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Abstract

We consider the scheduling problem of minimizing the average-weighted completion time on identical parallel machines
when jobs are arriving over time. For both the preemptive and the nonpreemptive setting, we show that straightforward exten-
sions of Smith’s ratio rule yield smaller competitive ratios than the previously best-known deterministic on-line algorithms.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Scheduling; On-line algorithm; Approximation algorithm; Competitive analysis

1. Introduction

Model. We consider the problem of scheduling
jobs arriving over time on-line on identical par-
allel machines to minimize the sum of weighted
completion times. Each of the m machines can pro-
cess only one of the n jobs at a time. Each job j
of a given instance has a positive processing time
pj ¿ 0 and a nonnegative weight wj¿ 0. We learn
about these job data only at the job’s release date
rj¿ 0, which is not known in advance, either.
If Cj denotes the completion time of job j in a
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feasible schedule, the corresponding objective func-
tion value is

∑n
j=1 wjCj. We consider both the

preemptive and the nonpreemptive machine envi-
ronments. In the preemptive setting, the processing
of a job may be suspended and resumed later on
any machine at no extra cost. In contrast, once a
job is started in the nonpreemptive mode, it must be
processed on the same machine without any inter-
ruption until its completion. In scheduling notation
[6], the corresponding oE-line problems are denoted
by P | rj; pmtn | ∑

wjCj and P | rj |
∑
wjCj, respec-

tively. Already the analogous single-machine prob-
lems are NP-hard [9,10].

However, instances of 1‖ ∑
wjCj are optimally

solved by Smith’s weighted shortest processing time
(WSPT) rule, which sequences jobs in nonincreasing
order of their weight-to-processing-time ratios [17].
For convenience, we assume that the jobs are indexed
in this order so that w1=p1¿w2=p2¿ · · ·¿wn=pn.
Moreover, we say that a job with a smaller
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index has higher priority than one with a larger
index.

The quality of on-line algorithms is typically as-
sessed by their worst-case performance, expressed as
the competitive ratio [16]. A �-competitive algorithm
provides for any instance a solution with an objec-
tive function value of at most � times the value of an
optimal oE-line solution.

Main results. We show in Section 2 that a natural
extension of the WSPT rule to preemptive schedul-
ing on identical parallel machines with release dates
is 2-competitive, and this bound is tight. The idea
is to interrupt currently active jobs of lower prior-
ity whenever new high-priority jobs arrive and not
enough machines are available to accommodate the
arrivals.

When preemption is not allowed, a straightfor-
ward extension of this scheme is to start the currently
available job of highest priority whenever a machine
becomes idle. However, this rule does not directly
lead to a bounded competitive ratio. In fact, consider a
single-machine instance in which a job of high priority
is released right after the start of a long lower-priority
job. Therefore, we Krst modify the release date of
each job such that it is equal to a certain fraction of
its processing time, if necessary. If we now start a
long job j and a high-priority job becomes available
shortly thereafter, the ill-timed choice of starting j can
be accounted for by the fact that the high-priority job
has a release date or processing time at least as large
as a fraction of pj. Therefore, its delay is bounded
by its own contribution to the objective function in
any feasible schedule. We consider a family of alike
algorithms in Section 3 and show that the best one
is 3:28-competitive. In this case, we cannot show
that our analysis is tight, but the remaining gap is at
most 0:5.

Related work. Lu et al. [11] introduced a related
class of 2-competitive algorithms, which use simi-
lar waiting strategies for the on-line variant of the
single-machine problem 1|rj|

∑
Cj. In fact, the idea of

boosting release dates was used before by Hoogeveen
and Vestjens [8] and Stougie (cited in [18]), who
delayed the release date of each job j until time
max{rj; pj} and rj + pj, respectively. Anderson and
Potts [2] extended both, Hoogeveen and Vestjens’

algorithm and its competitive ratio of 2, to the setting
of arbitrary nonnegative job weights. These results
are best possible since Hoogeveen and Vestjens also
proved that no nonpreemptive deterministic on-line
algorithm can achieve a competitive ratio better
than 2.

Phillips et al. [12] presented another on-line al-
gorithm for 1|rj|

∑
Cj, which converts a preemptive

schedule into a nonpreemptive one of objective func-
tion value at most twice that of the preemptive sched-
ule. Since Schrage’s shortest remaining processing
time (SRPT) rule [13] works on-line and produces an
optimal preemptive schedule for the single-machine
problem, it follows that Phillips, Stein and Wein’s al-
gorithm has competitive ratio 2 as well. The conver-
sion factor is 3 − 1=m if applied to identical parallel
machines, but the corresponding preemptive problem
is NP-hard in this case. However, Chekuri et al. [3]
noted that by sequencing jobs nonpreemptively in the
order of their completion times in the optimal preemp-
tive schedule on a single machine of speed m times
as fast as that of any one of the m parallel machines,
one obtains a (3− 1=m)-competitive algorithm for the
on-line version of P|rj|

∑
Cj. For the same problem,

Lu et al. [11] gave a 2
-competitive algorithm, where

 is the competitive ratio of the direct extension of the
SRPT rule to identical parallel machines. Phillips et
al. [12] showed that this rule is 2-competitive, but a
smaller value of 
 has not been ruled out.

In any case, the hitherto best known deterministic
on-line result for the corresponding scheduling prob-
lems with arbitrary job weights, P|rj; pmtn |∑wjCj
and P|rj|

∑
wjCj was a (4+�)-competitive algorithm

by Hall et al. [7], which was given as part of a more
general on-line framework. For 1|rj; pmtn|∑wjCj,
Goemans, Wein and Williamson (cited as personal
communication in [14]) noted that the preemptive ver-
sion of the WSPT rule is 2-competitive; it schedules
at any point in time the highest-priority job, possibly
preempting jobs of lower priority. (A proof of this re-
sult is given in [14].) Our preemptive parallel-machine
algorithm is the direct extension of this variation of
Smith’s rule. Schulz and Skutella [14] and Goemans et
al. [5] give comprehensive reviews of the development
of on-line algorithms for the preemptive and nonpre-
emptive single-machine problems, respectively; Hall
et al. [7] do the same for the parallel machine coun-
terparts.
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On the side of negative results, Vestjens [18]
proved a universal lower bound of 1:309 for the com-
petitive ratio of any deterministic on-line algorithm
for P|rj|

∑
Cj. In the preemptive case, the currently

known lower bound is 22
21 , also given by Vestjens.

Let us eventually mention that the currently best
randomized on-line algorithms for the two problems
considered here have (expected) competitive ratio 2;
see [15]. Moreover, the oE-line versions of these prob-
lems are well understood; in fact, both problems have
a polynomial-time approximation scheme [1].

2. Preemptive parallel machine scheduling

We consider the following extension of the
single-machine preemptive WSPT rule to identical
parallel machines.

Algorithm 1: P-WSPT

At any point in time, schedule the m jobs with the
highest priorities among the available, not yet com-
pleted jobs (or fewer if less thanm incomplete jobs are
available). Interrupt the processing of currently active
jobs, if necessary.

The algorithm works on-line since the decision
about which job to run at any given point in time t
is just based on the set of available jobs at time t. In
fact, it only depends on the priorities of the available
jobs. In particular, Algorithm P-WSPT also operates
in an environment in which actual job weights and
processing times may not become available before the
completion of the jobs, as long as the jobs’ priorities
are known at their respective release dates.

Theorem 2.1. The Algorithm P-WSPT produces
a solution of objective function value at most
twice the optimal value for the o=-line problem
P|rj; pmtn |∑wjCj.

Proof. Consider the time interval (rj; Cj] for an arbi-
trary but Kxed job j. We partition this interval into two
disjunctive sets of subintervals, which we call I(j) and
MI(j), respectively. We let I(j) contain the subintervals
in which job j is being processed; MI(j) denotes the
set of remaining subintervals. Note that no machine

can be idle during the subintervals belonging to MI(j).
Since the algorithm processes job j after its release
date rj whenever a machine is idle, we obtain

Cj6 rj + |I(j)| + | MI(j)|;
where | · | denotes the sum of the lengths of the subin-
tervals in the corresponding set.

The overall length of I(j) is clearly pj. Only jobs
with a higher ratio of weight to processing time than
j can be processed during the intervals of the set
MI(j), because the algorithm gives priority to j before
scheduling jobs with lower ratio. In the worst case,
that is when | MI(j)| is maximal, all jobs with higher
priority than j are being processed in the subintervals

of this set. Then | MI(j)| =
(∑

k¡j pk
)
=m, and we can

bound the value of the P-WSPT schedule as follows:∑
j

wjCj6
∑
j

wj(rj + pj) +
∑
j

wj
∑
k¡j

pk
m
:

Since the completion time Cj of a job j is always
at least as large as its release date plus its processing
time,

∑
j wj(rj + pj) is obviously a lower bound

on the value of an optimal schedule. Moreover,∑
j wj

∑
k6j pk=m is the objective function value

of an optimal solution to the corresponding instance
of the relaxed problem 1| |∑wjCj on a single ma-
chine with speed m times the speed of any of the
identical parallel machines. As this problem is indeed
a relaxation of the scheduling problem considered
here, we can conclude that the P-WSPT algorithm is
2-competitive.

A family of instances provided by Schulz and
Skutella [14] shows that this result cannot be im-
proved. In fact, for m = 1, P-WSPT coincides with
the preemptive single-machine algorithm studied in
their paper. Taking m copies of Schulz and Skutella’s
instance yields the following result.

Lemma 2.2. The competitive ratio of the Algorithm
P-WSPT is not better than 2 for the on-line prob-
lem P|rj; pmtn|

∑
wjCj, for any given number of ma-

chines.

Proof. We include a proof for the sake of complete-
ness. We consider an instance that is slightly diEerent
from the one given in [14]. It consists of m copies of
n + 1 jobs with wj = 1; pj = n − j=n and rj = jn −
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j(j + 1)=(2n) for all 06 j6 n. Algorithm P-WSPT
preempts any job when it has left just 1=n units of pro-
cessing time and Knishes it only after all jobs with a
larger release date have been completed. The value of

this schedule is m
(∑n

j=0 (rn + pn + j=n)
)
: An opti-

mal oE-line algorithm does not preempt any job and

yields a schedule of value m
(∑n

j=0 (rj + pj + j=n)
)
.

A simple calculation shows that the ratio of the val-
ues of the P-WSPT schedule and the optimal schedule
goes to 2 when n goes to inKnity.

Of course, Theorem 2.1 subsumes the scheduling
problem P|rj; pmtn|∑Cj as a special case. Thus, this
extension of the 2-competitive single-machine shortest
processing time (SPT) rule to the parallel machine
setting has the same competitive ratio as the analogous
extension of Schrage’s optimal single-machine SRPT
rule [12].

3. Nonpreemptive parallel machine scheduling

Every reasonable on-line algorithm for nonpreemp-
tive scheduling has to make use of some kind of wait-
ing strategy. We refer the reader to [18, Chapter 2] and
[11] for comprehensive discussions of related tech-
niques for the single machine. Here, we extend the
idea of delaying release dates to the parallel machine
problem.

Algorithm 2: SHIFTED WSPT

Modify the release date of every job j to r′j, where r′j is
some value between max{rj; 
 pj} and rj + 
 pj, for
some 
∈ (0; 1]. Whenever a machine becomes idle,
choose among the available jobs a job j with highest
priority and schedule it on the idle machine.

Note that this is indeed an on-line algorithm; we
will later choose 
 to minimize the corresponding
competitive ratio. Moreover, for m = 1 and 
 = 1,
Algorithm SHIFTED WSPT is identical to the algorithm
proposed in [11] for 1|rj|

∑
Cj. The idea of shifting

release dates to ensure that the processing time of any
one job is not too large compared to its arrival time is
also present in the proposed approximation schemes
for this class of problems [1].

In the analysis of the SHIFTED WSPT algorithm, we
make use of the following lower bound on the optimal
value of the relaxed problem with trivial release dates,
which is due to Eastman et al. [4].

Lemma 3.1. The value of an optimal schedule for
an instance of the scheduling problem P‖ ∑

wjCj is
bounded from below by
n∑
j=1

wj
∑
k6j

pk
m

+
m− 1
2m

n∑
j=1

wjpj:

Let us now analyze the performance of the SHIFTED

WSPT algorithm.

Theorem 3.2. The Algorithm SHIFTED WSPT has a
competitive ratio of less than 2 + max{1=
; 
+ (m−
1)=2m} for the on-line problem P|rj|

∑
wjCj.

Proof. The algorithm schedules a job j at time r′j if a
machine is idle and j is the job with the highest ratio
of weight to processing time among all available jobs;
otherwise, j has to wait for some time. The waiting
time for j after r′j is caused by two types of jobs: jobs
with lower priority that started before time r′j, and jobs
with higher priority. Note that the algorithm does not
insert idle time on any machine in the time interval
between r′j and the start of job j.

Clearly, every machine has at most one low-priority
job ‘¿j that is running at time r′j and before the
start of job j. By construction, such a job ‘ satisKes

 p‘6 r′‘ ¡ r′j. Thus, it is completed by time (1 +
1=
)r′j. Consequently, any job that is running between
(1 + 1=
)r′j and the start of job j must have a higher
priority than j. The total processing time of these jobs
is bounded by

∑
h¡j ph. As a result, one of the m

parallel machines Knishes processing jobs of this kind
after at most

∑
h¡j ph=m time units. Hence,

Cj ¡
(

1 +
1



)
r′j +

∑
h¡j

ph
m

+ pj

6
(

1 +
1



)
(rj + 
pj) +

m− 1
2m

pj

+
∑
h6j

ph
m

+
m− 1
2m

pj
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=
(
rj



+
(

+

m− 1
2m

)
pj

)

+ (rj + pj) +
∑
h6j

ph
m

+
m− 1
2m

pj:

Thus, Algorithm SHIFTED WSPT generates a schedule
of value∑
j

wjCj ¡
∑
j

wj(rj + pj)

·
(

1 + max
{

1


; 
+

m− 1
2m

})

+
∑
j

wj


∑
h6j

ph
m

+
m− 1
2m

pj


 :

The proof is completed by applying two lower bounds
on the optimal value: Krst, the trivial lower bound∑

j wj(rj + pj), and second, the lower bound pre-
sented in Lemma 3.1.

A simple calculation shows that the minimum of
max{1=
; 
+(m− 1)=2m} is attained at 
=(1−m+√

16m2 + (m− 1)2)=(4m) =: 
m. In particular, 
1=1.

Corollary 3.3. The Algorithm SHIFTED WSPT with

 = 
m is (2 + 1=
m)-competitive. The value of this
increasing function of m is 3 for the single-machine
case and has its limit at (9 +

√
17)=4 ≈ 3:28

for m → ∞.

Lemma 3.4. Algorithm SHIFTED WSPT cannot
achieve a better competitive ratio than max{2 +

; 1 + 1=
}¿ 2 +

√
5−1
2 for 
∈ (0; 1], on any number

of machines.

Proof. We give two instances from which the lower
bound follows. Consider 2m jobs released at time 0;
half of the jobs are of type I and have unit processing
times and weights �, whereas the other half of the jobs,
type II, have processing time 1 + � and unit weight.
The algorithm modiKes the release dates and schedules
jobs of type I at time t= 
 Krst, one on each machine,
followed by jobs of type II. The value of the schedule
is m(
+ 1)�+m(
+ 2 + �): In the optimal schedule,
jobs of type II start processing Krst, at time t=0, such
that the value of the schedule is m(1+ �)+m(2+ �)�.

For � → 0, the ratio between the value of the SHIFTED

WSPT schedule and the optimal schedule goes to 2+
.
The second instance consists again of 2m jobs: half

of the jobs are of type I and have release dates 1 + �,
processing times � and weights 1=m, whereas the other
half of the jobs, type II, are released at time 0 and have
processing time 1=
 and zero weight. SHIFTED WSPT
starts scheduling jobs at time 1 and obtains a solution
with a value of at least 1 + 1=
 + �. The value of the
optimal schedule is 1 + 2�.

For the special choice 
= 
m, the Krst lower bound
is tighter and it follows more concretely:

Corollary 3.5. The performance guarantee of Algo-
rithm SHIFTED WSPT with 
 = 
m is not better than
(1 + 7m +

√
16m2 + (m− 1)2)=(4m) for instances

with m machines. This means that the above analysis
for this speci>c algorithm has a gap of at most (m−
1)=2m¡ 0:5, and it is tight for the single-machine
problem.
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