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Abstract

We discuss chirality-preserving nilpotent deformations of four-dimensional N=(1, 1)
Euclidean harmonic superspace and their implications in N=(1, 1) supersymmet-
ric gauge and hypermultiplet theories, basically following [hep-th/0308012] and
[hep-th/0405049]. For the SO(4)×SU(2) invariant deformation, we present non-
anticommutative Euclidean analogs of the N=2 gauge multiplet and hypermultiplet
off-shell actions. As a new result, we consider a specific non-anticommutative hy-
permultiplet model with N=(1, 0) supersymmetry. It involves free scalar fields and
interacting right-handed spinor fields.
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1 Introduction

In recent years, non-(anti)commutative deformations of supersymmetric field theories re-
ceived a great deal of attention.

The simplest type of non-commutativity affects the space-time coordinates

xm ⋆ xn − xn ⋆ xm = iΘmn (1.1)

where Θmn is some constant tensor specifying the deformation. Such non-commutative
coordinates arise in the field-theory limit of string theory in a constant B-field background
[1, 2]. For local fields f(x) and g(x), this non-commutativity implies the use of the
Moyal-Weyl star-product which can be defined via the bi-differential operator P (Poisson
structure)

f ⋆ g = feP g, P =
i

2
Θmn←−∂ m

−→
∂ n . (1.2)

Moyal-Weyl type deformations of supersymmetric theories in superspace are charac-
terized by a generic Poisson bracket APB where A and B are some superfields and the
Poisson operator P is in general some quadratic form in derivatives with respect to both
the even and odd superspace coordinates [3, 4]. Symmetry properties of the operator P
determine unbroken symmetries of the deformed superfield theory: these symmetries are
those generators of which commute with P . 1

The specific deformed superfield field theories studied so far correspond to some par-
ticular degenerate choices of the generic superdifferential Poisson operator P . E.g., the
authors of [5] considered the deformations of some theories in harmonic N = 2 superspace
[6, 7] corresponding to the standard pure bosonic Poisson structure (1.2).

Deformations of a different kind are the nilpotent or non-anticommutative ones for
which the operator P is bilinear in the proper derivations with respect to Grassmann co-
ordinates. As such one can choose either generators of supersymmetry (Q-deformations),
or spinor covariant derivatives (D-deformations). A surge of interest in superfield theories
deformed in such a way was triggered by a recent paper [8] where a minimal deformation
of the Euclidean N=(1

2
, 1
2
) superspace was considered. For the chiral N=(1

2
, 1
2
) coordi-

nates (xm
L
, θα, θ̄α̇) the operator P defining the relevant star product is given by the simple

bracket
APB = −1

2
(−1)p(A)Cαβ∂αA∂βB , P = −1

2
Cαβ←−∂ α

−→
∂ β , (1.3)

with Cαβ being some constant symmetric matrix, ∂α = ∂/∂θα, and p(A) the Z2-grading.
The operator P defined by (1.3) acts on the θα coordinates only and retains the N=(1

2
, 0)

fraction of the original N=(1
2
, 1
2
) supersymmetry. It is very important that the corre-

sponding noncommutative product of superfields preserves the chiral and antichiral rep-
resentations of the N = (1

2
, 1
2
) supersymmetry. Like the bosonic deformation (1.1), (1.2),

1In general, this criterion should be applied in a weak sense, i.e. for the commutator sandwiched
between the superfields A and B.
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this purely fermionic deformation also originates from string theory, as discussed in [8]
and [9]-[12].

Deformations of the N=2 superfield theories along similar lines were discussed in
[13]. In this contribution we shall focus on the harmonic-superspace formalism of the
nilpotently deformed Euclidean N=(1, 1) theories, basically following Refs. [14, 15, 16]
(see also [17, 18]).

The Grassmann harmonic analyticity is the key notion of the off-shell superfield de-
scription of N=2 supersymmetric field theories in four dimensions [6, 7] where it plays the
role analogous to chirality in N = 1 superfield theories. In particular, the analytic gauge
and hypermultiplet superfields are the building-blocks of off-shell interactions, and the
harmonic analytic superspace formalism is indispensable for quantum supergraph calcu-
lations. By construction, the nilpotent Q-deformations (and some special D-deformations)
of N=(1, 1) Euclidean superspace preserve this harmonic G-analyticity [14, 15]. Yet, the
chirality also plays the important role in N=2 and N=(1, 1) supersymmetric gauge the-
ories, so the deformations which we shall consider preserve as well both chiralities.

In Section 2 we review the nilpotent Q-deformations of the Euclidean chiral N=(1, 1)
superspace and analyze the role of the standard conjugation or an alternative pseudoconju-
gation in Euclidean N=(1, 1) supersymmetric theories. The corresponding bi-differential
operator P preserves chirality and anti-chirality, and half of the original N=(1, 1) super-
symmetry (N=(1, 0) supersymmetry). For special choices, however, N=(1, 1

2
) supersym-

metry or the whole automorphism group SO(4)× SU(2) can be retained.

Section 3 is devoted to the chirality-preserving SO(4)× SU(2) invariant deformation of
the gauge N=(1, 1) theories in the harmonic superspace. This singlet deformation breaks
half of supersymmetries and gives rise to some additional interactions of the scalar field
φ̄ of the N = (1, 1) gauge multiplet with the remaining components of the latter [16]. 2

Non-anticommutative interactions of the Grassmann-analytic hypermultiplets are con-
sidered in Section 4. Formally these interactions resemble those considered in the bose-
deformed harmonic superspace of [5], however, the component contents of these two the-
ories are entirely different. As a new explicit example, we analyze in some detail the sim-
plest hypermultiplet self-interaction which vanishes in the anticommutative-superspace
limit. In the component action of this model, the scalar fields do not interact with
fermions, and only some specific fermionic self-interaction is present, with two derivatives
on fermions. The solvable equation for the right-handed fermions contains the nonlinear
source constructed from the left-handed ones which are free.

2The singlet Q-deformation of U(1) gauge theory was independently considered in [18].
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2 Deformations of N=(1,1) Euclidean chiral

superspace

The Euclidean N=(1, 1) superspace has as its automorphisms the Euclidean space spinor
group Spin(4) ∼ SU(2)L× SU(2)R and the R-symmetry group SU(2)×O(1,1) properly
acting on the coordinates xm, θαk , θ̄

α̇k. We prefer to use the chiral coordinates zL ≡
(xm

L
, θαk , θ̄

α̇k) to parametrize this superspace. These Euclidean coordinates zL are real
with respect to the standard conjugation [19]

θ̃αk = εkjεαβθ
β
j ,

˜̄θα̇k = −εkjεα̇β̇ θ̄
β̇j , ÃB = B̃Ã . (2.1)

This conjugation squares to identity on any object, and with respect to it the N=(1, 1)
superspace has the real dimension (4|8). However, if we wish to treat the N=(1

2
, 1
2
)

superspace as a real subspace of the N=(1, 1) superspace (like N = 1 supersubspace
in the standard Minkowski N = 2, 4D superspace), e.g. in order to be able to make
reductions to the theories considered in [8], we cannot limit ourselves merely to this
standard conjugation. Indeed, the Euclidean N=(1

2
, 1
2
) superspace cannot be real with

respect to the complex conjugation: two independent SU(2) spinor coordinates have the
real dimension 8 which coincides with the Grassmann dimension of the whole N=(1, 1)
superspace.

The alternative SU(2)-breaking pseudoconjugation in the same Euclidean N=(1, 1)
superspace was considered in [14]:

(θαk )
∗ = εαβθ

β
k , (θ̄α̇k)∗ = εα̇β̇ θ̄

β̇k , (xm
L
)∗ = xm

L
, (AB)∗ = B∗A∗. (2.2)

The existence of this pseudoconjugation does not impose any further restriction on the
N=(1, 1) superspace which has the same dimension (4|8) as with respect to the complex
conjugation. Clearly, with respect to this pseudoconjugation, θα1 and θ̄α̇1 are ‘real’, so they
form an N=(1

2
, 1
2
) subspace of the ‘real’ dimension (4|4) in N=(1, 1) superspace (such

subspaces can be singled out in a few different ways). The standard conjugation (2.1)
and the pseudoconjugation (2.2) act differently on the objects transforming by non-trivial
representations of the R-symmetry SU(2).3 The map ∗ squares to −1 on the Grassmann
coordinates and the associated spinor fields, and to +1 on any bosonic monomial or
field. On the singlets of SU(2), both maps act as the standard complex conjugation. In
particular, the invariant actions are real with respect to both ∗ and ∼, despite the fact that
the component fields may have different properties under these (pseudo)conjugations.

After this digression, let us come back to our main subject, Q-deformations ofN=(1, 1)
theories. In chiral coordinates, the simplest Poisson structure operator is

P = −
1

2
Cαβ

ik

←−
Q i

α

−→
Q k

β = −
1

2
Cαβ

ik

←−
∂ i

α

−→
∂ k

β (2.3)

3Some ambiguities of generalized conjugations in Grassmann algebras (C-antilinear maps with squares
equal to ±1) were discussed in [20].

3



and the Poisson bracket for two superfields A and B is defined as

APB = −1
2
(−1)p(A)(∂kαA)C

αβ
kj (∂

j
βB) = −(−1)p(A)p(B)BPA . (2.4)

Here, Cαβ
kj = Cβα

jk are some constants, p(A) is the Z2-grading, and the partial spinor
derivatives act as

∂kαθ
β
i = δki δ

β
α and ∂̄α̇iθ̄

β̇k = δki δ
β̇
α̇ . (2.5)

By definition, the bracket (2.4) preserves both chirality and anti-chirality and does not
touch SU(2)R acting on dotted indices. Generically, it breaks half of the original N=(1, 1)
supersymmetry since the generators Q̄α̇k do not commute with the operator P . We
demand P to be real, i.e. invariant under some antilinear map in the algebra of superfields.
The two possible (pseudo)conjugations lead to different conditions on the constants Cαβ

kj .
The constant deformation matrix can be split into two irreducible parts,

Cαβ
kj = C

(αβ)
(kj) + 2εαβεkjI , (2.6)

where I is a real parameter. The second, singlet part preserves the full SO(4)× SU(2)
symmetry:

Ps = −I
←−
Q k

α

−→
Qα

k , APsB = −I(−1)p(A)Qk
αAQ

α
kB . (2.7)

Given the operator (2.4), the Moyal product of two superfields reads

A ⋆ B = A ePB = AB + AP B + 1
2
AP 2B + 1

6
AP 3B + 1

24
AP 4B (2.8)

where the identity P 5 = 0 was used. This star product preserves both chirality and
antichirality and breaks N=(0, 1) supersymmetry. In the approach with the star product
only free actions preserve all supersymmetries while interactions get deformed and they
are not invariant under the N=(0, 1) supersymmetry transformations.

The (3,3) part C
(αβ)
(kl) of the deformation matrix breaks the R-symmetry SU(2), so we

should choose one of the alternative reality conditions to define the minimal form of the
matrix C

(αβ)
(kl) . The minimal representation of this (3,3) part has the following form:

C
(αβ)
(12) = C(αβ), C

(αβ)
(11) = C

(αβ)
(22) = 0 ,

APCB = −
1

2
(−1)p(A)C(αβ)(Q1

αAQ
2
βB +Q2

αAQ
1
βB) , (2.9)

if we assume that C
(αβ)
(ik) is real with respect to the ˜ conjugation, ˜

C
(αβ)
(ik) = C

(ik)
(αβ) .

The choice of the ∗ pseudoconjugation (2.2) is compatible with the decomposition of
N=(1, 1) into two N=(1

2
, 1
2
) superalgebras. Therefore, it allows one to choose a degenerate

deformation
P (Q2) = −1

2
C(
←−
Q 2

1

−→
Q 2

2 +
←−
Q 2

2

−→
Q 2

1) , (2.10)

which does not involve Q1
α and contains the real parameter C. In this case, only Q̄α̇2 are

broken, but not the supercharges Q̄α̇1. Hence, the deformation P (Q2) preserves the larger
fraction N=(1, 1

2
) of the original N=(1, 1) supersymmetry.
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It is of course possible to consider more general deformations affecting both the chiral
and anti-chiral sectors. E.g. one can take the anticommuting set of pseudoreal generators
Q2

α, Q̄α̇1 and construct the real deformation operator P̂ and the corresponding bracket for
even superfields A and B as

AP̂B = −CαβQ2
αAQ

2
βB − B

αα̇(Q2
αAQ̄α̇1B + Q̄α̇1AQ

2
αB)− C̄ α̇β̇Q̄α̇1AQ̄β̇1B. (2.11)

It is evident that this deformation operator defines an associative star-product and it com-
mutes with all spinor derivatives Dk

α, D̄α̇k, as well as with 4 generators of supersymmetry
Q2

α, Q̄α̇1. Hence it breaks half of supersymmetry and preserves both chiralities.

3 Chirality-preserving singlet deformations of

N=(1,1) harmonic superspace

Harmonic superspace with noncommutative bosonic coordinates xm
A

has been discussed
in [5]. This deformation yields nonlocal theories but preserves the whole N=2 supersym-
metry. The nilpotent D-deformations of Euclidean N=(1, 1) superspace also preserving
the full amount of supersymmetry were considered in [13]. Within the harmonic su-
perspace formalism, a special case of such deformations, the singlet one preserving the
SO(4)×SU(2) symmetry, one of two chiralities and harmonic analyticity, was addressed
in [14, 15]. In particular, in [15] N=(1, 1) gauge theory with such D-deformation was
studied (see also a recent preprint [22]). Further in this contribution we shall not discuss
this type of nilpotent deformations. Instead, we shall concentrate on the supersymmetry-
breaking singlet nilpotent Q-deformation associated with the operator Ps (2.7). We shall
essentially use the Euclidean version of the harmonic superspace approach, following refs.
[14, 16].

The basic concepts of the harmonic superspace approach in its Euclidean variant coin-
cide, up to a few minor distinctions, with those of the standard (Minkowski) N=2, D=4
harmonic superspace as collected in the book [7]. In both versions, the key ingredient is
the SU(2)/U(1) harmonics u±i , u+iu−i = 1, where SU(2) is the R-symmetry group. The
chiral-analytic coordinates ZC = (xm

L
, θ±α, θ̄±α̇, u±i ) in the N=(1, 1) harmonic superspace

are related to the analytic coordinates via the shift of the bosonic coordinate

xm
A
= xm

L
− 2i(σm)αα̇θ

−αθ̄+α̇ , θ±α = θαiu±i , θ̄
±α̇ = θ̄α̇iu±i . (3.1)

The (pseudo)conjugations (2.1) and (2.2) can be extended to the harmonics and the coor-
dinates of the harmonic superspace [14]. These two (pseudo)conjugations act identically

on invariants and harmonic superfields, e.g. (AkBk)
∗ = ˜(AkBk) or (q+)∗ = q̃+, but they

differ when acting on harmonics or R-spinor component fields, e.g. (Ak)
∗ 6= Ãk. An

important invariant pseudoreal subspace is the analytic Euclidean harmonic superspace,
parametrized by the coordinates

(xm
A
, θ+α , θ̄+α̇, u±k ) ≡ (ζ, u) . (3.2)
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The supersymmetry-preserving spinor and harmonic derivatives in different coordinate
bases are defined in [14, 15, 16]. A Grassmann-analytic (G-analytic) superfield Φ = Φ(ζ, u)
is defined by the constraints

D+
αΦ(ζ, θ

−, θ̄−, u) = D̄+
α̇Φ(ζ, θ

−, θ̄−, u) = 0. (3.3)

It is important that the chirality-preserving operator P (2.4) also preserves Grassmann
analyticity:

[P, (D+
α , D̄

+
α̇ )] = 0 . (3.4)

In what follows it will be convenient to deal with harmonic projections of the N=(1, 1)
supersymmetry generators

Qk
α = u+kQ−

α − u
−kQ+

α , Q̄α̇k = u+k Q̄
− − u−k Q̄

+. (3.5)

For instance, in the chiral-analytic coordinates we have

Q+
α = ∂−α, Q−

α = −∂+α (3.6)

where ∂±α = ∂/∂θ±α. In these coordinates, different terms in the product (2.8) with the
singlet Q-deformation operator Ps are explicitly expressed as

APsB = I(−1)p(A) (∂−αA∂
α
+B + ∂α+A∂−αB) ,

1

2
AP 2

sB = −
I2

4
(∂+)

2A(∂−)
2B −

I2

4
(∂−)

2A(∂+)
2B + I2∂+β∂

α
−
A∂+α∂

β
−B ,

1

6
AP 3

sB =
I3

4
(−1)p(A)∂α

−
(∂+)

2A∂+α(∂−)
2B +

I3

4
(−1)p(A)∂+α(∂−)

2A∂α
−
(∂+)

2B ,

1

24
AP 4

sB =
I4

16
(∂+)

2(∂−)
2A(∂−)

2(∂+)
2B . (3.7)

Note that the last two terms vanish for the analytic superfields.

Now we turn to some details of the deformed N=(1, 1) gauge theory in harmonic
superspace. It largely mimics the harmonic superspace formulation of non-abelian N = 2
gauge theory in 4D Minkowski space [7].

The basic superfield of the N = (1, 1) gauge theory is the analytic anti-Hermitian
potential V ++ with the values in the algebra of the gauge group which we choose to be
U(n). The gauge transformation of the U(n) gauge potential V ++ reads

δΛV
++ = D++Λ + [V ++,Λ]⋆ (3.8)

where Λ is an anti-Hermitian analytic gauge parameter and D++, in the chiral-analytic
basis, is

D++ = ∂++ + θ+α∂−α + θ̄+α̇∂−α̇ , ∂++ = u+i ∂

∂u−i
. (3.9)
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In the Wess-Zumino (WZ) gauge we shall use the expansion of the potential in θ̄+α̇

V ++

WZ
= φ̄++ + θ̄+α̇V

+α̇ + (θ̄+)2V ,

φ̄++(xA, θ
+, u) = (θ+)2φ̄, V +α̇(xA, θ

+, u) = 2θ+αAα̇
α + 4(θ+)2Ψ̄−α̇ ,

V (xA, θ
+, u) = φ+ 4θ+αΨ−

α + 3(θ+)2D−− (3.10)

where Ψ−

α = u−k Ψ
k
α, Ψ̄

−

α̇ = u−k Ψ̄
k
α̇,D

−− = u−k u
−

l D
kl and all component fields are functions

of xm
A
.

For what follows it will be convenient to rewrite the expression for the WZ-potential
in the chiral-analytic basis, using the relation (3.2)

V ++

WZ
(ZC, u) = v++(zC, u) + θ̄+α̇ v

+α̇(zC, u) + (θ̄+)2v(zC, u) (3.11)

where the chiral superfunctions depend on the coordinates xm
L
, θ+α, θ−α and u±i only

v++(zC, u) = (θ+)2φ̄(xL) ,

v+α̇(zC, u) = V +α̇(xL, θ
+, u)− 2iθ−α∂α̇α φ̄

++(xL, θ
+, u)

= −2θ+αA
αα̇ + 4(θ+)2u−k Ψ̄

α̇k + 2iθ−α (θ
+)2∂αα̇φ̄ ,

v(zC, u) = V (xL, θ
+, u) + iθ−α∂αα̇V

+α̇(xL, θ
+, u)− (θ−)2�φ̄++(xL, θ

+, u)

= φ+ 4θ+αΨ−

α + 3(θ+)2D−− − 2i(θ+θ−)∂mAm + θ+σmnθ
−Fmn

+4iθ−α(θ+)2∂αα̇Ψ̄
−α̇ − (θ−)2(θ+)2�φ̄ . (3.12)

Here all component fields (after separating the harmonic dependence) are functions of xm
L
.

Now we specialize to the simplest case of the U(1) gauge group. The corresponding
Ps-deformed gauge and N=(1, 0) supersymmetry transformations of the component fields
can be readily found [16]. They are given, respectively, by

δaφ = −8IAm∂ma , δaφ̄ = 0 , δaAm = (1 + 4Iφ̄)∂ma ,

δaΨ
k
α = −4IΨ̄α̇k∂αα̇a , δaΨ̄

k
α̇ = 0 , δaD

kl = 0 (3.13)

and

δǫφ = 2ǫαkΨαk , δǫφ̄ = 0 , δǫAm = ǫαk(σm)αα̇Ψ̄
α̇
k ,

δǫΨ
k
α = −ǫαlD

kl +
1

2
(1 + 4Iφ̄)(σmnǫ

k)αFmn − 4iIǫkαAm∂mφ̄ ,

δǫΨ̄
k
α̇ = −iǫαk(1 + 4Iφ̄)∂αα̇φ̄ ,

δǫD
kl = i∂m[(ǫ

kσmΨ̄
l + ǫlσmΨ̄

k)(1 + 4Iφ̄)] (3.14)

where Fmn = ∂mAn − ∂nAm .

The nonpolynomial superfield action of the Q-deformed gauge theory has been given
in [14] as an integral over the full superspace in the chiral coordinates, by analogy with
the undeformed N=2 superfield action [21]. It was shown in [16] that the Ps-deformed
U(1) gauge action can be conveniently rewritten as the integral over the chiral superspace

S(I) =
1

4

∫
d4xLd

4θA2 (3.15)
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where A(xL, θ
+, θ−, u) is the deformed chiral superfield strength. The latter appears as

the lowest component in the θ̄+α̇ expansion of the covariantly chiral superfield strength
W:

W ≡ −1
4
(D̄+)2V −− = A+ θ̄+α̇ τ

−α̇ + (θ̄+)2τ−2 (3.16)

and the action (3.15) can be rewritten as

S(I) =
1

4

∫
d4xLd

4θW2 . (3.17)

It can be shown that the remaining two components in (3.16) do not contribute to (3.17).

The composite harmonic connection V −− is connected with the basic potential V ++

via the deformed harmonic zero curvature equation [14]

D++V −− −D−−V ++ + [V ++, V −−]⋆ = 0 (3.18)

where, in the chiral-analytic basis,

D−− = ∂−− + θ−α∂+α + θ̄−α̇∂+α̇ , ∂−− = u−i ∂

∂u+i
.

As a consequence of (3.18), the chiral superfield A satisfies the homogeneous harmonic
equation

[∂++ + (1 + 4Iφ̄)θ+α∂−α]A = 0 (3.19)

and some additional nonlinear inhomogeneous equation [16]:

[∂++ + (1 + 4Iφ̄)θ+α∂−α]ϕ
−− + 2(A− v)− I

(
∂α
−
v+α̇ ∂+αv

−α̇ − ∂α+v
+
α̇ ∂−αv

−α̇
)

+
I3

4
∂α
−
(∂+)

2v+α̇ ∂+α(∂−)
2v−α̇ = 0 (3.20)

where v−α̇ and ϕ−− are the proper chiral coefficients of the expansion of V −− in θ̄±α̇ .
They can be calculated in terms of the component fields.

The undeformed chiral U(1) superfield strength has the following component field
content

W0(xL, θ
+, θ−, u) = ϕ+ 2θ+ψ− − 2θ−ψ+ + (θ+)2d−−

−2(θ+θ−)d+− + (θ−)2d++ + (θ−σmnθ
+)fmn

+2i[(θ−)2θ+σm∂mψ̄
+ + (θ+)2θ−σm∂mψ̄

−]− (θ+)2(θ−)2�φ̄ (3.21)

where fmn = ∂man − aman, ψ±

α = ψi
α(xL)u

±

i , d+− = u+k u
−

l d
kl(xL) , etc. This super-

field obeys the free harmonic equation D++W0 = 0 and transforms under N = (1, 0)
supersymmetry as

δǫW0 = (ǫ−α∂−α + ǫ+α∂+α)W0 . (3.22)

It is rather straightforward to show that A can be constructed as a nonlinear trans-
formation of the undeformed U(1) superfield strength W0

A(xL, θ
+, θ−, u) = (1 + 4Iφ̄)2W0(xL, θ

+, (1 + 4Iφ̄)−1θ−, u) . (3.23)
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The nonlinear relations between the undeformed and deformed U(1) component fields
following from (3.23) are

ϕ = (1 + 4Iφ̄)−2[φ+ 4I(1 + 4Iφ̄)−1(A2
m + 4I2(∂mφ̄)

2)] ,

am = (1 + 4Iφ̄)−1Am, ψ̄k
α̇ = (1 + 4Iφ̄)−1Ψ̄k

α̇ ,

ψk
α = (1 + 4Iφ̄)−2[Ψk

α + 4I(1 + 4Iφ̄)−1Aαα̇Ψ̄
α̇k] ,

dkl = (1 + 4Iφ̄)−2[Dkl + 8IΨ̄k
α̇Ψ̄

α̇l] . (3.24)

The N=(1, 0) supersymmetry transformation of the deformed chiral superfield is given
by

δǫA = [(1 + 4Iφ̄)ǫ−α∂−α + ǫ+α∂+α]A . (3.25)

The deformed U(1) gauge superfield action can be expressed in terms of the abelian
undeformed objects up to a total spinor derivative in the integrand

S(I) =
1

4

∫
d4xLd

4θA2 =
1

4

∫
d4xLd

4θ (1 + 4Iφ̄)2W 2
0 . (3.26)

Using the redefinitions of the deformed fields (3.24), one can obtain the component La-
grangian of the deformed U(1) gauge theory as L(I) = (1 + 4Iφ̄)2L0 where L0 is the free
undeformed Lagrangian

L0 = −
1

2
ϕ�φ̄ +

1

4
(f 2

mn +
1

2
εmnrsfmnfrs)− iψ

α
k ∂αα̇ψ̄

α̇k +
1

4
(dkl)2 . (3.27)

It is obvious that the scalar, fermionic and auxiliary terms in the action can be given the
form of the free kinetic terms by properly rescaling the fields ϕ, ψk

α and dkl. However, the
nonlinear interaction of the fields φ̄ and fmn ,

1

4
(1 + 4Iφ̄)2(f 2

mn +
1

2
εmnrsfmnfrs) , (3.28)

cannot be removed by any field redefinition.

Now let us shortly discuss how the above generalizes to the nonabelian U(n) case
(n ≥ 2). We use the WZ-gauge for the U(n) potential (3.10), and the corresponding
deformed component gauge transformations are

δaφ̄ = −i[a, φ̄], δrΨ̄
k
α̇ = −i[a, Ψ̄k

α̇], δrD
kl = −i[a,Dkl] ,

δaAm = ∂ma+ i[Am, a] + 2I{φ̄, ∂ma} ,

δaφ = −i[a, φ]− 4I{Am, ∂ma} − 4iI2[�a, φ̄] ,

δaΨ
k
α = −i[a,Ψk

α]− 2I(σm)αα̇{Ψ̄
α̇k, ∂ma}. (3.29)

The Ps-deformed U(n) chiral gauge superfield A satisfies the following equation:

D++A+ Iθ+α{φ̄, ∂−αA}+ (θ+)2[φ̄,A] + I2[φ̄, (∂−)
2A] = 0 (3.30)
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where φ̄ is the Hermitian matrix scalar field. It is convenient to define the following matrix
operator:

L = 1 + 2I{φ̄, } , (3.31)

then the first two terms in eq.(3.30) can be rewritten as (∂++ + Lθ+α∂−α)A . The unde-
formed harmonic chiral U(n) superfield A has the following component expansion

A = ϕ+ 2θ+ψ− − 2θ−ψ+ + (θ+)2d−− + (θ+θ−)([ϕ, φ̄]− 2d+−) + (θ−)2d++

+ (θ+σmnθ
−)fmn + 2(θ−)2θ+

(
iξ+ − [φ̄, ψ+]

)
+ 2i(θ+)2θ−ξ−

− (θ+)2(θ−)2
(
p+ [φ̄, d+−]

)
(3.32)

where all the component fields are n× n matrices and the following short-hand notation
is used:

∇m = ∂m + i[am, ] , fmn = ∂man − ∂nam + i[am, an] ,

ξkα = (σm)αα̇∇mψ̄
α̇k, p = ∇2

mφ̄+ {ψ̄α̇k, ψ̄α̇k}+
1

2
[φ̄, [φ̄, ϕ]] . (3.33)

The deformed chiral U(n) superfield can be written as a sum of two N=(1, 0) covariant
objects

A(xL, θ
+, θ−, u) = [L2 + L(1 − L)(θ−∂−)−

1

4
(1− L)2(θ−)2(∂−)

2]A(xL, θ
+, θ−, u)

−4I2Â(xL, θ
+, u) (3.34)

where A is the undeformed U(n) superfield (3.32), and the φ̄-dependent matrix operator
L (3.31) commutes with θ±α and ∂−α and acts on all matrix quantities standing to the
right. The second part Â is a traceless chiral-analytic N=(1, 0) superfield

Â(xL, θ
+, u) = p̂− [φ̄, d+−] + 2θ+α(i[φ̄, ξ−α ]− [φ̄, [φ̄, ψ−

α ]])

+(θ+)2[φ̄, [φ̄, d−−]] , p̂ = p− 1
n
Tr p . (3.35)

Both parts of A are thus expressed in terms of the undeformed field components of the
superfield A (3.32).

The N=(1, 0) supersymmetry transformation of A has the following form:

δǫA = 2(ǫ−θ+)[φ̄,A] + Lǫ−α∂−αA+ ǫ+α∂+αA . (3.36)

It is worth noting that the undeformed anti-self-duality equation in the N=(1, 1)
supersymmetric U(n) gauge theory [23, 24] can be written in the pure chiral superfield
form as

A = 0 , (3.37)

which, as follows from (3.32), amounts to the following set of matrix component equations

fmn(σmn)
β
α = 0 , ϕ = ψk

α = dkl = 0 ,

(σm)αα̇(∂mψ̄
α̇k + i[am, ψ̄

α̇k]) = 0 , (∇m)
2φ̄+ {ψ̄α̇k , ψ̄α̇k} = 0 . (3.38)

10



These anti-self-dual U(n) solutions preserve only the N=(1, 0) supersymmetry, so it is
natural that the same undeformed solutions survive in the I-deformed U(n) gauge theory

A = 0 ⇔ A = 0 . (3.39)

The I-deformed U(n) gauge theory component action can be directly obtained from
the superfield chiral action

Sn =
1

4

∫
d4xLd

4θTrA2 =

∫
d4xLd

4θTr {
1

4
(LA)2 − 2I2ÂA} , (3.40)

using relations (3.32) and (3.35). In the limit I → 0 the first term yields the action
of the undeformed U(n) gauge theory. The non-standard second term contains higher
derivative terms, in particular I2(�φ̄)2, which can hopefully be removed by a redefinition
of the scalar field ϕ (so far we have checked this only for the bilinear free part of the total
action).

4 Interactions of hypermultiplets in deformed

harmonic superspace

The free q+ hypermultiplet actions of ordinary harmonic theory [7] are not deformed in
the non-anticommutative superspace:

S0(q
+) =

1

2

∫
du dζ−4 q+a ⋆ D

++q+a =
1

2

∫
du dζ−4q+a D

++q+a . (4.1)

Here dζ−4 = d4xA(D
−)4 and the additional ‘Pauli-Gürsey’ SU(2)P indices a, b = 1, 2 were

introduced: q+a = εabq+b = (q̃+, q+) . Let us consider the θ̄+α̇-expansion of the superfield
doublet q+a in the analytic basis

q+a = c+a + θ̄+α̇κ
α̇a + (θ̄+)2b−a,

D++q+a = ∂++c+a + θ̄+α̇ (∂
++κα̇a + 2iθ+α ∂

αα̇c+a)

+ (θ̄+)2(∂++b−a + iθ+α∂αα̇κ
α̇a) (4.2)

where

c+a = fa + θ+αρaα + (θ+)2ga, κα̇a = χaα̇ + θ+αrα̇aα + (θ+)2Σ̄aα̇,

b−a = ha + θ+αΣa
α + (θ+)2Xa (4.3)

and, for brevity, the U(1) charges of the component fields fa, ga, ha, . . . are suppressed.
The component fields are functions of xm

A
and harmonics. The chiral representation of

the free action (i.e., with the integration over θ̄+α̇ manifestly performed) reads

S0(q
+) = −

∫
du d4xA d

2θ+[1
2
b−a∂++c+a + 1

2
c+a∂++b−a + 1

4
κα̇a∂++κα̇a

+ i
2
θ+α(c+a∂αα̇κ

α̇
a − κ

α̇
a∂αα̇c

+a)] . (4.4)
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The non-anticommutativity shows up in the hypermultiplet self-interactions. If we
prefer to work in the manifestly SU(2)P covariant formalism, it is convenient to define
two independent combinations:

{q+a, q+b}⋆,
[
q+a, q+b

]
⋆
= 2q+aPsq

+b = εabC++ . (4.5)

The square of the first superfield contracted with some SU(2)P -breaking constant param-
eter C(ab) gives a non-anticommutative generalization of the self-interaction [q+aq+bC(ab)]

2

which yields the familiar Taub-NUT hyper-Kähler metric on the bosonic target space
[7]. Leaving this generalization for the future study, we shall consider a simpler example
of the deformed self-interaction constructed out of the second combination in (4.5) and
vanishing in the anticommutative limit I → 0

Sν(q
+) = −

ν

4

∫
du dζ−4 C++ ⋆ C++ = −

ν

4

∫
du dζ−4 C++C++ (4.6)

where ν is a coupling constant and the overall sign was chosen for further convenience.
Note that this superfield interaction is nilpotent, (C++)2 ∼ (θ̄+)2, and preserves both
SU(2)P and the R-symmetry SU(2) which acts on harmonics.

One can easily calculate the chiral components of the composite superfields

C++ = q+a Psq
+a = −4iIθ̄+α̇∂αα̇q

+
a ∂

α
+q

+a = −4iIθ̄+α̇∂αα̇c
+
a ∂

α
+c

+a

+2iI(θ̄+)2(∂αα̇κ
α̇
a∂

α
+c

+a − ∂αα̇c
+
a ∂

α
+κ

α̇a) ,

(C++)2 = −8I2(θ̄+)2B+
α̇B

+α̇, B+α̇(c+) = ∂αα̇c+a ∂+αc
+a . (4.7)

The deformed interaction (4.6) contains superfields c+a only

Ss
ν(q

+) = 2νI2
∫
du d4xA d

2θ+B+
α̇B

+α̇

= −2νI2
∫
du d4xA d

2θ+∂αα̇c
+
a ∂

α
+c

+a∂βα̇c+b ∂+βc
+b . (4.8)

The total superfield action S0(q
+) + Sν(q

+) yields the hypermultiplet equation of
motion

D++q+a = νq+aPs(q
+
b Psq

+b) ≡ J (+3)a(q+) (4.9)

where J (+3)a(q+) is the nonlinear nilpotent source. After performing the θ-integration,
the total action contains an infinite number of auxiliary fields coming from the harmonic
expansions of the components in (4.3). These auxiliary fields can be eliminated using the
appropriate non-dynamical equations collected in the θ+, θ̄+ expansion of (4.9).

The non-dynamical equations of motion for c+a and κα̇a have the following form:

∂++c+a = 0 , ∂++κaα̇ − 2iθ+α∂αα̇c
+a = 0 . (4.10)

12



In components, the solution to these equations is given by

c+a = u+k f
ak(x) + θ+αρaα(x) , κaα̇ = χa

α̇(x) + 2iu−k θ
+α∂αα̇f

ak(x) . (4.11)

The last equation, for the chiral component b−a , also follows from eq. (4.9)

∂++b−a + iθ+α∂αα̇κ
α̇a = −4νI2[∂αα̇c

+a∂βα̇∂α+c
+b∂+βc

+
b − ∂mc

+a∂mc
+
b (∂+)

2c+b

+∂α+c
+a
�c+b ∂+αc

+b + ∂α+c
+a∂βα̇c+b ∂αα̇∂+βc

+b] (4.12)

and is solved by

b−a = −4νI2u−k [∂αα̇f
ak(∂βα̇ραb)ρβb + ραa∂βα̇fk

b ∂αα̇ρ
b
β + ραaρbα�f

k
b ] (4.13)

(eq.(4.12) involves also the set of dynamical equations for the physical fields fak(x), ρaα(x)
and χa

α̇(x); these equations can be re-derived from the on-shell action written in terms of
the physical fields). Actually, b−a does not contribute to the total physical on-shell action
S0 + Sν : the only place where it appears is the first two terms in (4.4), and these terms
vanish after employing first of eqs.(4.10) and integrating by parts with respect to ∂++.

Eliminating the auxiliary component fields from the action S0 + Sν by the substi-
tution (4.11), one obtains the physical action of this model. It contains the standard
free kinetic terms for the physical bosonic and fermionic fields, as well as some fermionic
self-interaction with two derivatives:

S =

∫
d4x[1

2
∂mf

ak∂mfak +
i
2
ραa∂αα̇χ

α̇
a − νI

2(∂αα̇ργa)ρ
αa(∂βα̇ργb)ρβb] . (4.14)

The scalar field fak and the left-handed spinor field ρaα satisfy the free massless equa-
tions in this model

�fak = 0, ∂αα̇ρ
αa = 0 . (4.15)

At the same time, the equation for the right-handed spinor field χa
α̇ contains the nonlinear

spinor source depending on the left-handed spinor field

i∂αα̇χ
α̇
a = −4νI2[ρβb(∂αα̇ργa)(∂

βα̇ργb) + ρβa(∂γα̇ραb)(∂
βα̇ργb)

+ρβb(∂γα̇ρ
γ
a)(∂

βα̇ρbα) + ρβbρβa�ραb] = −νI
2Jαa[ρ(x)] . (4.16)

Note that the last two terms in Jαa are vanishing on the mass-shell of the free fields ρaα.
The exact classical solution for χα̇a is a sum of the free right-handed fermion χα̇a

0 and the
inhomogeneous solution with the above nilpotent spinor source:

χα̇a = χα̇a
0 + iνI2

∫
d4y∂αα̇x D0(x− y)Ja

α[ρ(y)] , (4.17)

∂αα̇χ
α̇a
0 = 0, �xD

0(x− y) = δ4(x− y).

Thus the considered model is exactly solvable at the classical level.

The component form of some other nilpotently deformed q+ self-interactions and the
deformed hypermultiplet interactions with the analytic gauge superfield V ++ will be
studied elsewhere.
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5 Conclusions

In this contribution, basically following refs. [14, 15, 16], we briefly reviewed recent results
on the nilpotent non-anticommutative deformations of Euclidean N=(1, 1) superspace,
with the main emphasis on the structure of the singlet Q-deformation of N = (1, 1) gauge
theories. This deformation breaks half of N = (1, 1) supersymmetry, but preserves O(4)
and SU(2) automorphism symmetries, as well as both chiralities and harmonic Grassmann
analyticity. We also considered a simple new example of the Q-deformed hypermultiplet
action, with the self-interaction vanishing in the anticommutative limit. This model is
exactly solvable at the classical level.
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