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Summary

A crossfostering design was used to estimate correlated responses in prenatal genetic
and postnatal maternal effects for maternal traits of mice (female body weights at mating,
at parturition and at 12-d postpartum, litter size and weight at birth, percent born alive,
standardized (12 pups) 12-d litter weight and birth to 12-d litter feed efficiency = litter
weight gain/dam feed intake). Lines of mice had been selected as follows : large first-parity
litter size at birth (L+) ; large 6-wk body weight (W+) ; an index for large litter size and
small 6-wk body weight (L+W-) and randomly (K). Prenatal line refers to the line into
which a female was born, and postnatal line is that of the foster mother that nursed the
female. Crossfostering sets were formed at birth with equal numbers of pups from the
4 lines reared either in litters of 8 or 16. Dams reared in litters of 8 were heavier, had
larger litters at birth and larger litter weights at birth and 12-d postpartum (P < 0.05).
No biologically important interactions were found between number reared and prenatal
genetic effects or between number reared and postnatal maternal effects. Selection for
litter size at birth and (or) 6-wk body weight resulted in large correlated responses in
maternal traits. Correlated responses in postnatal maternal effects were relatively small
compared with prenatal genetic effects. Prenatal genetic by postnatal maternal interactions
generally were not of biological importance. Postnatal maternal effects contributed much
less to correlated responses in traits associated with reproduction and maternal performance
compared with growth-related traits.
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Résumé

Réponses corrélées pré- et post-natales sur des caractères maternels
de la souris évaluées par un dispositif d’allaitement croisé

Un dispositif d’allaitement croisé a été utilisé pour estimer les réponses corrélées sur
les effets génétiques prénataux et les effets maternels postnataux pour des caractères
d’aptitude maternelle chez la souris (poids corporel de la femelle lors de l’accouplement,
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à la parturition et 12 jours post partum, taille et poids de la portée à la naissance,
pourcentage de nés vivants, poids de portée à 12 jours standardisé (à 12 produits) et

efficacité alimentaire de 0 à 12 jours définie comme le rapport du gain de poids de la

portée à la consommation de la mère). Les lignées de souris utilisées ont été sélectionnées
de la manière suivante : sélection pour une taille de portée élevée à la naissance en parité 1

(L+) ; sélection pour le poids corporel à 6 semaines (W+) ; sélection sur un index pour
une taille de portée élevée et un faible poids corporel à 6 semaines (L+W-) et lignée
témoin (K). Le terme de « lignée prénatale » désigne la lignée dans laquelle une femelle est
née, celui de « lignée postnatale » la lignée de la mère adoptive qui allaite la femelle. Des
groupes d’allaitement croisé ont été constitués à la naissance avec des nombres égaux de
souriceaux issus des 4 lignées, élevés en portée de 8 ou de 16. Les mères élevées en

portées de 8 sont plus lourdes ; les portées qu’elles produisent ont une taille plus élevée
à la naissance, ainsi que des poids plus importants à la naissance et 12 jours post partum
(P < 0,05). On n’a pas trouvé d’interactions biologiquement importantes entre la taille de

portée d’origine et les effets génétiques prénataux, ni entre la taille de portée d’origine et
les effets maternels postnataux. La sélection pour la taille de portée à la naissance et (ou)
le poids corporel à 6 semaines entraîne d’importantes réponses corrélées sur les caractères
maternels. Les réponses corrélées sur les effets maternels postnataux sont relativement faibles
comparées à celles observées sur les effets génétiques prénataux. Les interactions entre
les effets génétiques prénataux et les effets maternels postnataux ne sont en général pas
biologiquement importantes. Les effets maternels postnataux contribuent beaucoup moins
aux réponses corrélées sur les caractères associés à la reproduction et aux aptitudes mater-
nelles qu’à celles observées sur les caractères liés à la croissance.

Mots clés : Réponses corrélées, effets maternels, caractères de reproduction, souris.

I. Introduction

Selection for increased reproductive performance has received considerable em-
phasis in pigs (CUNNINGHAM et Cll., 1979 ; BICHARD & SEIDEL, 1982 ; BOLET & LEGAULT,
1982), beef cattle (PIPER & BINDON, 1979 ; 1VIORRIS, 1984), sheep (HANRAHAN, 1982)
and rabbits (MATHERON, 1982). Selection response depends upon variances of both
direct and maternal breeding values and the covariance between them (VAN VLECK,
1970, 1973 ; HANRAHAN, 1976). Information on additive maternal genetic variance
for reproductive traits and genetic correlations between maternal and direct genetic
effects generally is lacking in livestock. Consequently, the expected correlated responses
in maternal effects from selection for reproductive traits and indices that include

reproductive traits are usually unknown.

In this study the mouse was used in a crossfostering design to estimate correlated
responses in postnatal maternal and prenatal genetic effects on maternal traits in
lines that had been selected for litter size and (or) body weight. Dams were reared
in small (8) or large (16) litters to determine if litter size in which a dam was reared
interacted with maternal and (or) prenatal genetic effects. In a previous paper, corre-
lated responses were reported for progeny growth from the same crossfostering experi-
ment (BANDY & EISEN, 1984).

II. Materials and methods

Lines used in this study had been selected as follows (EISEN, 1978) : large
first-parity litter size at birth (L+) ; large 6-wk body weight (W+) ; an index for large



litter size and small 6-wk body weight (L+W-) and randomly (K). Selection had been
practiced contemporaneously in each line for 23 generations and was followed by
10 generations of relaxed selection. No evidence of genetic slippage or inbreeding
depression has been observed (HORSTGEN-SCHWARK et al., 1984).

The design of the crossfostering experiment was given previously (BANDY &

EISEN, 1984). Briefly, virgin males and females from generation 33 were randomly
paired within lines. Beginning on day 19 after mating, females were checked daily
at 0700 and 1500 h for littering. Crossfostering sets were formed by choosing 4 dams
at random, one from each line, having littered within the same or adjacent periods.
Sets were allocated alternately to litter standardization of 8 (LS8) or 16 (LS16) for
a total of 40 sets for each litter size group. Crossfostering was accomplished by randomly
assigning either one (in LS8) or 2 (in LS16) pups of each sex from each of the
4 litters to each of the dams in the set.

The crossfostering design provides estimates of a prenatal line effect (a;) and a
postnatal line effect (p;). Prenatal line refers to the line into which an individual
female was born, and postnatal line is the line of the dam that nursed the female.
The present crossfostering design gave rise to 32 prenatal line by postnatal line by
number reared subclasses.

Because of space limitations, half of the females within each subclass were

assigned randomly to be mated at either 9 or 12 weeks of age. Mating pairs were
randomly formed within each subclass. After 16 days of continuous cohabitation
with a male, females were caged singly and subsequently checked twice daily for
litters. The goal was to standardize litters to 12 pups on the day of birth, attempting
to get, as nearly as possible, an equal sex ratio. Fostered individuals were used only
within the same prenatal line by postnatal line by number reared subclass. Standar-
dization to 12 pups was achieved in approximately 85 p. 100 of the 1050 litters.

The following traits were measured : dam body weights at mating, at parturition
and at 12-days postpartum ; litter size born ; percentage born alive ; achieved number
of pups standardized and number at 12 days postpartum ; litter weight at birth before
and after standardization, and at 12 days postpartum ; dam feed intake from birth to
12-days postpartum ; and litter feed efficiency defined as 100 X litter weight gain/dam
feed intake in the interval from birth to 12 days postpartum. Litter feed efficiency
is a justified measurement because the pups’ only source of nutrients during this
interval is the dam’s milk.

Dams had been fed ad libitum Purina Laboratory Chow from weaning until

they were mated, at which time Purina Mouse Chow was fed ad libitum. The laboratory
was maintained at 22 -! 2 C and 60 ::!:: 10 p. 100 relative humidity with a 12-h light :
12-h dark cycle.

The least-squares analysis for unbalanced data was based on a statistical model
that included the effects of age of dam, litter size in which the dam had been reared,
crossfostering sets within litter size reared, prenatal line of dam, postnatal line of

dam, interactions, experimental error and residual. All effects were assumed fixed
except for sets, experimental error and residual effects which were assumed random.
Litter size in which a dam was reared was tested by sets. All other fixed effects were
tested with the experimental error, which was obtained by pooling all interactions

involving sets. Interactions between fixed effects generally were not important. Cova-
riates added to the model for some traits will be discussed in results.



III. Results

A. Age of dam

Least-squares means for mating age of dams are given in table 1. Older dams
were about 9 p. 100 larger (P < 0.05) at mating. The age difference in dam body weight
was significant at parturition, but was not large enough to be considered of bio-

logical importance. No dam body weight difference was found at 12-days postpartum.
Number born was about 4 p. 100 larger (P < 0.05) in alder dams. The difference was
significant (P < 0.05) even after covariance adjustment for dam body weight at

parturition (9 wk = 14.1 vs 12 wk = 14.5). Age of dam did not affect percentage
born alive, litter weight at birth and at 12 days, or litter feed efficiency.

B. Litter size in which a dam was reared

Dams reared in LS8 were larger (P < 0.05) at mating (10.3 p. 100), parturition
(7.1 p. 100) and 12-days postpartum (7.1 p. 100) than dams reared in LS16 (tabl. 2).
Dams reared in the smaller litter size also had 8.0 p. 100 larger (P < 0.05) litters



at birth and 5.6 p. 100 larger litter weights at birth and 2.4 p. 100 larger litter weights
at 12-days postpartum. When number alive at 12 days was used as a covariate, the
litter weight difference at 12 days was still significant (P < 0.05). The effect of
litter size in which a dam was reared did not significantly influence litter size
born when adjusted for dam parturition body weight (LS8 = 14.4 vs LS16 = 14.1). Per-
centage born alive and litter feed efficiency were not affected by the litter size in
which a dam was reared.

C. Prenatal genetic (ai) and postnatal maternal genetic (p!) effects

Prenatal line effects were more important than postnatal line effects for dam

body weights (tabi. 3). Prenatal line differences for dam body weight at mating
were similar to prenatal line differences for 6-wk body weight (BANDY & EISEN, 1984).
The correlated responses in prenatal line effects for dam body weight were main-
tained at parturition and 12-days postpartum in L+ and W+, but L+W- showed
no significant correlated responses at these stages of reproduction. Correlated responses
in postnatal line effects for dam body weight at joining were positive (P < 0.05) for
W+ and negative (P < 0.05) for L+W-, but only in L+W- was the correlated res-
ponse maintained for dam body weights at parturition and 12-days postpartum.



Correlated responses in prenatal genetic and postnatal maternal effects for each
selected line are graphed for the reproductive and postpartum traits as deviations
from the control line and pooled across dam age and litter size in which a dam was
reared (fig. 1 AE). The pooling was justified because interactions were negligible.
Positive correlated responses in al for litter size born and litter birth weight were
found for L+, W+ and L+W-, whereas negative correlated responses were observed
for percent born alive. For 12-day litter weight, ai increased in L+ and W+, but
decreased in L+W-. Correlated responses in al for litter feed efficiency were positive
in L+ and negative in L+W-.

Lines L+ and W+ had no significant correlated responses in pi for any of the

reproductive traits. Litter size born and 12-day litter weight in L+W- were the only
significant (negative) correlated responses in pi. The correlated response in 12-day
litter weight was not affected by the covariance adjustment for number at 12 days.

Standardized measures of the among-line variation in prenatal genetic and

postnatal maternal effects can be used to assess their relative importance. The effects
of within-line variation on a mean basis were assumed negligible because of large
within-line sample size. The relative among-line variation in estimates of a; and pi
for each trait was defined as :

and



line prenatal genetic and postnatal maternal variances, X!; is the control line mean
and n is the number of lines. The ratio <Pal <Pp represents an estimate of the relative
importance of prenatal genetic compared with postnatal maternal among-line varia-
tion. Results of this analysis are given in table 4. Estimates of cpa were considerably
larger than (Dp for all maternal traits.



Negative correlations between prenatal genetic and postnatal maternal effects

can affect the choice of breeds for a breeding system. The present data were used to
calculate the correlation between the among-line prenatal genetic and postnatal
maternal genetic effects, defined as :

Although the number of lines was not large enough to provide a precise estimate
of rap, the data do provide a general picture of the degree of possible antagonisms.
Within this set of selection criteria there was no evidence of any serious antagonisms
for traits of the dam (tabl. 4).

IV. Discussion

Expected direct response to individual selection depends upon direct and maternal
heritabilities and the genetic correlation between direct and maternal effects. For
correlated responses, this expectation depends upon the genetic correlations between
direct effects, between maternal effects and between direct and maternal effects
for the selected and unselected traits. Often, the entire suite of genetic parameters
are not known well enough to make accurate predictions. Therefore, as a first

approximation, the maternal parameters usually are ignored in determining predicted
direct and correlated responses to selection.

The present study used the crossfostering design to examine the importance of
postnatal maternal correlated responses in retrospect ; i.e, after the selection experiment
was completed. Lines of mice had been selected for growth (large 6-wk body



weight), reproduction (large litter size) and an index (large litter size and small body
weight) antagonistic to the positive genetic correlation (rG = .5) between litter
size and adult body weight (EISEN, 1978).

Selection for litter size at birth and (or) 6-wk body weight resulted in large corre-
lated responses in reproductive and maternal traits. Correlated responses in postnatal
maternal genetic effects were relatively small compared with prenatal genetic effects.
This contrasts with individual growth traits through weaning, estimated from the same
crossfostering study (BANDY & EISEN, 1984). For example, among-line variation was
approximately equal for postnatal maternal genetic and prenatal genetic effects on

weaning weight of progeny reared in litters of 8, and postnatal maternal genetic
variation was 2.76 times greater than prenatal genetic effects in progeny reared in
litters of 16. Prenatal genetic effects were more important than postnatal maternal
genetic effects for 6-wk body weight (BANDY & EcsErr, 1984), but the ratio of !8/!P
was smaller than for dam body weights at mating, parturition and 12-days postpartum.
The conclusion from this study and others using these lines (BANDY & EtsErr, 1984 ;
EcsErr et al., 1984 ; HORSTGEN-SCHWARK et al., 1984) is that postnatal maternal effects
are much less important in determining correlated responses in traits associated with
reproduction and maternal performance compared with growth-related traits.

WHITE et al. (1968) used the same crossfostering design to study correlated res-
ponses in traits of the dam in lines selected for large and small 6-wk body weight.
In agreement with the present study, prenatal genetic effects were more important
than postnatal maternal effects. Selection for large 6-wk body weight resulted in a

significant positive correlated response in prenatal genetic effects on litter size although
the effect was much smaller than that observed in the present study. In contrast

with the present study, 12-day litter weight showed a negative correlated response
for prenatal effects in a line selected for large 6-wk body weight.

The absence of large negative correlations between prenatal genetic and post-
natal maternal effects for dam traits suggests that in selection among these lines or
lines having a similar history of selection, antagonisms between prenatal genetic
and postnatal maternal effects would not be expected for maternal traits. These
correlations are a function of the selection criteria applied to the lines and cannot
be extrapolated to other sets of lines.

There were no biologically important interactions of prenatal genetic by post-
natal maternal, prenatal genetic by number reared, postnatal maternal by number reared
or prenatal genetic by postnatal maternal by number reared effects. Interactions that
were significant generally were the result of a change in magnitude of mean differences
rather than a change in ranking of means. Similar results were observed for

growth traits of the progeny (BANDY & EISEN, 1984). Absence of prenatal line by
postnatal line interactions indicates that fostering effects per se were relatively unim-
portant. Lack of significant prenatal line by number reared and postnatal line by
number reared interactions suggests that correlated responses in reproductive and
maternal traits were nominally affected by the size of the litter in which the dam was
reared.

In general, the estimated correlated responses for prenatal and postnatal ma-
ternal genetic effects were in agreement with estimates from a diallel design using the
same lines (EISEN et al., 1984 ; HORSTGEN-SCHWARK Bt al., 1984). There were, however,
some specific differences in correlated responses for the corresponding estimates in



the diallel design (pi vs mi) and the crossfostering design (ai vs Qi) (ErsErr et al., 1985),
where pi and ai are as defined previously, and mi and 52; are the average line maternal
and line direct genetic effects as defined in the diallel design (EISEN et al., 1984).

Part of the reason for the observed differences could be caused by differences
in biological expectation of the estimates from each design (BANDY & EISEN, 1984).
Assuming a model with no paternal effects and no interactions among effects, the
maternal and direct genetic effects for line i in a diallel design have expectations

and

whereas the postnatal maternal genetic and prenatal effects in a crossfostering design
have expectations

and

where

E is the expected value operator,
Mi = average postnatal (lactational and/or behavioral) maternal genetic effects,
Ui = average prenatal (intrauterine) maternal genetic effects,
Ci = average cytoplasmic and (or) pathogen or antibody transmitted maternal

effects and

A; = average direct genetic effects.

From the above expectations, it is possible to obtain only 2 confounded estimates
of uterine and cytoplasmic effects

While it is tempting to use the present data to estimate U; + C;, it is inappropriate
because the 2 designs were confounded with time effects and the number of gene-
rations of relaxed selection. Also, dams were reared in litters of eight in the diallel
design while dams in the crossfostering design were reared in litters of 8 or 16. For

postpartum performance traits, litters were not standardized in the diallel design,
but were in the crossfostering design.

Uterine maternal effects on growth have not been detected in mice beyond 2
weeks of age, and even at 2 weeks uterine effects are not as large as postnatal maternal
or direct genetic effects (MooxE et al., 1970 ; AL-MURRANI & ROBERTS, 1978). The
role that cytoplasmic maternal effects has on quantitative traits in animals is just
beginning to be investigated. BELL et al. (1985) reported cytoplasmic effects for first
lactation milk yield, milk fat yield, fat-corrected milk yield and milk fat percentage in
dairy cattle. Because mitochondria play a key role in electron transport and oxidative
phosphorylation, they are a prime candidate for cytoplasmic maternal effects contri-

buting to selection response. Maternal effects associated with selection of maternally
transmitted antibodies or pathogens may also affect selection responses. MAYER
et al. (1980) found maternal transmission of resistance to lymphoma development
in reciprocal crosses of 2 strains of mice. HARRIS (1982) has shown that a congenitally



transmitted virus from dam to offspring can modify selection response in poultry.
Further studies are needed to determine the importance of cytoplasmically trans-
mitted maternal effects on metric traits.
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