)

Clearly, we are free to multiply V on the right by some diagonal matrix
whose diagonal entries are equal to ±1. This merely multiplies each of the
columns in V by an arbitrary sign. Various possible phases have been discussed
in detail in the literature.[3]

We could suppose either that the entries in V represent a bunch of mean-
ingless numbers or that they point to some deeper structure or symmetry. In
the latter spirit, let us make a guess of what V might be.

Since Ve3 appears to be small, let us boldly set it to 0. Next, since 1/
√
2 ∼

0.707 we will guess that Vµ3 = (0.55−0.84) = 1/
√
2. Finally, since 1/

√
3 ∼ 0.577

we will set Ve2 = (0.46 − 0.68) = 1/
√
3. In other words, we propose that we

know the upper triangular entries of the matrix V :

V =





X 1√
3

0

X X 1√
2

X X X



 ,

where X denotes an unknown quantity.
Remarkably, this essentially fixes the mixing matrix V . Once we take the

last column to be proportional to (0, 1,−1), orthogonality and our “knowledge”
that Ve2 is 1/

√
3 immediately fix the second column to be proportional (1, 1, 1)

and hence the first column to be proportional to (−2, 1, 1). X. G. He and I
therefore arrived at the Ansatz or guess[4]

V =







− 2√
6

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3

− 1√
2






. (5)

This mixing matrix (but curiously, with the first and second column inter-
changed) was first suggested by Wolfenstein more than 20 years ago[5]. Later
it was proposed by Harrison, Perkins and Scott[6], and subsequently studied
extensively by them and by Xing[7].

The mixing matrix V may be factorized as V = V23V12 where

V23 =





1 0 0
0 1√

2
1√
2

0 1√
2

− 1√
2



 (6)
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and

V12 =









−
√

2
3

1√
3

0

1√
3

√

2
3 0

0 0 1









. (7)

In other words, if we follow Wolfenstein and define νx ≡ (νµ + ντ )/
√
2 and

νy ≡ (−νµ + ντ )/
√
2 we find that the mass eigenstates are given by

ν1 = −
√

2

3
νe +

1√
3
νx, (8)

ν2 =
1√
3
νe +

√

2

3
νx, (9)

and
ν3 = νy (10)

I find this matrix V rather attractive, but how could we obtain such an
“elegantly simple” mixing matrix?

Recently, Harrison, Perkins and Scott[8] proposed a discrete symmetry group
D and managed to obtain V. Unfortunately, as emphasized by Low and Volkas[9],
they have to allow the left handed neutrinos and the left handed charged leptons,
which of course belong to the same doublet under the standard SU(2)⊗U(1), to
transform differently. Thus the low energy symmetry group of the electroweak
interaction proposed by Harrison et al could not have the form SU(2)⊗U(1)⊗D.
Assuming that it indeed has this form and assuming only one Higgs doublet,
Low and Volkas went on and proved a no-go theorem showing that no choice of
D would lead to V.

2 Mass Matrix

Neutrino oscillation[10] experiments can only determine the absolute value of
the mass squared differences ∆m2

ij ≡ m2
i −m2

j . At the 99.3% confidence level

∆m2
ij are determined by

1.5× 10−3eV 2 ≤ |∆m2
32| ≤ 5.0× 10−3eV 2,

and
2.2× 10−5eV 2 ≤ |∆m2

21| ≤ 2.0× 10−4eV 2,

with the best fit values given by

|∆m2
32| = 3.0× 10−3eV 2 (11)

and
|∆m2

21| = 7.0× 10−5eV 2. (12)
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Thus, we could have either the so-called normal hierarchy in which |m3| >
|m2| ∼ |m1| or the inverted hierarchy |m3| < |m2| ∼ |m1|. At present, we have
no understanding of the neutrino masses just as we have no understanding of
the charged lepton and quark masses.

In general, when we diagonalize a matrix M as in (4) we expect the eigen-
values mi and the matrix V to depend on the matrix elements Mαβ . Only a
certain class of matrices would have the property (which Low and Volkas called
“form-diagonalizable”) such that V comes out as a matrix of pure numbers as
in (5). At first sight, it seems a bit odd that form-diagonalizable matrices exist,
but a moment’s thought indicates that they could be constructed as follows:

given three orthonormal column vectors ~v(i) = {v(i)α } whose components are

pure numbers, then M =
∑3

i=1mi ~v
(i)(~v(i))T is form diagonalizable for arbi-

trary mi. Thus, if we believe in (5) then the neutrino mass matrix is given
by

M =
m1

6





4 −2 −2
−2 1 1
−2 1 1



+
m2

3





1 1 1
1 1 1
1 1 1



+
m3

2





0 0 0
0 1 −1
0 −1 1





(13)
The three column vectors contained in V are the eigenvectors of the matrix

M0 = a





2 0 0
0 −1 3
0 3 −1



 , (14)

with eigenvalues m1 = m2 = 2a, and m3 = −4a. (The parameter a merely
sets the overall scale.) Thus, ∆m2

21 = 0 and this pattern reproduces the data
|∆m2

21|/|∆m2
32| ≪ 1 to first approximation. Because of the degeneracy in the

eigenvalue spectrum, V is not uniquely determined. We can always replace V
by VW where

W =

(

R 0
0 1

)

,

with R a 2 × 2 rotation matrix. To determine V, and at the same time to split
the degeneracy between m1 and m2, we perturb M0 to M =M0 + δMT , where

δMT = εa





0 1 1
1 0 1
1 1 0



 .

We have the mass eigenvalues m1 = 2a(1− ε/2),m2 = 2a(1 + ε), and m3 =
−4a(1 + ε/4). Thus, we can determine to the lowest order ε = ∆m2

21/∆m
2
32.

The overall scale of the mass matrix a is given by a2 = ∆m2
32/12.

Other perturbations can also lead to the same mixing matrix V while split-
ting the degeneracy ∆m2

21 = 0. An interesting example is the “ democratic”
form
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δMD = εa





1 1 1
1 1 1
1 1 1



 .

The matrix δMD is evidently a projection matrix that projects the first and
third columns in V to zero. Thus, the eigenvalues are given by m1 = 2a,m2 =
2a(1 + 3ε/2), and m3 = −4a, where to the lowest order ε = ∆m2

21/∆m
2
32 and

a2 = ∆m2
32/12. We note that this mass matrix is not traceless.

We mention that there is a whole class of models we can propose. Generalize
M0 to

M̃0 = a





2 0 0
0 1− y 1 + y
0 1 + y 1− y



 ,

with the case mentioned earlier corresponding to y = 2. Thus in general we
propose

M = M̃0 + δM,

with δM being δMT or δMD. They lead to the same mixing matrix V , with the
eigenvalues mi given by (2a(1 − ε/2), 2a(1 + ε),−2a(y + ε/2)) and (2a, 2a(1 +
3ε/2),−2ay), respectively.

Note that the most general mass matrix which produces the mixing matrix
V can be expressed as linear combinations of the three matrices of the forms
given by M0, δMT and δMD. Once we committed to a specific form for M ,
the three parameters specifying the linear combination merely parametrize the
three neutrino masses m1,2,3. Obviously for any given mixing matrix, the mass
matrix can be specified by mass eigenvalues.

With 2 experimental numbers for the 3 masses m1,2,3, we have to make
another wild guess in order to determine M. Since M = M0 + δMT gives a
reasonable fit to the data and since it is traceless, one may be tempted to
conjecture that this property provides a clue to the origin of the neutrino mass
matrix. In a recent paper[11], X. G. He and I gave a phenomenological analysis
of the data imposing the condition[12] TrM = 0 without speculating on its
theoretical origin.

If there is no CP violation in the neutrino mass matrix M , the mass matrix
can always be made real and it can be diagonalized by an orthogonal transfor-
mation. In this case the traceless condition TrM = 0 is equivalent to the “zero
sum” condition

m1 +m2 +m3 = 0. (15)

(But if CP is not conserved, the “zero sum” and traceless conditions are dif-
ferent. One needs to be careful about the phase definitions[3].) We note that
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the traceless condition holds if M = [A,B], that is, the mass matrix can be
expressed as a commutator of two matrices A and B.

As remarked earlier, we are free to choose the signs of the column vectors
in the mixing matrix and to make chiral rotations on the neutrino fields to
change the relative signs of the mass eigenvalues. Without information on the
relative signs of the eigen-masses, the column vectors can only be determined
up to ±i. This can be expressed by multiplying a diagonal phase matrix P =
Diag(eiσ, eiρ, 1) to the right of V . With CP invariance, σ and ρ can take the
values of zero or ±π/2. Neutrinoless double beta decays will provide some
crucial information on these phases.

Combining the zero mass condition with the experimental data on the dif-
ferences of mass squared we find that the mass eigenvalues exhibit two types of
hierarchies,

(I) m3 ≈ −2m1 ≈ −2m2 ≈ 0.064 eV

(II) m1 ≈ −m2 ≈ 0.054 eV, and m3 ≈ 0.00064 eV. (16)

The sign of ∆m2
32 decides which mass hierarchy the solutions belong to. Note

that the “natural” sign ∆m2
32 > 0 corresponds to scenario (I), in which the

masses are of the same order of magnitude, in contrast to scenario (II), in
which m3 is two order of magnitude smaller than m1 and m2. We would like to
suggest that (I) is favored over (II).

Our purpose here is evidently not to give a detailed fit to the data, but to
suggest some relatively simple and appealing mass matrices. The appearance
of simple integers in the mixing and mass matrices we proposed is perhaps
intriguing and provides a glimmer of a hope that they may be obtained by group
theoretic considerations. To provide a theoretical origin of the mass matrix M
presents an interesting challenge.

3 Theory

Theoretically, pitifully little is known about neutrino masses and mixing. The
only firm theoretical statement is that since the standard model is correct at low
energies, neutrino masses have to come from the following dimension 5 operator
in the Lagrangian,[13, 14, 15]

L =
1

M (εijψiϕj)C(εklψ
′

kϕ
′
l). (17)

Here ψ and ψ′ denote left handed lepton doublets and ϕ and ϕ′ Higgs doublets,
and i, j, k, l denote SU(2) indices. The unknown mass parameter M sets the
mass scale of the new physics responsible for generating the neutrino masses.

Life is full of bifurcating choices: so too the neutrino mass model builder
is immediately faced with the choice of introducing right handed neutrinos or
not. A neutrino could have either a Dirac mass or a Majorana mass. In the first
alternative, one needs to introduce right handed neutrino fields and the question
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immediately arises on why the neutrino Dirac masses are so small compared to
the charged lepton masses in the theory. This question was answered elegantly
by the see-saw mechanism, in which the right handed neutrino fields are given
large Majorana masses. But if we are willing to introduce Majorana masses for
the right handed neutrino fields, perhaps we should consider dispensing with
right handed neutrino fields altogether and simply try to generate Majorana
masses for the existing left handed neutrino fields. We shall try to generate
this Majorana masses through quantum mechanical effect. This has the added
advantage of having naturally small neutrino mass and the new physics at a
potentially experimentally accessible scale.

Since in the standard model, the left handed neutrino fields belong to dou-
blets ψaL (with a a family index) we cannot simply put in Majorana mass terms.
The general philosophy followed in Ref.[16, 17, 18] is that we should feel freer
to alter the scalar field sector than other sectors since the scalar field sector is
the least established one in the standard model. Out of the doublets we can
form the Lorentz scalar (ψi

aLCψ
j
bL) (where i, j denote electroweak SU(2) indices

and C the charge conjugation matrix): this can be either a triplet or a singlet
under SU(2). If we couple a triplet field to this lepton bilinear, then when
the neutral component of the triplet field acquires a vacuum expectation value,
the neutrinos immediately acquire Majorana masses. We considered this model
unattractive: not only does it lack predictive power, but the rather accurately
studied ratio of W and Z boson masses puts a stringent bound on any triplet
Higgs. In addition, there is no natural way to explain the smallness required of
this vacuum expectation value.

We thus chose the alternative of coupling to an SU(2) singlet (charged) field
h+ via the term fab(ψi

aLCψ
j
bL)εijh

+. An interesting point is that due to Fermi
statistics the coupling fab must be anti-symmetric in a and b. We are forced to
couple leptons in one family to leptons in another one. Thus, the term above
contains feµ(νeCµ

− − e−Cνµ)h
+, for instance. The term fab(ψi

aLCψ
j
bL)εijh

+

in itself does not violate lepton number L since we can always assign L =
−2 to h+. But we note that we can also couple h+ to the Higgs doublets via
Mαβφαφβh

+ if there are more than one Higgs doublet. By Bose statistics, the
coupling matrix Mαβ is antisymmetric and thus we need to have at least two
Higgs doublets. We do not regard the necessity of more than one Higgs doublet
as unattractive. Indeed, theorists have always been motivated by one reason
or another to introduce additional Higgs doublets, and surely in the debris of
breaking down from some high mass scale physics there would be numerous
scalar fields. If the doublets are required to have zero lepton number by their
respective Yukawa couplings, the term Mαβφαφβh

+ violates lepton number by
two units, just right for generating neutrino Majorana masses.

From general principles we know that neutrino Majorana masses must be
generated and that they must come out as finite, that is, calculable in terms of
the parameters of the theory. Indeed, it is easy to see that calculable neutrino
Majorana masses are generated by quantum fluctuations in one loop[16].

There has been a considerable literature[19] devoted to studying the various
implications of this model, known as the Zee model. Soon after this model was
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proposed, Wolfenstein[20] suggested an interesting simplification by imposing a
discrete symmetry so that one of the two minimally necessary Higgs doublets
does not couple to leptons. This simplified Zee model, or the Zee-Wolfenstein
model, is now ruled out[21]. The original Zee model, however, continues to be
phenomenologically viable[22, 23]. There are also several possible variants[24]
of this model. It would be interesting to see if the mixing and mass matrices
discussed in the first half of this paper could possibly emerge from this class of
models.
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