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Summary
Cointegration analyses of macroeconomic time series are often

not based on fully specified theoretical models. We use a theoreti-
cal model to scrutinize common procedures in applied cointegration
analysis. Monte Carlo experiments show that (i) some tests of the
cointegration vectors do not work well on series generated by an
equilibrium business cycle model; (ii) cointegration restrictions add
little in forecasting; (iii) structural VAR models based on weak long
run restrictions seem to work well. The main disadvantages of coin-
tegration analysis without strong links to economic theory are that
it makes it hard to estimate and interpret the cointegration vec-
tors.(JEL C32, E32.)

Keywords: cointegration, money demand, common trends, equi-
librium business cycle model.
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1 Introduction

Empirical research about macroeconomic relations has benefited from a rapid

development in statistical analysis of non-stationary time series. Statistical

tests for the order of integration and cointegration have proven very useful

in empirical model building and are now routinely performed. Cointegration

restrictions are essential in error-correction, VAR and common trends models.

It seems both intuitively reasonable and consistent with casual observations

that macroeconomic variables are tied together in the long run. For example,

money, income, and prices do not develop independently over time. Money and

real income may behave as random walks individually, but they are driven by

common trends, that is, they are cointegrated. Cointegrating relations between

log money, log income, and log prices are, however, not constant. Many authors,

among them Engle and Granger (1987), interpret stationary fluctuations in such

linear combinations as equilibrium errors, for instance, as excess supplies of

money.1

The claim that cointegration and equilibrium concepts are closely related

is rarely based on fully specified economic models. The interpretation of the

short-run movements in cointegrating relations as equilibrium errors implicitly

refers to theories about adjustment costs and non-clearing markets, but an ex-

plicit connection is almost never demonstrated. This makes it hard to interpret

empirical cointegrating relations, and it is sometimes unclear what the analysis

has to say about economic behavior.

There are some attempts to establish explicit links between cointegration

and economic theory. Campbell (1987) studies cointegration implications of the

permanent income hypothesis. King et al. (1991) derive cointegration restric-

1 Prices and exchange rates similarly seem to have common trends. Although real exchange
rates are not constant, they appear to be stationary and mean-reverting. The short run
fluctuations in real exchange rates could similarly be interpreted as equilibrium errors since
they correspond to deviations from purchasing power parity. These examples are often, as in
Burda and Wyplosz (1993), interpreted as evidence of long run monetary neutrality.
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tions between aggregate income, consumption, and investment from a stochastic

neoclassical growth model. Ogaki (1992) derives cointegration restrictions from

first order conditions of a consumer’s optimization problem in order to test

Engel’s Law. Söderlind (1994) arrives at cointegrating relationships between

output in different countries from a stochastic endogenous growth model.2

In this paper we use a macroeconomic equilibrium model to scrutinize some

common procedures in applied cointegration analysis. We have chosen to put

our discussion in the framework of the monetary business cycle model by Cooley

and Hansen (1995). In Section 2 we discuss the model’s cointegration implica-

tions and derive its common trends representation. We pay particular attention

to cointegration relations between money, income, prices, and interest rates.

This is motivated by the fact that studies of money demand often have been

used to illustrate new methods for analysis of cointegrated multivariate time se-

ries. In Section 3 we perform Monte Carlo studies based on a modified version

of the business cycle model. The simulations are used to shed light on three

common applications of VAR models with cointegration restrictions: testing of

economic hypotheses (related to money demand, in particular), forecasting, and

policy analysis (of monetary policy shocks, in particular). Our conclusions are

presented in Section 4.

2 Cointegration in Equilibrium Business Cycle

Models

2.1 A Monetary Business Cycle Model

The workhorse models in modern “new classical” business cycle studies are the

growth models due to Solow and Ramsey. In the Solow growth model with

an exogenous savings rate, the economy converges towards a steady state with

a constant capital-output ratio. If there is no technological progress, dimin-
2 Wickens (1993) and B̊ardsen and Fisher (1993) have a somewhat more traditional econo-

metric perspective. They discuss the relation between cointegration and structural/reduced
form models at a conceptual level, without reference to explicit economic models.
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ishing returns to capital will make the levels of capital stock and output (per

capita) constant in steady state. With an exogenously given rate of technologi-

cal change, output and capital grow at the rate of technical progress. Even with

endogenous savings, as in the Ramsey model, the capital stock grows at the rate

of technical change, just like consumption. The steady state ratio of capital and

consumption is determined by the preference and technology parameters.

With stochastic growth, exogenous or endogenous, similar models produce

stationary capital-output and consumption-output ratios, as in King et al.

(1991) or Mellander, Vredin, and Warne (1992). While the cointegrating vectors

contain no particular information about preferences or technology, the station-

ary fluctuations in the cointegrating relations depend on “deep” parameters.

In the following we will express this message more formally. We will base our

discussion on a modified version of Cooley and Hansen’s (1995) monetary equi-

librium business cycle model.

This model is a fairly standard quarterly real business cycle model, with some

additional features. A stochastic money supply interacts with a cash-in-advance

transaction technology, and nominal wage contracts, to create temporary real

effects of money supply shocks. The key equations, slightly modified, are listed

below. We use the convention that lower case letters denote values for a certain

household, whereas upper case letters denote aggregates.

Utility function: E0

∑∞
t=0 β

t [α ln c1t + (1− α) ln c2t − γht] .
Real budget constraint: c1t + c2t + kt+1 + mt+1

Pt
= Wtht + (rt − δ + 1) kt + mt

Pt
+ ∆Mt

Pt
.

Cash-in-advance constraint: Ptc1t = mt + ∆Mt, or in aggregate: PtC1t = Mt.

Production function: Yt = Kθ
t (ZtHt)

1−θ
.

Capital accumulation: Kt+1 = (1− δ)Kt + It.
Nominal wage contract: ln (PtWt) = ln (1− θ) + θ (lnKt − ln Et−1Ht) +

Et−1 ((1− θ) lnZt + lnPt) .
Money supply: ∆ lnMt+1 = η∆ lnMt + ξt+1.
Log productivity: lnZt+1 = ρ lnZt + εt+1.
Parameter values: θ = 0.4, δ = 0.019, β = 0.989, γ = 2.53, α = 0.84,

ρ = 1, εt+1 ∼ N
(
0, 1.36× 10−4

)
,

η = 0.49, ξt+1 ∼ N
(
7.65× 10−3, 7.92× 10−5

)
.

(1)

Most of the notation and parameter values are standard.3 Private consump-
3 The notation is: capital stock (Kt), money holdings (Mt), price level (Pt), wage rate
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tion consists of a “cash good,” c1t, and a “credit good,” c2t. The cash-in-advance

constraint requires the nominal value of purchases of the cash good, Ptc1t, to

be (less or) equal to the money stock brought over from t − 1, mt, plus lump

sum transfers from the government received in cash at the beginning of t, ∆Mt.

In this paper we use ρ = 1, that is, a random walk in productivity, whereas

Cooley and Hansen (1995) used ρ = 0.95. The lognormal distribution of ξt+1 is

here approximated with a normal distribution, which simplifies the derivation

of the nominal interest rate considerably. We will also report results from two

other parameterizations of the model: one with higher autocorrelation in money

growth (η = 0.8 instead of 0.49), and one with lower autocorrelation (η = 0.2).

The reason is that we want to allow for varying degree of persistence in the

simulations. In both cases the variance of the shocks to money growth (ξt+1)

is set to make the long run response to a shock of one standard deviation the

same as in (1).

The equilibrium concept is fairly involved, reflecting the complex nature of

stochastic dynamic rational expectations models. Loosely speaking, a household

picks consumption, labor supply, money holdings, and investment to maximize

expected utility, taking into account not only the stochastic processes and tran-

sition equations, but also expectations about what other agents do and the

resulting prices, wages, and rental rates. Firms maximize profits each period

by hiring labor and capital. The equilibrium outcome is a set of decision rules,

which relate aggregate variables to the current state of the economy.

Solving an approximation of the model results in a set of linear decision

rules. Ignoring unimportant constants, these rules are lnKt+1

lnHt

lnPt

 =

 ψKM ψKξ ψKK
ψHM ψHξ ψHK
ψPM ψPξ ψPK

 ∆ lnMt

ξt
lnKt − lnZt

+

 lnZt
0

lnMt − lnZt

 .
(2)

In the standard case with moderate autocorrelation in money growth (η = 0.49

(Wt), hours worked (Ht), output (Yt), investment (It), productivity (Zt). Symbols without
subscripts are constant coefficients.
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as in (1)) the numerical values are ψKM ψKξ ψKK
ψHM ψHξ ψHK
ψPM ψPξ ψPK

 =

 0.0194 0.1527 0.9572
−0.0562 3.4969 −0.4646
0.4696 −0.0933 −0.5856

 . (3)

Setting η to 0.2 or 0.8 gives other values.4 It is straightforward to calculate

other equilibrium variables by combining (1) and (2). For instance, log output

is obtained by substituting for lnKt and lnHt in the log production function.

The model has two assets, real capital and nominal money. The implicit

return on a synthetic nominal “bond”, Rt, can be determined from an Euler

equation for bond holdings. Using the property of joint conditional normality

and the equilibrium condition in the money market we have5

lnRt = Et∆ lnPt+1 + Et∆ lnC1t+1 − lnβ −Vart (∆ lnPt+1 + ∆ lnC1t+1) /2
= η∆ lnMt − lnβ + Eξt − σ2

ξ/2.
(4)

The first line in (4) is a Fisher type relation where the nominal interest rate

equals expected inflation (first term) plus the real interest rate, and the second

term uses the equilibrium on the money market.

2.2 A Common Trends Representation

Combining (1), (2), and (4) gives the moving average representation of lnYt,

lnPt, lnMt, and lnRt. This can be written as a “common trends model”


lnYt
lnPt
lnMt

lnRt

 =


0
1
1
0

 t ∗ Eξt
1− η

+


0 1
1 −1
1 0
0 0

[ µt
lnZt

]
+ C (L)

[
ξt
εt

]
. (5)

4 With η=0.2/0.8 we get

[
0.0086/0.0160 0.1226/0.1953 0.9572/0.9572
−0.0111/− 0.3967 2.8082/4.4712 −0.4646/− 0.4646

0.1938/0.7491 −0.0750/− 0.1193 −0.5856/− 0.5856

]
.

5 We would have to resort to numerical integration if ∆ lnMt+1was lognormally dis-
tributed, as in Cooley and Hansen (1995). The reason for this assumption was to ensure
that the cash-in-advance constraint is always binding, by forcing money growth to be posi-
tive. The normal approximation will eventually give a draw that violates that requirement.
This would happen only when lnRt < 0, which with the current parameters requires that
∆ lnMt is more than 5 standard deviations below its mean. The result in the text follows
from 1/Rt = Ptc1tEtβ/ (Pt+1c1t+1), and the fact that Et (Mt/Mt+1) = Et exp (−∆ lnMt+1)
= exp(−η∆ lnMt − Eξ + σ2

ξ/2).
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The first term in (5) is a deterministic trend due to the drift in money supply.

The second term in (5) contains the common trends, which are usually defined

as independent random walks[
µt

lnZt

]
=
[

µt−1

lnZt−1

]
+
[ 1

1−η 0
0 1

] [
ξt
εt

]
. (6)

The third term in (5) is the stationary part, where C (L) is a 4 × 2 matrix

polynomial

C (L) =


(1−θ)ψHM

1−ηL + (1− θ)ψHξ +
(
ψKM

1−ηL + ψKξ

)
(θ+(1−θ)ψHK)L

1−ψKKL − θ+(1−θ)ψHK

1−ψKKL

ψP M

1−ηL + ψPξ +
(
ψKM

1−ηL + ψKξ

)
ψP KL

1−ψKKL −
η/(1−η)

1−ηL − ψP K

1−ψKKL

−η/(1−η)
1−ηL 0
η

1−ηL 0

 .
(7)

The main features of the model can be glimpsed from the impulse response

functions in Figures 1a-b. The figures trace out the response to a shock of

one standard deviation in the model with η = 0.49. In Figure 1a, we see that

a typical shock to money supply growth leads to (i) a cumulative increase in

money supply, since money growth rates are autocorrelated; (ii) a response of

lnPt which is very similar to that of lnMt; (iii) an increase in the interest

rate, mainly driven by the Fisher effect (inflation expectations); (iv) a one-

quarter increase in output because the inflation surprise combined with one-

period nominal wage contracts. In Figure 1b, a typical productivity shock gives

(i) a persistent jump in output; (ii) a negative and cumulating effect on the

price level (the cash-in-advance constraint binds, but consumption increases

initially less than proportionally to productivity due to investments); (iii) no

effects on the money supply (exogenous) or nominal interest rate (due to the

logarithmic utility function). The effect of increasing the autocorrelation in

money growth from 0.49 to 0.8 is shown in Figures 1c-d : the initial response

to a standardized money supply shock is lower since these shocks are smaller

(lower standard deviation), but the effect builds up over a longer period to give

the same asymptotic value (by construction); the effect of a productivity shock

is almost unchanged.
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Empirical analyses of common trends models usually assume that the com-

mon stochastic trends are unobservable random walks. The relevant exogenous

trends in our equilibrium model are the productivity level (lnZt) and the money

stock (lnMt). While the productivity level defines a trend in the common trends

representation (5)-(7), log money stock must be split into a deterministic drift,

t∗Eξt, a stationary AR(1), -η/((1-η)(1-ηL))ξt, and finally a random walk, µt, to

fit into the common trends representation.6 The equilibrium model shows that

it does not always make sense to extract a “nominal trend” in this way from an

estimated common trends model.

The model in (5)-(7) has four variables, two stochastic trends, and therefore

two stationary relations.7 One such relation is simply the nominal interest rate,

lnRt, which has no trend since the growth rate of money is stationary.

The cash-in-advance constraint implies that lnC1t−lnPt−lnMt is constant.

Since the conditions of King, Plosser, and Rebelo (1988) are satisfied (constant

returns to scale and a unit elasticity of substitution between goods and leisure

is enough) the model has a balanced growth path. Along that path, income and

substitution effects cancel so hours worked are stationary, and consumption of

both goods are stationary shares of output. For instance, the budget restriction

can be combined with (5)-(7) to show that lnC1t−lnYt is stationary. Combining

this with the cash-in-advance constraint tells us that log velocity (lnVt)

lnVt = lnYt + lnPt − lnMt, (8)

is also stationary. A cointegrating vector for the four variables in (5) is therefore

[1, 1,−1, 0]. This vector cancels both the deterministic drift and the stochastic

trends.

The previous results illustrate a common property of models with balanced

growth paths: stochastic trends combined with balanced growth paths give triv-

ial cointegrating vectors. The interesting information about economic behavior
6 The deterministic trend is due to Eξt 6= 0. The decomposition is lnMt = t∗Eξt/ (1− η)

+ µt - η
1−η

ξt−Eξt
1−ηL , where µt = 1

1−η
ξt−Eξt

1−L
.

7 The duality between cointegration and common trends is studied in Stock and Watson
(1988).
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(technology and preferences) is revealed by the fluctuations in the cointegrating

relations as seen in (5)-(7); the fluctuations around the common trends depend

on the deep parameters either directly (η and θ), or indirectly via the deci-

sion rules (ψij). We have demonstrated this with a neoclassical model, but the

paradigm of balanced growth paths extends far beyond this particular class of

models.

This result stands in sharp contrast to most empirical cointegration studies,

which tend to be atheoretical with a Keynesian flavor.8 These studies usually

concentrate on interpreting the cointegrating vectors, often assumed to reflect

long run demand or supply functions, and view the fluctuations in the cointe-

grating relations as fairly uninteresting equilibrium errors. The (equilibrium)

model we use show that this is not the only possible interpretation. To further

emphasize this point, we will now use the theoretical model to look more closely

on one specific macroeconomic application of cointegration analysis.

2.3 Cointegration and Money Demand

Studies of models for money, income, prices, and interest rates are common in

the empirical cointegration literature. The purpose has sometimes been to test

hypotheses about money demand, as in Hafer and Jansen (1991) and Hoffman

and Rasche (1991); sometimes mainly to illustrate the properties of cointegra-

tion tests, as in Johansen and Juselius (1990), and Stock and Watson (1993).

The analyses have typically been based on a vector error correction model

p∑
i=0

Γi∆xt−i + Πxt−1 = εt, (9)

where x′t = [lnYt, lnPt, lnMt, lnRt]. The hypothesis of r cointegrating vectors

(n− r = 4− r common trends) implies that the matrix Π has rank r, and may

8 The label “Keynesian” is perhaps unfair to Keynes (1923) who claimed “In the long
run we are all dead. Economists set themselves too easy, to useless a task if in tempestuous
seasons they can only tell us that when the storm is long past the ocean is flat again.” This
was a critique of assuming that the quantity equation PC = M holds in the short run, but
he also wrote “Now ‘in the long run’ this is probably true.” One may perhaps conjecture
that Keynes would not have liked the model we use, but that he would have been willing to
estimate an error correction model with the long run restriction that the quantity equation
holds.
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be written as

Π = α̃β̃′, (10)

where the columns of the n× r matrix β̃ contain the cointegrating vectors. The

r cointegrating relations β̃′xt are often interpreted as equilibrium errors, and

the n × r matrix α̃ contains error correction parameters which show how fast

the variables change in response to a disequilibrium.

In the absence of a fully specified economic model, it is not easy to interpret

the estimates of r, β̃, and α̃. As we understand it, the finding of one, and

only one, cointegrating vector for x′t = [lnYt, lnPt, lnMt, lnRt] has been used

to support an interpretation of that vector as a long run money demand relation

and of the associated cointegrating relation as a measure of excess money. An

estimate of r > 1 is considered to make the search for a money demand function

harder, perhaps because any linear combination of the cointegrating vectors

could qualify as money demand relation.9

Money holdings in the equilibrium model (1) have to obey the cash-in-

advance constraint Mt = PtC1t. This can be rewritten as a traditional money

demand equation by first using the first order conditions from the optimization

problem to find the trade-off between cash and credit goods (the nominal inter-

est rate is the relevant relative price), and then use a log-linear approximation of

the resource constraint (adjusts output for investments, which are credit goods)

to get the equilibrium relation

lnMt − lnPt − lnYt = −α lnR1t + δκ lnYt + (1− δ)κ lnKt − κ lnKt+1, (11)

where α is the relative weight on cash goods in the utility function, δ is the

depreciation rate (see (1)), and κ is the ratio of capital stock to consumption in

steady state. This equation relates real money holdings to output, the nominal

interest rate and (essentially) investment. The left hand side of (11) is − lnVt,

and it is stationary since the weights on lnYt, lnKt, and lnKt+1 sum to zero so
9 To be fair, the money demand interpretation has also been based on the findings (i) if

β̃1= [β̃11, β̃12, 1, β̃14] denotes the first normalized cointegrating vector, then it is often the

case that β̃11 ≈ β̃12 ≈ −1, and 0 < β̃14 < 1; (ii) the error correction parameters α̃ have
economically interpretable signs and values.
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the common trend component (lnZt) vanishes, and the nominal interest rate is

stationary. In fact, any combination of lnVt and lnRt is stationary, since lnVt

and lnRt are stationary themselves.

The interpretation of (11) as a money demand equation is not without prob-

lems. First, the capital-consumption ratio κ depends on the average money

growth rate (Eξt/ (1− η); see (1)). To understand this, let us imagine two

economies with different rates of growth in the money supply. The higher this

growth rate is, the higher is the inflation rate, that is, the higher is the tax on

money holdings. The agents in the economy with the higher inflation tax will

to a larger extent substitute consumption of the credit good and/or leisure for

consumption of the cash good.10 Second, suppose we dropped the lnKt and

lnKt+1 terms, but allowed for lags of the interest rate and output, as is often

done in applied money demand studies. The coefficients on these lags would

then depend on, among other things, the money supply parameter η (since the

decision rules in (2) and (3) do).

This discussion leads us to the following conclusions. First, while a sta-

tionary relation between lnYt, lnPt, lnMt, and lnRt can be derived from the

equilibrium model, it is misleading to interpret this relation as reflecting a tradi-

tional money demand equation. It is an equilibrium relation which depends on

the household’s maximization problem as well as the money supply process. Sec-

ond, the fluctuations in the cointegration relation (here, velocity) trace out an

equilibrium relation, and should not be interpreted as equilibrium errors. Third,

the (short and long run) equilibrium relation between lnVt and lnRt cannot be

found by cointegration analysis, since lnVt and lnRt are both stationary.11

This discussion about money demand complements the general discussion
10 See Cooley and Hansen (1989) for a thorough analysis of this meachanism in an economy

with only cash goods.
11 It is conceivable that a model where lnVt and lnRt are both I (1) and cointegrated can

be constructed, for instance, by assuming that the money supply process is characterized by
η = 1 instead of η = 0.49 as in (1). For the same reasons as those given above, it could still be
misleading to interpret the cointegration relation as a money demand relation. Furthermore,
to our knowledge, it has not been shown beyond doubt that velocity is nonstationary (see
e.g. Hafer and Jansen (1991)), or argued that this would be a necessary condition for a
cointegration relation between lnYt, lnPt, lnMt, and lnRt to qualify as a money demand
relation.
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above about cointegration in the equilibrium model. It provides a specific ex-

ample of why one should be careful when interpreting cointegration relations.

3 Testing and Interpreting Cointegrated VAR

Systems

The discussion above illustrates how hard it can be to formulate meaningful

hypotheses for the cointegration analysis without strong links to economic the-

ory. In this section we present some Monte Carlo experiments based on the

theoretical model in Section 2. The purpose of the simulations is to comple-

ment the general arguments above with some quantifications of the usefulness of

macroeconomic theory for common applications of cointegration analysis. Three

types of applications, hypothesis testing, forecasting, and policy analysis, are

discussed in Sections 3.2-3.4. In Section 3.1 we augment the theoretical model

with measurement errors, which provides a simple way to generate multivariate

time series with a non-singular covariance structure.

The small sample properties of cointegration tests and the usefulness of coin-

tegration restrictions for forecasting are important issues in applied cointegra-

tion analysis, and have indeed been addressed in earlier research. One difference

between our exercises in Sections 3.2 and 3.3 and those of, for instance Gon-

zalo (1994), Cheung and Lai (1993), and Clements and Hendry (1995), is that

our simulations are based on a fully specified economic model - “strong” theory

in the sense of Cooley and Dwyer (1995) - which (some) economists claim is

useful for understanding macroeconomic fluctuations. This means that we are

studying the properties of cointegration tests when applied on a data gener-

ating process derived from economic theory, which typically will involve MA

components. Another issue is whether VAR models, with or without cointe-

gration restrictions - “weak” theory in the sense of Cooley and Dwyer, can be

used to estimate the economy’s response to various disturbances. Section 3.4 is

devoted to a comparison of impulse response functions derived from “strong”
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and “weak” theory.

3.1 Simulation and Estimation Setup

The model is hard to take to data since there are only two basic stochastic

processes, but four observed series. We therefore add two independent AR(1)

measurement errors to output and money supply, with autocorrelations of 0.3

and 0.2 respectively. The standard deviations of the shocks are set to give a 5%

increase in the (unconditional) standard deviations of output growth and money

growth. This model is simulated to generate 3000 samples of 200 quarters.12

The model has non-trivial moving average components, which is a common

feature of time series representations derived from optimizing models. We follow

the tradition in applied cointegration analysis by assuming that a low-order

VAR system can provide a reasonable approximation. Some, but far from all,

of our results will be driven by this misspecification. The catch is that this

misspecification would not be picked up by standard misspecification tests (see

below), so these kinds of errors could very well be made in practical work.

To get a better understanding of the importance of the MA terms, we also

report estimates based on simulations of a VAR representation of the data. This

representation is generated in a very simple way: an error correction model (with

the true cointegrating vectors imposed) is estimated with 3 lags on a sample of

40000 observations from the true model; then the estimated VAR model is

simulated in the same way as the true model to generate 3000 samples.

The tests we study can be sensitive to the choice of lag order. We therefore

present most results for three different ways of picking the lag order of the empir-

ical error correction model: the Hannan-Quinn criterion (HQ), Akaike’s criterion

(AIC), and AIC with two extra lags. The fitted models do not fail multivariate

portmanteau diagnostic tests for serial correlation and non-normality consid-

erably more often than expected when using the 5% critical values from the
12 The simulations are made in the GAUSS programming language, using the random num-

ber generator RDND initialized with RNDSEED 123456789 at the first (of 3000) simulation.
Each sample of 450 periods is initialized with zeros for lagged shocks and variables, and the
first 250 periods are then discarded.
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asymptotic distributions.13 There is no relation between the results from the

diagnostic tests and the results of the tests applied below. It seems safe to claim

that the subsequent results are not due to simple misspecification errors which

would be discovered by commonly applied diagnostic tests.

The key parameter for the degree of persistence in the equilibrium model

is the autocorrelation of money supply growth, η. This is somewhat troubling

since it is not entirely clear which monetary aggregate (M1, M2, or ...) that

lnMt in the model corresponds to. We will therefore report results from three

different model versions with values of η of 0.2, 0.49, and 0.8.

Most applied cointegration studies on macro data use quarterly data for two

to four decades. We will therefore report results from both a relatively short

sample (100 quarters) and a relatively long sample (200 quarters).

3.2 Cointegration Tests

One of the first steps in applied cointegration analysis is to determine the cointe-

gration rank (r), that is, the number of independent cointegrating vectors. This

is a crucial step because the subsequent analysis is conditioned on r. The prop-

erties of Johansen’s (1991) trace test (it can be shown that the maximum eigen-

value test gives very similar results) for the cointegration rank are illustrated in

Table I, which shows the relative frequency that a particular cointegration rank

(r) is chosen. The table gives results for sample lengths (T ) of 100 and 200, and

for the models with an autocorrelation of money supply (η) of 0.2, 0.49, and

0.8. In each case, the lag order is taken from AIC. Values for the simulations

of the approximate VAR representations are given in parentheses. The trace

test in Table I behaves a lot better in the longer sample: the true value r = 2

(lnVt and lnRt are stationary) is picked in around 60% of the simulations when

T = 100 but in 80% of the cases when T = 200. The improvement is entirely
13 For instance, the results for η=0.49 are as follows. The preferred lag order for T = 100 is

usually 1 for HQ, and 1-3 for AIC. For T = 200 it is usually 1-2 for HQ, and 2-4 for AIC. The
rejection rates for the hypothesis of no autocorrelation (up to the 10th order) at for T = 100
(200) are 3% (8%), using AIC. The corresponding figures for the hypothesis of normality are
7% (8%). See, for instance, Lütkepohl (1993) for a description of these diagnostic tests.

13



due to a reduction in the frequency of underestimated r. Also, at T = 200, the

three models generate very similar results. The difference between the estimates

based on simulations of the true model and those based on simulations of the

VAR approximation is negligible.

T = 100 T = 200
η η

r 0.2 0.49 0.8 0.2 0.49 0.8
0 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
1 21(28) 19(22) 11(13) 1(2) 0(0) 0(0)

2 (true) 61(53) 61(56) 59(59) 80(81) 78(80) 75(77)
3 10(9) 11(11) 14(14) 11(10) 12(11) 14(12)
4 8(10) 10(11) 16(15) 8(8) 9(8) 12(11)

Figures in parentheses are from simulations of approximate VAR

representation. Lag order from Akaike (AIC). Critical values from

Johansen and Juselius (1990), Table A1. H0: r ≤ r0, r0 = 0, 1, 2, 3.

Drifts, which cancel in the cointegrating relations, are allowed.

Table I: Frequencies (in %) of preferred cointegration rank in Johansen’s Trace

test, for various η.

Table II focuses on the model with η = 0.49, but looks at the effects of

different ways of choosing the lag order (HQ,AIC, AIC+2), as well at a small

sample correction of the test statistics (AICss, indicating that the lag order

is from AIC). This correction scales down the test statistic by (T−number of

estimated parameters)/T , as discussed by Reinsel-Ahn (1988) and Cheung and

Lai (1993). The idea behind this correction has been to adjust for the tendency

to overestimate the cointegration rank. Table II shows that a shorter lag length

(HQ) gives less underestimation of r, especially in the short sample. Cheung

and Lai (1993) also find that a short lag order often lead to a higher estimate

of r, but this is not good in their model since it has a true null of r = 0. It

is interesting to note that the small sample correction makes things even worse

when T = 100, since it increases the degree of underestimation of r more than

it decreases the degree of overestimation.

The next step in applied cointegration analysis is often to test economic re-

strictions on the cointegrating vectors. We use the likelihood ratio test to study
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T = 100 T = 200

r HQ AIC AIC+2 AICSS HQ AIC AIC+2 AICSS
0 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
1 14(21) 19(22) 31(35) 37(41) 0(0) 0(0) 1(4) 1(2)

2 (true) 69(62) 61(56) 47(43) 52(47) 83(82) 78(80) 77(77) 84(84)
3 9(9) 11(11) 10(9) 6(5) 11(10) 12(11) 12(10) 9(8)
4 8(8) 10(11) 12(12) 5(5) 6(7) 9(8) 10(9) 6(6)

HQ: lag order from Hannan-Quinn; AIC: lag order from Akaike; AIC+2: lag order from

Akaike plus 2; AICSS : lag order from Akaike with small sample correction of test statistics.

See Table I for further information.

Table II: Frequencies (in %) of preferred cointegration rank in Johansen’s Trace

test, η = 0.49.

the (true) hypotheses that [1, 1,−1, 0] and/or [0, 0, 0, 1] are in the cointegration

space, that is, that lnVt and/or lnRt are stationary (H5 hypotheses in the lan-

guage of Johansen-Juselius (1992)), and that the real money stock ln (Mt/Pt)

enters the cointegrating relations, that is, the coefficients of prices and money

are equal with opposite sign (a H4 hypothesis). These tests are conditional on

a maintained cointegration rank.

T = 100 T = 200
η η

Test of: 0.2 0.49 0.8 0.2 0.49 0.8
lnRt ∼ I (0) 2(8) 2(8) 2(10) 0(7) 0(7) 0(6)
lnVt ∼ I (0) 41(27) 35(26) 19(23) 16(11) 11(10) 2(8)
lnRt& lnVt ∼ I (0) 28(23) 22(24) 11(22) 7(10) 4(10) 1(9)
Only lnM/P matters 20(19) 17(19) 11(19) 6(10) 4(10) 1(8)
See Table I for descriptions.

Table III: Rejection probabilities (in %) at the 5% level for Johansen’s LR test

of cointegration space, condition al on r = 2.

The simulation results, conditional on r = 2, for various η (lag order by AIC)

are shown in Table III. The estimates based on simulations of the approximate

VAR representation give similar results across the models, and the rejection
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rates decrease towards 5% as the sample gets longer.14 In contrast, the estimates

based on the simulations of the true model simulations behave rather strange.

The rejection rates of stationarity of lnRt are much lower than the asymptotic

5%, in spite of the fact that lnRt is actually an AR(1); the MA components

in other series apparently spill over. The rejection rates of stationarity of lnVt,

which is well approximated by an ARMA(1,1), differ widely across models. The

rejection rate decreases with the degree of persistence in money supply (η).

The joint test of stationarity of lnRt and lnVt seems to be an average of the

individual tests. Finally, the test of proportionality, which is of another nature

and has another distribution, behaves reasonably well, irrespective of whether

the data is generated by the true model or the VAR representation.

T = 100 T = 200

Test of: HQ AIC AIC+2 AICSS HQ AIC AIC+2 AICSS
lnRt ∼ I (0) 1(2) 2(8) 3(14) 1(5) 0(2) 0(7) 0(9) 0(5)
lnVt ∼ I (0) 45(27) 35(26) 25(27) 29(20) 27(13) 11(10) 6(12) 9(9)
lnRt& lnVt ∼ I (0) 30(18) 22(24) 17(32) 16(17) 13(7) 4(10) 2(14) 3(8)
Only lnM/P matters 20(14) 17(19) 15(26) 17(19) 10(7) 4(10) 3(14) 4(10)
See Table II for descriptions.

Table IV: Rejection probabilities (in %) at the 5% level for Johansen’s LR test

of cointegration space, condition al on r = 2.

Table IV shows how the tests of the cointegration space are affected by the

choice of lag order and by a small sample correction. For the simulations based

on the approximate VAR representation the best results are obtained with a

short lag order (HQ). The results are adversely affected by adding more lags, at

least in the short sample. This is somewhat counter to the results by Gonzalo

(1994), who shows that too few lags affects the small sample distribution of

the cointegrating vectors much more than too many lags. The estimates based

on data generated by the exact model give results more in line with Gonzalo

(1994): a short lag order (HQ) leads to high rejection rates. The small sample
14 Results from a VAR model showing (slow) monotone convergence to the asymptotic 5%

have been presented by Jacobsson, Vredin, and Warne (1993).
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correction works fairly well for both the shorter and longer samples.

T = 100 T = 200
η η

0.2 0.49 0.8 0.2 0.49 0.8
lnP 1.21(1.08) 1.19(1.07) 1.11(1.04) 1.08(1.02) 1.06(1.02) 1.03(1.01)
lnM -1.20(-1.07) -1.18(-1.06) -1.13(-1.05) -1.07(-1.02) -1.06(-1.01) -1.03(-1.01)

Table V: Median of normalized cointegration vector, for various η.

These rejections of the cointegration vectors seem to be partly due to a

small sample bias in one of the cointegrating vectors. To illustrate this, we

transform the estimated cointegration vectors by dividing the first vector with its

fourth element. This produces estimates which are very close to the theoretical

[0, 0, 0, 1]. We then transform the second cointegrating vector by subtracting

the fourth element times the first vector times (gives zero as the new fourth

element), and then normalizing by dividing by the first element.

Table V shows the medians of the two unrestricted elements in this vec-

tor, which should be compared with the theoretical values of 1 and -1 from

the vector [1, 1,−1, 0]. There is an upward bias of the coefficients on lnPt and

lnMt, and the bias is almost the same for both variables. This accounts for the

high rejection rates of stationarity of lnVt and the reasonable rejection rates

of proportionality of prices and money in Table IV. In terms of the common

trends representation (5), the bias means that the productivity trend lnZt af-

fects lnPt less than lnYt. We conjecture that the prolonged response of prices

to a productivity shock (see Figures 1b and 1d) is not well captured in small

samples.

Our overall impression of the results for Johansen’s test of the cointegration

rank and test of the cointegration space is that they are not without problems

when trying to nail down the long-run properties of the data generating process,

especially in short samples and when there are important MA components.
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3.3 Forecasting Performance

As a second exercise, we examine if cointegration restrictions are important for

forecasting. We compare the results from a restricted error correction model

(the true cointegrating vectors are imposed) with an unrestricted VAR and a

“naive” forecast where output, prices, and money are treated as random walks,

and the interest rate and the velocity as constants.

We consider out-of-sample forecasts from models estimated on the first 100/192

quarters for each of the 3000 simulated samples when η = 0.8 and the lag order

is from AIC. Table VI shows the percentage gain in the mean squared error

(MSE) from using the restricted model rather than a naive forecast.15 For the

non-stationary variables, the results are given for both the level (first entry in

each cell) and the growth rates (second entry). In some cases, the naive forecast

outperforms the estimated model; it can be seen from Table VII that these are

the cases when the true model implies very little forecastability. The estimated

model does relatively better in the longer sample, and relatively worse for the

growth rates.

Fore- T = 100 T = 192
cast
hori-
zon lnY lnP lnM lnR lnV lnY lnP lnM lnR lnV
1 19/19 7/7 51/51 56 26 21/21 16/16 57/57 62 30
4 -10/-6 7/-4 32/4 6 15 2/-3 16/1 39/7 11 25
8 -20/-2 0/-6 12/-9 -2 5 -5/0 9/-2 21/-3 -1 20
The second entry in the cells are for growth rates.

Table VI: Percentage gain in MSE of restricted ECM relative to “naive” forecast,

at η = 0.8.

Table VIII shows that the restricted ECM does somewhat better than the

unrestricted VAR, but that the difference is small for the growth rates and for

the short-run forecasts. It can be shown that the results are almost identical
15 A weakness of the MSE is that it does not incorprorate the covariances of the forecasting

errors, see Clements and Hendry (1993). Here, the correlation matrices of the forecast errors
are very similar for the restricted and unrestricted models.

18



Forecasting
horizon ∆ lnYt ∆ lnPt ∆ lnMt lnR lnV
1 quarter 0.30 0.22 0.62 0.64 0.67
4 quarters 0 0.07 0.15 0.17 0.51
8 quarters 0 0.02 0.03 0.03 0.36

Table VII: Theoretical forecast R2 for the model, at η = 0.8.

when the approximate VAR representation is used to generate the data instead

of the true model. The model versions with less autocorrelation in money growth

(η = 0.2 and 0.49), and therefore less predictability, show qualitatively similar

results.

Fore- T = 100 T = 192
cast
hori-
zon lnY lnP lnM lnR lnV lnY lnP lnM lnR lnV
1 7/7 9/9 14/14 7 7 3/3 4/4 7/7 3 2
4 17/4 22/15 26/24 13 12 10/2 14/9 15/13 8 5
8 23/2 30/17 32/23 9 12 19/2 23/15 23/19 11 8

Table VIII: Percentage gain in MSE of restricted ECM relative to unrestricted

VAR, at η = 0.8.

Like Engle and Yoo (1987) we find some evidence the unrestricted model

works relatively well at short forecasting horizons. The results for the longer

sample and for the growth rates are in line with those of Clements and Hendry

(1995).

3.4 Structural VAR Systems

To estimate the dynamic effects on output from shocks to money supply and

technology, some researchers have advocated the use of so called structural VAR

models (for instance, Blanchard and Quah (1989) and King et. al. (1991)).

While the original VAR approach launched by Sims (1980) is usually labelled

”atheoretical,” structural VAR models are based on some prior information
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about the cointegration space, so that an estimated error correction model can

be rewritten as a common trends model. Tests for cointegration, like those anal-

ysed in Section 3.2, are thus essential ingredients in structural VAR analyses.

Identification of structural VAR models is achieved by imposing just enough

restrictions so that the shocks and their long run effects may be given economic

interpretations. In the terminology of Cooley and Dwyer (1995), structural VAR

analysis relies on “weak theory,” since it uses only a subset of the theoretical

restrictions implied by “strong” (equilibrium) business cycle theory.

Structural VAR analyses are based on the assumption that the common

stochastic trends which drive macroeconomic time series are unobservable ran-

dom walks, for instance to technology and money supply. As pointed out in

Section 2.2, this assumption is only partly consistent with the equilibrium busi-

ness cycle model used in this paper. As a final exercise, we will examine whether

“weak theory” nevertheless can be effective in tracing the responses to the un-

derlying shocks.16

We impose two common stochastic trends (r = 2, which is true) on each of

the 3000 estimates from the Johansen method. One restriction on the long run

effects of the two stochastic trends in enough to identify the common trends

model here (see the discussion in Mellander, Vredin, and Warne (1992) and in

Quah (1994)). We use the (true) restriction that one of the permanent shocks

(money supply shock) has zero long run effects on output.

Figure 2a illustrates the estimated impulse response function for lnYt based

on samples of 200 quarters from the model with η = 0.49. The thick solid line is

the true response to a shock of one standard deviation to money supply (ξt) and

the thick dashed line is the true response to a shock of one standard deviation

to technology (εt). The thin lines are the 5th and 95th percentiles of the 3000

estimates. The estimates are fairly well located: both the short-lived effect of a

money supply surprise and the immediate adjustment to a new productivity level
16 Nason and Cogley (1994) study the mean impulse response functions from simulations

of several monetary RBC models. Their objective is to compare with the results for quarterly
U.S. data, while our objective is to see if the estimation/identification procedure generates
impulse response functions which are similar to the true model. Koop, Pesaran, and Potter
(1995) discuss how impulse response functions may be defined for non-linear models.
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are captured. However, there is a slight bias in the size technology effect, and

the confidence interval is wide. The restriction of the long-run effect of a money

supply shock seems to bite quickly. We conjecture that the underestimated

technology effect is related to the bias in the cointegrating vectors. It can

be shown that these confidence bands, apart from the first quarters and from

the bias discussed above and, look very similar to the asymptotic confidence

intervals often reported in applied work. The asymptotic confidence intervals

are narrower for the first 4-6 quarters. Figure 2b shows the corresponding results

for lnPt, which also look quite good. It can also be shown that we get the same

type of results in a shorter sample, or with the model versions with η = 0.2 and

η = 0.8, and also with the simulations of the approximate VAR representation.

Faust and Leeper (1995) argue that long-run restrictions are highly unreli-

able in any finite sample, unless we can (correctly) restrict the way short-run

dynamics are linked to long-run effects, for instance, if the data generating pro-

cess happens to be a low-order VAR system. In the model we use, we really

cannot do that since it has an infinite VAR order due to the MA terms. The

evidence in Figures 2.a-b suggest that this critique, while correct in principle,

does not seem to be devastating in the type of data generating process implied

monetary equilibrium business cycle models.

4 Conclusions

Macro economic series do not drift apart for too long; they seem to be driven

by the same trends. The development of time series analysis tells us that there

is potentially a lot to gain, in a statistical sense, from taking into account these

common stochastic trends. Not surprisingly, the last few years have witnessed

a flood of cointegration studies of various parts of the economy.

In applications of cointegration analysis, estimated cointegration relations

are often interpreted as reflecting equilibrium relations, and the fluctuations in

the cointegration relations are viewed as indications of disequilibria. Empirical

analyses often focus on the long run (cointegration) relations, while the short
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run fluctuations are regarded as fairly uninteresting. One reason for this way of

looking at the data might be that the empirical analyses lack clear connections

to well specified economic theory.

In many cases, applied cointegration analysis could rely on stochastic growth

models. We have chosen to base our discussion on one particular model, namely

Cooley and Hansen’s (1995) monetary equilibrium business cycle model. This

model has one real stochastic trend (productivity), and one monetary stochastic

trend (money supply). This model shares one important feature with most

growth models: it generates balanced growth paths where the consumption

ratio and labor supply are stationary.

While cointegration analysis needs to be based on stochastic growth models,

these models often imply trivial cointegrating vectors. One immediate conclu-

sion is that applied cointegration analysis should take one of the following two

routes. First, it could test the predictions of models where the balanced growth

path is imposed. Second and alternatively, it could possibly be used to refute

the whole class of models with balanced growth paths by persuasively demon-

strating that the cointegration restrictions do not hold. This is indeed a hard

task, and we face a dilemma if it succeeds: we then need to develop a new class

of stochastic growth models before we can give economic interpretations of the

statistical results.

The equilibrium business cycle model we use shows that cointegration rela-

tions may contain no direct information about economic behavior, but that such

information may be deduced from short run fluctuations (which practitioners

often disregard). Our analysis of the cointegration properties of this model leads

us to question the interpretation of a long run relation between money, income,

the price level, and the interest rate as a money demand function.

We use simulations of the model to examine if simple economic restrictions

can significantly improve the performance of statistical methods, as long as one

uses the kind of samples sizes that are available to macro economists. We show

three things. First, tests of the cointegrating space have a lot to gain from

imposing the number of common trends. For practical work, the implication is
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that cointegration hypotheses and tests should be based on fully specified eco-

nomic models, even when only some of the cointegration relations are of inter-

est. Second, the precision of forecasts is not particularly improved by imposing

the correct cointegrating vectors, especially not for short forecasting horizons.

Third, structural interpretations of cointegrated VAR systems based on long

run restrictions can replicate the impulse responses of the underlying economic

model. In this type of exercises, it is essential that economic theory is used

to determine the number of cointegrating relations (and stochastic trends), but

good results can be obtained even if the exact properties of these relations are

not known.

Our results suggest that the main disadvantages of cointegration analysis

without strong links to economic theory are that it makes interpretation of the

cointegrating vectors a treacherous exercise, and that it is hard to estimate the

correct number of cointegrating vectors (and therefore the number of common

trends). When it comes to forecasting, there is not much to gain from knowing

the cointegrating vectors rather than estimating them, provided the main focus

is on short run forecasts.

The purpose of this paper has not been to suggest that equilibrium models

are more useful than disequilibrium models, or that most applied cointegration

analyses have been misleading. For one thing, equilibrium business cycle models

do not capture all important stylized facts about the fluctuations around the

trends (see for instance Söderlind (1994)). It may well be that characteristic fea-

tures of these fluctuations have been detected in applied cointegration analyses.

Our main point is that these analyses need to be interpreted with stronger links

with economic theory. We believe that this message is not controversial, but

neither do we think that it is trivial. It is the abundance of rather atheoretical

applied cointegration analyses that has been the motivation for this study.

References
[1] Burda, M., and C. Wyplosz (1993), Macroeconomics - a European Text,

Oxford University Press.

23



[2] B̊ardsen, G., and P.G. Fisher (1993), “The importance of being structured,”
Discussion Paper 2/93, Norwegian School of Economics and Business Ad-
ministration.

[3] Blanchard, O.J., and D. Quah (1989), “The Dynamic Effects of Aggregate
Demand and Supply Disturbances,” American Economic Review, 79, 655–
673.

[4] Campbell, J.Y. (1987), “Does Saving Anticipate Declining Labor Income?
An Alternative Test of the Permanent Income Hypothesis,” Econometrica,
55, 1249-1273.

[5] Cheung, Y-W., and K.S. Lai (1993), “Finite-Sample Sizes of Johansen’s
Likelihood Ratio Tests for Cointegration,” Oxford Bullentin of Economics
and Statistics, 55, 313-328.

[6] Clements, M.P., and D.F. Hendry (1993), “On the Limitations of Compar-
ing Mean Square Forecast Errors,” Journal of Forecasting, 12, 617-37.

[7] Clements, M.P., and D.F. Hendry (1995), “Forecasting in Cointegrated
Systems,” Journal of Applied Econometrics, 10, 127-146.

[8] Cooley, T.F., and M. Dwyer (1995), “Business Cycle Analysis without much
Theory: A Look at Structural VARs,” mimeo, University of Rochester.

[9] Cooley, T.F., and G.D. Hansen (1989), “The Inflation Tax in a Real Busi-
ness Cycle Model,” The American Economic Review, 79, 733-748.

[10] Cooley, T.F., and G.D. Hansen (1995), “Money and the Business Cycle,”
in T.F. Cooley (ed.), Frontiers of Business Cycle Research, Princeton Uni-
versity Press.

[11] Engle, R.F., and C.W.J. Granger (1987), “Co-integration and Error Cor-
rection: Representation, Estimation, and Testing,” Econometrica, 55, 251-
276.

[12] Engle, R.F., and B.S. Yoo (1987), “Forecasting and Testing in Co-
Integrated Systems,” Journal of Econometrics, 35, 143-159.

[13] Faust, J., and E.M. Leeper (1995), “When Do Long-Run Identifying Re-
strictions Give Reliable Results,” mimeo, Federal Reserve Board.

[14] Gonzalo, J. (1994), “Five Alternative Methods of Estimating Long-run
Equilibrium Relationships,” Journal of Econometrics, 60, 203-233.

[15] Hafer, R.W., and D.W. Jansen (1991), “The Demand for Money in the
United States: Evidence from Cointegration Tests,” Journal of Money,
Credit, and Banking, 23, 155-168.

[16] Hoffman, D.L., and R.H. Rasche (1991), “Long-run Income and Interest
Elasticities of Money Demand in the United States,” The Review of Eco-
nomics and Statistics, 73, 665-674.

[17] Jacobson, T., A. Vredin, and A. Warne (1993), “Are Real Wages and Un-
employment Related,” IIES Seminar Paper No. 559.

24



[18] Johansen, S. (1991), “Estimation and Hypothesis Testing of Cointegra-
tion Vectors in Gaussian Vector Autoregressive Models,”Econometrica, 59,
1551-1580.

[19] Johansen, S., and K. Juselius (1990), “Maximum Likelihood Estimation
and Inference of Cointegration - with Applications to the Demand for
Money,” Oxford Bullentin of Economics and Statistics, 52, 169-210.

[20] Johansen, S., and K. Juselius (1992), “Testing Structural Hypotheses in
a Multivariate Cointegration Analysis of the PPP and the UIP for UK,”
Journal of Econometrics, 53, 211-244.

[21] Keynes, J.M. (1923), A Tract on Monetary Reform, MacMillan.

[22] King, R.G., C.I. Plosser, and S.T. Rebelo (1988), “Production, Growth and
Business Cycles: I. The Basic Neoclassical Model,” Journal of Monetary
Economics, 21, 195-232.

[23] King, R.G., C.I. Plosser, J.H. Stock, and M.W. Watson (1991), “Stochastic
Trends and Economic Fluctuations,” American Economic Review, 81, 819-
840.

[24] Koop, G., M.H. Pesaran, and S.M. Potter (1995), “Impulse Response Anal-
ysis in Non-linear Multivariate Models,” Journal of Econometrics, forth-
coming.

[25] Lütkepohl, H. (1993), Introduction to Multiple Time Series Analysis,
Springer-Verlag.

[26] Mellander, E., A. Vredin, and A. Warne (1992), “Stochastic Trends and
Economic Fluctuations in a Small Open Economy,” Journal of Applied
Econometrics, 7, 369-394.

[27] Nason, J.M., and T. Cogley (1994), “Testing the Implications of Long-
Run Neutrality for Monetary Business Cycle Models,” Journal of Applied
Econometrics, 9, S37-S70.

[28] Ogaki, M. (1992), “Engel’s Law and Cointegration,” Journal of Political
Economy, 100, 1027-1046.

[29] Quah, D. (1994),“Comment,” in Measuring and Interpreting Business Cy-
cles, FIEF Studies in Labor Markets anad Economic Policy, Oxford Uni-
versity Press.

[30] Reinsel, G.C., and S.K. Ahn (1988), “Asymptotic Properties of the Like-
lihood Ratio Test for Cointegration in the Non-Stationary Vector AR
Model,” Technical Report, Department of Statistics, University of Wis-
consin.

[31] Sims, C. (1980), “Macroeconomics and Reality,” Econometrica, 48, 1-48.
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Figure Legends

Figure 1: Impulse response functions for two model versions.
Figure 2: Theoretical impulse response function and estimated confidence

bands.
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