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RIVER DISCHARGE DRIVES SURVIVAL OF LARVAL WALLEYE 

Joseph B. Mion, Roy A. Stein, and Elizabeth A. Marschall 
Aquatic Ecology Laboratory, Department of Zoology, The Ohio State University. 

Abstract 
Walleye (Stizostedion vitreum) in Lake Erie have historically experienced large fluctuations in recruitment 

success, which have important implications for walleye population dynamics as well as food web interactions. 
Because walleye year class strength in Lake Erie likely is set during the larval life stage, we explored factors 
underlying larval survival during out-migration in the Maumee and Sandusky rivers, Ohio’s primary walleye 
spawning tributaries. To evaluate our expectation that survival of larval walleye would be positively related to 
discharge, we estimated daily larval production and used otoliths to estimate hatch dates of larvae surviving out 
migration. Comparing daily larval production and survival distributions demonstrated strong temporal patterns of 
larval survival that were unrelated to daily larval production patterns. Daily survival varied greatly during the larval 
hatch (~4 wk), with short, discrete periods (4-7 d) of high survival accounting for 75-84% of total survivors. 
Contrary to our original expectations, larval survival was inversely related to river discharge (P < 0.05). As river 
discharge increased, the amount of suspended sediments increased (r2 > 0.6, P < 0.001), likely directly increasing 
larval mortality. Post-out-migration densities of larval walleye in Maumee and Sandusky bays were correlated 
strongly (Maumee Bay: r2 = 0.99, Sandusky Bay: r2 = 0.94) with Ohio Division of Wildlife estimates of late summer 
juvenile abundance of Lake Erie walleye (which historically have been correlated strongly with year class strength). 
Because high discharge events during the larval hatch likely reduce survival, variability in river discharge underlies 
variability of walleye year class strength. Managers could mitigate these effects by reducing exploitation of 
spawning walleye and improving watershed characteristics to reduce discharge fluctuations and suspended 
sediments. 

Introduction 
Survival of juveniles of many species tends to be low and variable as compared to other 

life stages (Werner and Gilliam 1984). Interannual variability in the survival of early life stages 
strongly affects adult population dynamics across a wide range of taxonomic groups, including 
plants (Sacchi and Price 1992, Ostfeld and Canham 1993), marine invertebrates (Rough-garden 
et al. 1984), insects (Fischer and Moore 1993), fish (May 1974, Houde 1989, Leggett and 
DeBlois 1994), birds (DeSante 1990), and mammals (Kruule et al. 1991, O’Donoghue 1994). 
Quantifying mechanisms underlying this variability is necessary for a comprehensive 
understanding of population and, ultimately, community dynamics. 

Understanding mechanisms governing year class strength of fishes has long been a 
primary goal in aquatic ecology because variable year class strength of juveniles produces 
equivalent variability in adult population size (Gulland 1982, Sissenwine 1984). Numerous 
hypotheses seek to explain interannual variability of year class strength of fishes, most of which 
have been concerned with early-life mortality resulting from interactions of abiotic and biotic 
factors with size and ontogeny of larval fishes (Miller et al. 1988, Sale 1990, Houde 1994, 
Leggett and DeBlois 1994). A broad suite of hypotheses continues to persist because few have 
been explicitly proven or disproven with any generality across species or systems, largely due to 
the complexity and subtlety of processes driving recruitment coupled with the often conflicting 
data presented by researchers pursuing single-factor causes of year class strength variability 



 

 

 
 
 

 
 
 

   
  

 

 

(Houde 1987, Pepin and Miller 1993, Leggett and DeBlois 1994). Recently, however, the utility 
of considering finer scales of variability among larval fish and environmental factors to establish 
causality has been effectively demonstrated. Rather than considering survival of annual cohorts 
of larval fishes as a whole, examining characteristics and survival of individual larvae or small 
aggregations of larvae (grouped temporally or spatially) within a year can provide greater insight 
into mechanisms driving year class strength (Methot 1983, Crecco and Savoy 1985, Crowder et 
al. 1992, Rice et al. 1993). Intraannual patterns of larval survival may elucidate mechanisms 
underlying inter-annual variability of year class strength, a perspective we pursued with river-
spawning walleye (Stizostedion vitreum) populations in Lake Erie. 

Fig. 1. Up-, mid-, and downstream sample sites (■) in the Maumee and Sandusky rivers and bays, Ohio, with 
approximate distances to the river mouth in parentheses. In the bays, the three sites closest to the river mouths 
constitute the ‘‘inner’’ bay sites whereas the three sites farthest from the river mouths constitute the ‘‘outer’’ bay 
sites. 

As the terminal predator and valued sport and commercial fish, walleye are important 
both ecologically and economically in Lake Erie. Like most populations of walleye (Ney 1978), 
those in Lake Erie have exhibited large variations in year class strength (Hatch et al. 1987). 
Previous studies have attributed this variability to abiotic factors (e.g., temperature and storm 
events; Busch et al. 1975), species interactions (Hartman 1972), overfishing, and human-induced 
ecosystem alterations (e.g., excessive nutrient input, invasions of exotic species, and degradation 
of riverine spawning areas; Leach and Nepsy 1976, Schneider and Leach 1977). With a long 
history of these perturbations (Regier and Hartman 1973, Schneider and Leach 1977), Lake Erie 
is a difficult and uncertain environment for fisheries managers. Developing an understanding of 
variations in walleye year class strength would improve the ability of managers to predict 
broadscale trends in the Lake Erie fish community in response to continually changing 
conditions and to more precisely target management efforts. 



 

 

 

 

 

 
 

 

 
 

Herein we quantify mechanisms underlying year class strength of Lake Erie walleye, 
specifically those that spawn in the Maumee and Sandusky rivers, Ohio, concentrating on river 
out-migration of larval walleye to nursery areas in the bays. Early life stages of river-spawning 
walleye, like many marine and freshwater fishes, rely on physical transport mechanisms (river 
discharge for walleye) to carry them from hatch sites to distant nursery areas (Norcross and 
Shaw 1984). Both deterioration of these currents (Nelson et al. 1977, Shelton and Hutchings 
1982) and anomalous hydrographic events (Baily 1981) can be related to poor survival and hence 
poor year class strength. Clearly, success of larvae in reaching nursery areas, coupled with 
coincident environmental conditions, probably has profound implications for recruitment 
variability of fishes. For walleye specifically, high environmental variability within food-poor 
rivers coincides with critical stages of walleye ontogeny, indicating a possible cause of 
variability in year class strength. Given that prolonged river residence time may reduce larval 
survival through starvation (Priegel 1970), we tested the hypothesis that strong larval survival 
was positively related to rapid out-migration from rivers, resulting from high discharge, by 
quantifying daily production and survival of larval walleye in the Maumee and Sandusky rivers 
during 1993-1995. By understanding field patterns of survival of larval walleye, we gain 
important insights into walleye population dynamics, ultimately improving our ability to predict 
and manage fish community dynamics within a changing ecosystem. 

Methods 
Study area 

As Ohio’s two largest tributaries to western Lake Erie, the Maumee and Sandusky rivers 
(Fig. 1) drain largely agricultural and urban areas (16 395 and 3240 km2, respectively), thus 
carrying high suspended sediment and nutrient loads (United States Geological Survey [USGS] 
1992). Mean daily discharges tend to be about four times greater in the Maumee River than in 
the Sandusky River (USGS 1992). Low gradients and the strong intrusive effect of Lake Erie 
seiches generate low current velocities (typically < 10 cm/s near the river mouths, this study), 
making flow reversals common in both rivers (Bedford 1992). Gravel riffles, used by spawning 
walleye, began ~25 km upstream of the mouths in each river. In the Sandusky River, upstream 
movement of walleye was limited by the Ballville Dam in Fremont, Ohio, whereas no such 
impediment existed in the Maumee River. Each river empties into a large bay (Maumee Bay: 
5441 ha, Sandusky Bay: 14 692 ha), with depths typically 2-3 m. 

Field data collection 
We sampled the Maumee and Sandusky rivers and bays each spring during 1993-1995. 

Three sample sites were established in each river: (1) an upstream site immediately below 
walleye spawning riffles, (2) a midstream site about midway between spawning areas and the 
river mouth, and (3) a downstream site near the river mouth (Fig. 1). Sites were chosen such that 
physical parameters (depth, width, etc.) were as uniform as possible. All sites were sampled 
twice weekly in 1993 and three times weekly in 1994-1995 during late March through early 
June, a period encompassing hatching and river residence of larval walleye. Our river sampling 
was designed to quantify spatial and temporal trends in larval walleye density, movement, and 
survival, as well as environmental conditions, during out-migration. We also sampled weekly in 
the bays to quantify densities of larval walleye surviving out-migration. In 1993, we sampled 
three bay sites twice each week. To increase our resolution in larval walleye densities, we 
sampled bays on a finer spatial scale (six sites weekly) in 1994-1995. 



 

 

 

 

 
 

 

 

 
 

 

 

We collected biotic and abiotic environmental data at each sample site. Zooplankton were 
sampled using 31-cm diameter, 153-μm mesh nets lowered to the bottom, hauled to the surface 
vertically (to provide a sample of the entire water column), and preserved in 70% ethanol. We 
followed the methods of Stahl and Stein (1994) to estimate zooplankton density. Samples were 
rinsed onto a small, circular counting dish divided into 16 sectors. Under a dissecting scope, 
individuals of each taxon in one-eighth of the dish were counted; these numbers then were used 
with the following formula to project the total number of individuals in the entire sample: 

[(no. counted)(1/fraction of dish counted) × (1/fraction of sample in dish)]. 

If the projected number of individuals of a taxon was < 25, we stopped counting that taxon. If the 
projected number was > 25, then > 50 individuals of that taxon were counted. After completing 
the section in which the 50th individual was counted, we stopped counting that taxon, and again 
projected the total number of individuals in the sample. Lengths of the first 22 individuals of 
each taxon encountered were measured (total body length, excluding spines, helmets, and caudal 
rami) using a digitizing pad and microcomputer. Zooplankton lengths were converted to biomass 
using taxon-specific length-dry mass regressions (G. G. Mittelbach, Kellogg Biological Station, 
Michigan State University, East Lansing, Michigan, unpublished data). 

Surface water temperatures were taken at 1 m depth on each sampling date. Daily 
discharge and total suspended sediment data were obtained from United States Geological 
Survey gauges on both rivers (USGS 1995). 

To collect walleye larvae in the rivers and bays, we towed 1 × 2 m (mouth size) neuston 
nets equipped with flow meters to measure the volume filtered during each tow. Only 500
micron mesh nets were used for river sampling, whereas various net meshes (500-, 1000-, 1800
μm, with successively larger meshes used as average larval walleye size increased) were used in 
the bays. Nets were towed through the top meter of the water column at ~1-1.5 m/s for 3-5 min 
during daylight. Only the top meter of the water column was sampled because larval walleye, 
being strongly photopositive (Bulkowski and Meade 1983), drift mostly in the upper water 
column (Franzin and Harbicht 1992). We completed two tows at each site on each sampling date 
(towing once upstream and once downstream). Because ichthyoplankton are often unevenly 
distributed within rivers (Corbett and Powles 1986, Harvey 1991), nets were towed diagonally to 
integrate samples across the width of the river. Upon collection, all ichthyoplankton were 
preserved immediately in 95% ethanol. In the laboratory, we identified (Auer 1982) and counted 
walleye larvae. Larval density was calculated as the number of larvae captured during a tow 
divided by the volume filtered (in cubic meters). For each sample date, we weighed (0.1 mg wet 
mass) and measured (0.1 mm TL) up to 20 walleye larvae from each site. 

We analyzed larval walleye collected at all river sample sites to quantify diets. We 
examined the entire digestive tract as guts from walleye larvae were essentially undifferentiated 
tubes and digestion rates were likely similar throughout the gut. All gut and stomach contents 
were identified and measured per methods described above for zooplankton. 

Larval production estimation 
To quantify survival of larval walleye, we first estimated daily and annual production of 

larval walleye in each river using data on mean density and variability of larvae at upstream 
sample sites. For these estimates, we assumed that (1) larval densities at upstream sites were 
composed solely of newly hatched larvae, as confirmed by analysis of otoliths from 40 larvae 



 

 

 

 

 

 
 

 
 

 

 

 

 
 

 

 
 

 

(larval walleye emerge from the substrate and begin drifting immediately upon hatching; Corbett 
and Powles 1986), (2) dates of first and final occurrence of walleye larvae in our upstream 
samples suggested true hatch duration (river sampling began before larvae appeared and ended 
after they disappeared), (3) all larvae drifted in the top 1 m of the water column, (4) samples 
taken at upstream sites each date were independent (i.e., larvae were transitory, thus we did not 
resample the same population of larvae on different sample dates at upstream sites), and (5) 
larval densities were uniform within the upstream area sampled and through time between 
sample dates (i.e., we could characterize larval density on a non-sampled date using density from 
the preceding sample date). We first estimated total volume of the section of river characterized 
by our upstream tows (river sample volume (V): 86 450 and 22 144 m3 for the Maumee and 
Sandusky rivers, respectively) from surface area measures on hydrographic maps of the section. 
To estimate daily numbers of newly hatched walleye drifting downstream, we combined 
estimates of walleye densities from our samples with estimates of flush rates of these sample 
sites. To calculate how many times river sample volumes were completely flushed each day of 
the larval hatch (f; flushes per day), we divided daily river discharge (in cubic meters per day) by 
the river sample volume (in cubic meters). Daily river discharge was calculated for each day as 
river discharge rate (in cubic meters per second, from USGS gauging stations on each river) 
multiplied by 86 400 (the number of seconds per day). We then estimated production of larval 
walleye for each day ( Pd ; walleye larvae produced per day) as: 

where W = larval walleye density in our samples (number of larvae per cubic meter). We 
assumed that larval walleye densities estimated for each sample date did not change until the 
next sample date. We calculated total larval production (pT) as the sum of daily larval production 
over all dates (both sampled and non-sampled). 

Because we wanted to assign some measure of confidence to this estimate of total 
production, we derived an estimate of variance through the following steps. (1) Within-day 
variance of walleye density (sw

2) was calculated for each sample date from the two replicate 
neuston net tows, and, (2) Within-day variance of daily walleye production estimate (sp

2) was 
calculated by assuming a normal distribution of larval walleye densities. Variance of this 
estimate was calculated as 

(3) If we assume that sample dates are independent and that within-day variance on a given 
sample date also describes variance on subsequent non-sampled dates, then we can calculate 
variance of the sum of daily larval production (i.e., sT

2, variance of total larval production) as the 
sum of the variances of daily production 



 
 

 
 

 
 

 

 
 

 
 
 

 

 

If samples were not truly independent, then variance of total larval production would be less than 
the calculated sT

2; thus, our variance estimate may more accurately be thought of as a maximum 
variance. We calculated the standard error of total larval production (SEpT) as 

where n = number of sample dates. The 95% confidence interval around pT was then 

Otolith analysis 
To quantify spatial and temporal trends in larval survival during out-migration, we used 

otolith analysis to estimate daily age and hatch dates of larval walleye caught at mid- and 
downstream sites in both rivers. Though these analyses would not tell us how quickly individuals 
moved downstream, we could gain insight into total river residence time (we refer to a larva’s 
age at collection as its river residence time) for larvae and how it changed at each sample site 
during the hatch. For every sample date on which larval walleye were collected, we removed 
sagittal otoliths from up to 10 randomly chosen larvae from each site (total otoliths used = 920). 
Otoliths were mounted whole on glass slides and cleared using a polyester resin, then were aged 
by a single reader using a transmitted-light microscope at 400× magnification. To avoid biasing 
counts, otoliths were read blindly; the reader knew neither date of capture nor size of larva. The 
reader randomly chose whether to read the left or right sagitta; ring deposition patterns did not 
differ between sides. Otoliths were read twice; if readings were within 10%, larval age was taken 
as the mean of the two readings. If a second reading was not within 10%, otoliths were read a 
third time; if any reading was not within 10% of the mean, the otolith was discarded. Hatch date 
for each larva was calculated as date of collection minus estimated age in days. 

Knowing age at first increment deposition and periodicity of increment deposition is 
critical to accurate otolith analyses (Jones 1986). To address these issues, we collaborated with 
Edward Roseman (Department of Fisheries and Wildlife, Michigan State University, East 
Lansing, Michigan, USA) to conduct a marking experiment with larval walleye in 1994. 
Roseman gill-netted spawning adults on Lake Erie reefs to collect gametes that were used to 
culture larvae for this experiment. One day after hatching, ~800-1000 larval walleye were 
marked in a solution of alizarin complexone for 2 h. Alizarin complexone is absorbed into 
calcareous structures such as otoliths, leaving a red band that indicates the day of marking. 
Following marking, about half the larvae were placed in each of two enclosures in a 0.25-ha 
pond. The enclosures allowed the fish to be exposed to in situ light and temperature regimes, 
both of which may influence patterns of otolith increment deposition (Jones 1986), and allow 
these results to be applied to wild-caught walleye larvae. Larvae were sampled at weekly 
intervals. Otoliths were processed and analyzed in the same way as those from wild-caught 
larvae. 



 

 

 

 

 

 

 
 

 
 
 
 

 

We collected 15 walleye larvae from the pond enclosures for analysis at the end of the 
first week of the marking experiment. Unfortunately, all walleye larvae in both enclosures died 
during the second week. All of the 15 known age (8 d) larvae collected from the first week aged 
to 8 d by their otoliths. Thus, consistent with Michaletz’s (1986) findings, we concluded that first 
ring deposition occurred the day of hatch and that ring deposition in larval walleye was daily. 

Because larval drift is likely passive (Corbett and Powles 1986), larval river residence 
time would likely be related to river discharge. We assessed this relationship by regressing mean 
river residence time on every sample date at the downstream sites on the mean daily discharge 
over the 5 d previous to each sample date. For both rivers, we pooled data across years and 
log10(x +1) transformed both discharge and river residence time to stabilize the variance. 

Survival estimation 
We sought to determine the proportion of larvae attributable to individual hatch dates that 

survived to mid- and downstream sample sites. First, the distribution of hatch dates of larvae 
from mid- and downstream sites were compared to the full distribution of hatch dates to 
determine if mid- and downstream survivors were drawn randomly from all hatch dates. The full 
hatch date distribution was estimated from a distribution of daily larval densities at the upstream 
site, assuming that larvae collected on a given day at the upstream site represented larvae that 
had hatched that day. For each sample date at each site, we estimated the hatch date distribution 
from the otoliths of larvae sampled on that date and applied this distribution to the total density 
of larvae in that sample. Distributions of daily production (upstream site) were then compared to 
distributions of hatch dates of survivors from mid-and downstream sites using a chi-squared test. 
To evaluate the influence of daily production on the hatch date distribution of survivors, we 
regressed daily percent of total survivors at mid- and downstream sites on daily percent annual 
production. For these tests, proportions were arcsine square-root transformed (to stabilize the 
variance). 

To evaluate spatial and temporal trends in larval survival during out-migration each year, 
we generated a daily index of survival (IS) for the mid- and downstream sites in both rivers. IS 
was calculated by dividing the total downstream density of larvae attributable to each hatch date 
by the estimated number of larvae produced that day. Thus, we had an IS value for each day of 
the larval hatch that allowed us to assess fine-scale variability in overall survival of larval 
walleye. To assess the effect of river discharge on larval survival, we plotted IS values against 
the average of daily discharges for five days following each hatch date. Similarly, we plotted IS 
against daily values of total suspended sediments to gauge how suspended sediments influence 
larval survival. Plots of IS and both discharge and suspended sediment suggested nonrandom 
relationships in which IS appeared to be limited beyond some threshold value of these two 
variables. Thus, we used a two-dimensional Kolmogorov-Smirnov (2DKS) test (Garvey et al. 
1998) to test whether these distributions could have arisen by chance alone. 

Because bays collect all larvae surviving river out-migration, we used annual peak 
densities of larval walleye in each bay as an index of survival of larvae spawned in the rivers. 
We also compared peak bay larval densities to Ohio Division of Wildlife (ODW) estimates of 
juvenile walleye catch-per-unit-effort (CPUE) in Lake Erie during August (Ohio Division of 
Wildlife 1996). This late summer index of juvenile abundance has been strongly correlated with 
walleye year class strength (P = 0.015; M. Turner, Ohio Division of Wildlife, Fisheries Research 
Unit, Sandusky, Ohio, personal communication); hence, these analyses allowed us to examine 
the relationship between bay larval abundance and relative measures of walleye year class 



 

 

 

 

 
 

 
   

    
 

  
 

 

 
 

strength in Lake Erie. 
We also examined the historical relationship between river discharge and juvenile 

walleye abundance by comparing river discharge in May (when the majority of larval walleye 
river residence occurred) to ODW estimates of juvenile walleye CPUE in Lake Erie during 
August (Ohio Division of Wildlife 1996). Because Lake Erie has historically been subject to 
great temporal variability in biotic and abiotic conditions, we used data from 1986-1992 (in 
addition to our study years), as these years (i.e., walleye population size, fish community 
structure, nutrient status, etc.) were most like our study period. 

Results 
Larval hatch 

Larval walleye typically were produced during mid-April through mid- to late May in the 
Maumee and Sandusky rivers (Table 1). Mean hatch durations were 28 ± 2.2 d (mean ± 1 SE) in 
the Maumee River and 29 ± 4.0 d in the Sandusky River. Hatch duration did not differ between 
rivers across years (paired t test; P = 0.58). 

River discharge, water temperature, zooplankton density, and diets 
Within-year patterns of river discharge during the larval hatch were similar in both rivers 

across years. While the magnitude of discharge was greater in the Maumee River than in the 
Sandusky River (owing to the Maumee’s much larger main channel), a visual comparison of 
their patterns of discharge revealed their similarity. River discharge varied greatly during the 
larval hatch, with peak discharges in all years occurring early in the hatch (usually mid-April). 
Discharge trends during larval walleye residence varied among years. In 1993 and 1994, 
discharge was low and stable in both rivers. Conversely, discharge was higher and more variable 
during 1995, with several high discharge events occurring in both rivers. River residence time of 
larvae was related inversely to river discharge in both the Maumee (r2 = 0.10, P = 0.016) and 
Sandusky rivers (r2 = 0.28, P < 0.0001), though it explained only a small proportion of the 
variance. 

Table 1. Hatch period, estimated annual production, and peak bay density of larval walleye in the Maumee and 
Sandusky rivers, Ohio, during 1993-1995. Larval production was estimated using data on river volume, variability 
of larval density, and river discharge. Peak bay densities were estimated only from inner bay sample sites (see Fig. 
1) as these likely provide the most accurate reflection of numbers of larvae entering the bay from the rivers. 

As with discharge, annual patterns of water warming were similar across rivers. Trends in 
rate of water temperature increase did not differ between rivers, but did differ across years 



  

 
 

 

 

 

 

 

 
 

(ANCOVA, heterogeneity of slopes: river effect, P = 0.685; year effect, P < 0.0001; river × year 
interaction effect, P = 0.97). Rate of warming was greater during 1995 than in 1993 and 1994, 
which did not differ (Tukey’s multiple comparisons, P < 0.05). Overall, temperature ranges were 
similar across rivers and years. 

Zooplankton densities were extremely low at all sample sites in both rivers, typically < 1 
individual/L, during larval walleye residence (Fig. 2). In all years, zooplankton densities did not 
increase until late May, when larval walleye already had passed through the rivers. The one 
exception was at the downstream site in the Sandusky River during 1994 when densities 
increased in late April, becoming moderately abundant during walleye residence through May. 

Larval walleye feeding success in the rivers was compromised by low zooplankton 
densities. Appreciable feeding occurred only at the downstream sites, and even there feeding 
rates were low. In the Maumee River, percentage of larvae from the downstream site having 
empty guts was 93.3 (N = 71), 81.4 (N = 59), and 98.3% (N = 146) in 1993, 1994, and 1995; in 
the Sandusky River, these percentages were 76.9 (N = 69), 34.8 (N = 46), and 82.5% (N = 40). 
Feeding was particularly successful in the Sandusky River during 1994, when zooplankton 
densities were unusually high. 

Larval production 
Estimated annual production of larval walleye differed markedly between, as well as 

within, rivers across years. The Maumee River produced 4.5-33 times more larvae than the 
Sandusky River each year (paired t test, P = 0.04; Table 1). In the Maumee River, production 
differed among all years (non-overlapping 95% CIs; Table 1). The Sandusky River produced 
similar numbers of walleye larvae during 1993 and 1994 (overlapping 95% CIs), with both years 
exceeding 1995 production (non-overlapping 95% CIs; Table 1). 

Number of larvae produced per day ranged over several orders of magnitude within any 
one year. Because river discharge transports newly hatched larvae downstream, we examined the 
influence of river discharge on daily production by regressing daily production on daily 
discharge in each river. As expected given Eq. 1, daily production was related positively to daily 
discharge in each river; however, daily discharge explained only a very small proportion of the 
variation in daily production (Maumee River, all years pooled; r2 = 0.04; P = 0.06: Sandusky 
River, all years pooled; r2 = 0.04; P = 0.06). 

Larval survival in rivers 
Larval survival varied greatly during the hatching period for walleye larvae in both rivers 

(Figs. 3 and 4). We found daily production and survival to be correlated at the midstream (r2 = 
0.09; P = 0.006) and downstream (r2 = 0.10; P = 0.005) sites in Maumee River, though these 
relationships explained only ~10% of the total variation. These two variables were unrelated at 
the Sandusky River midstream (r2 = 0.01, P = 0.509) and downstream (r2 = 0.03, P = 0.131) 
sites. 

We used information from otoliths to help explain this poor correlation between larval 
production and survival to downstream sites. We first compared temporal distributions of larval 
production at upstream sites to hatch date distributions of survivors to midstream sites 
(determined by otoliths) and next compared hatch date distributions of survivors to midstream 
sites with hatch date distributions of survivors to downstream sites. 

Hatch date distributions of larvae surviving to midstream sites dramatically differed from 
daily production distributions (Fig. 3, Χ2 test: P < 0.05 both rivers, all years). Hatch date 



 

 

 
 

 
 
 

 

 

distributions of survivors to downstream sites differed somewhat from hatch date distributions of 
survivors to midstream sites (Fig. 4, Χ2 test: P < 0.05 both rivers, all years except Sandusky 
River during 1995: P = 0.26), but these differences were not nearly as pronounced as differences 
from larval production date distributions. Hatch dates characterized by high larval survival were 
not evenly distributed across the hatch duration, but rather were focused into short discrete 
periods. This phenomenon occurred at both mid- and downstream sites in each river across all 
years. Though hatches usually continued for ~4 wk, most survivors derived from only 4-7 d each 
year (Table 2). Although these hatch periods accounted for 75-83% of the survivors to 
downstream sites, these dates accounted for only 5-52% of total larval production upstream. 
High survival timing was markedly consistent across years, always occurring from 27 April to 7 
May in the Maumee River and 23 April to 4 May in the Sandusky River. 

Fig. 2.    Zooplankton densities at up-, mid-, and downstream sample sites in the Maumee and Sandusky rivers, 
Ohio, during 1993-1995. Note that the y-axis scale differs for upstream panels. 

Patterns of hatch date distributions of survivors to mid- and downstream sites appeared to 



 
 

 
 

 

 

be driven by river discharge. Visual comparison of discharge with hatch date distributions of 
survivors to both mid- and downstream sites (Figs. 3 and 4) revealed that dates having relatively 
high survival typically occurred during periods of low discharge. Conversely, survival of larvae 
was low during high discharge events. 

For each day larvae hatched, we calculated an IS (Index of Survival, see Methods: 
Survival estimation) value for larvae collected at mid- and downstream sites in each river. 
Comparing daily mid- and downstream IS values to river discharge revealed a dramatic inverse 
relationship between larval survival and discharge (Fig. 5), patterns which were nonrandom 
(2DKS test: midstream; DBKS = 0.053, P = 0.043; downstream; DBKS = 0.079, P < 0.001). 
Comparing daily IS values to suspended sediments, which were positively related to discharge 
(Maumee River, all years pooled; r2 = 0.68, P < 0.001: Sandusky River, all years pooled; r2 = 
0.62, P < 0.001), revealed patterns similar to those resulting from discharge comparisons; 
distribution of midstream IS values were nonrandom when compared to suspended sediment 
values (2DKS test; DBKS = 0.070, P = 0.003); however, the distribution of downstream values 
was not significant (2DKS test; DBKS = 0.0512, P = 0.072). Still, this emphasized that days of 
high survival occurred only during very low discharge; even moderate discharge increases 
resulted in uniformly low survival. Survival of larval walleye was extremely variable at low 
discharges suggesting that low discharge was a necessary, but not sufficient, condition for high 
survival (Fig. 5). 



 
 
 

 
   

  
  

 

 

 
 

Fig. 3. Comparison between the distribution of larval walleye production from upstream sites (open bars) and hatch 
date distributions of survivors to midstream sample sites (filled bars) during 1993-1995 in the Maumee and 
Sandusky rivers, Ohio. Open bars represent daily percentages of total larval production, and filled bars represent 
daily percentages of total survivors to midstream sites attributable to individual hatch dates. To increase figure 
clarity, y axes (m3/s) are not shown for discharge curves. 

Walleye recruitment 
Annual ODW estimates of inshore and offshore juvenile walleye CPUE in Lake Erie in 

late summer were correlated strongly with our estimates of peak bay density in June (Fig. 6). 
These ODW data revealed that 1994 was a strong walleye year class, 1993 was moderate, and 
1995 was an extremely weak year class. 



 
 
 

  
  

    

  
  

 

 
 
 
 
 

Fig. 4. Comparison between hatch-date distributions of survivors to midstream (filled bars) and downstream (cross
hatched bars) sample sites during 1993-1995 in the Maumee and Sandusky rivers, Ohio. Midstream hatch date 
distributions are duplicated from Fig. 3 to allow direct visual comparison with downstream hatch date distributions. 
Filled bars represent daily percentages of total survivors to midstream sites attributable to individual hatch dates, and 
crosshatched bars represent daily percentages of total survivors to downstream sites attributable to individual hatch 
dates. To increase figure clarity, y-axes (m3/s) are not shown for discharge curves. 

Juvenile walleye CPUE was correlated negatively with river discharge during May (Fig. 
7). These relationships reflect patterns similar to those for IS and discharge in that high juvenile 
abundance occurred only during low river discharge years, whereas high river discharge resulted 
in much lower juvenile abundance. 



 
 

 

 
 

 
 
 

 

 

 

 

 

Table 2. Comparison of percentage of larval production and survival occurring during discrete annual periods of 
high larval survival to downstream sample sites in the Maumee and Sandusky rivers, Ohio, 1993-1995. Periods of 
high survival were calculated as the minimum number of days needed to account for at least 75% of total survivors. 
Actual percentages of survivors from this subset of days are given in the last column. Production is presented as the 
percentage of annual production occurring during each period. Durations of total production periods are given in 
Table 1. 

Discussion 
Walleye recruitment success 

Typically, variability in year class strength of fishes derives from high and variable 
mortality during early life history stages. Some disagreement exists, however, concerning 
whether processes regulating year class strength primarily operate during larval (Crecco and 
Savoy 1985, Myers and Cadigan 1993) or post-larval (Forney 1976, Sissenwine 1984, Peterman 
et al. 1988) stages. Year class strength for freshwater fishes with large larvae (like walleye) may 
occur through density-dependent mechanisms operating during the juvenile stage (Houde 1994). 
In contrast, we believe that year class strength of river-spawned walleye is determined by 
density-independent factors exerting their influence early in the larval stage, per earlier studies of 
both river-spawning walleye (Priegel 1970, Johnston et al. 1995) and reef-spawning walleye in 
Lake Erie (Busch et al. 1975, Roseman et al. 1996). Episodic storms appear to drive survival of 
larvae, in turn determining walleye year class strength. 

River discharge strongly regulated larval walleye survival in the Maumee and Sandusky 
rivers across three years. Early- and late-hatching larvae survived poorly, whereas larvae 
hatching during mid-period ~1 May survived well (as no storms occurred ~1 May during our 3 
yr of sampling), greatly contributing to walleye year class strength. During periods when larvae 
are most susceptible to intense mortality, subsets of larvae survived well, owing to sometimes 
brief, yet dramatic, combinations of abiotic and biotic conditions conducive to increased 
survival. Our findings are consistent with other otolith-based, hatch-date analyses (Methot 1983, 
Crecco and Savoy 1985, 1987, Rice et al. 1987), in spite of the range of species (four 
represented), hatch sizes (2.9-9.5 mm), and systems (rivers: Crecco and Savoy 1985, 1987; 
freshwater lakes: Rice et al. 1987; oceans: Methot 1983). Mechanisms driving these patterns may 
differ, but the patterns themselves generalize across systems and species. 

Production and survival interact to determine recruitment success. Although larval 
walleye densities in the bays were unrelated to annual production of larvae in the rivers, larval 
production during high survival periods can influence walleye year class strength substantially. 
For example, total larval production in the Maumee River during 1995 (our weakest year class) 
was about twice that in 1994 (our strongest year class). However, production during high 



 
 

 
 

 
 

 
 

    

 

 

survival was almost 4.5 times greater in 1994 than in 1995, suggesting that a fine-scale 
match/mismatch (sensu Cushing 1975) between larval production and environmental conditions 
drives walleye year class strength. Our assessments of high survival periods were based on 
relative daily percentages of larvae surviving river out-migration, rather than on absolute 
numbers surviving. By identifying hatch dates with ‘‘high survival’’ probabilities, we are only 
generating predictions relative to other hatch dates within a year. Larval production during high 
survival periods was similar in 1993 and 1994; yet, overall survival was greater in 1994. 
Apparently, conditions, even during high survival, were more conducive to strong larval survival 
in 1994 than 1993. 

Fig. 5. Relationship between daily index of survival (IS) of walleye larvae at midstream (upper panel) and 
downstream (lower panel) sites and river discharge for the Maumee (MR) and Sandusky (SR) rivers, Ohio, during 
1993-1995. River discharge was the mean daily discharge for the 5 d following each hatching date for which we 
calculated survival, which integrated discharge conditions over out-migration. Discharge also was normalized to 
allow direct comparisons between rivers by dividing discharge by the cross-sectional area of each river channel 
(Maumee River, 450.0 m2; Sandusky River, 145.1 m2). Sample sizes represent the total number of hatch dates for 
each year in each river (see Table 1). 

Mechanisms underlying larval walleye survival 
River discharge and suspended sediments.-We originally hypothesized that survival of 

larval walleye would increase with river discharge, moving larvae more quickly to productive 
bays. However, survival of larval walleye was strongly and negatively related to discharge. In 



 

 
 

 
 
 

  
  

 

 

other river-spawned larval fishes, both direct (Harvey 1987) and indirect (Crecco and Savoy 
1985) negative effects of discharge have been documented. In our view, direct discharge-related 
mortality, occurring early in out-migration, derived from increased suspended sediment which 
typically coincided with high, turbulent discharge. Suspended sediments can cause gill damage 
and suffocation in larval fishes (Cordone and Kelley 1961), and create strong scouring action 
that can damage fragile, newly hatched larval fishes (Lloyd 1987). As egg incubation areas for 
walleye in the Maumee and Sandusky rivers are shallow gravel-cobble riffles, turbulent flow 
could kill emerging walleye larvae by driving them against the substratum. Damaged (torn and 
abraded) larvae were common in our upstream samples, especially during the early portion of the 
hatch. Thus, discharge and suspended sediments probably interact to create a substantial 
bottleneck to walleye recruitment immediately post-hatch. 

Fig. 6. Relationship between juvenile walleye catch per unit effort (CPUE; Ohio Division of Wildlife 1996) bottom 
trawling from Lake Erie in August and peak density of larval walleye in Maumee and Sandusky bays, Ohio, 1993
1995. Inshore estimates reflect CPUE at trawling stations of 3-m depth, whereas offshore estimates reflect CPUE at 
stations of 9-m depth. 

River discharge also may affect survival of larval walleye indirectly by mediating larval 
river residence time. Low gradients, coupled with lake influxes, make still water and flow 
reversals common in the lower reaches of the Maumee and Sandusky rivers (Bedford 1992). 
Prolonged larval river residence under these conditions may compromise survival. Thus, 
downstream passage through hydrographically variable areas may be critical to larval walleye 



 
 

 

 
 

 
 

 
 
 

  
 

 

 

success. 
Water temperature and zooplankton density.-Survival of larval walleye in rivers may 

derive from a complex set of interactions among discharge, water temperature, and zooplankton 
density. At high discharge, survival was low, irrespective of temperature or food. In turn, those 
few larvae that survive hatching at high discharge experience short river residence, thus 
bypassing temperature-zooplankton effects expected with extended river residence. At low 
discharge, rapid warming (and thus rapid yolk metabolism) and low zooplankton density may 
reduce larval condition and survival. As larval walleye typically occur in these rivers during 
periods of rapid warming, zooplankton density would be critical to their success during low 
discharge years (sensu Crecco and Savoy 1985, 1987). Indeed, atypically high zooplankton 
density at the downstream site in the Sandusky River during 1994 was associated with successful 
feeding and high survival of larval walleye. 

Fig. 7. Relationship between juvenile walleye CPUE (Ohio Division of Wildlife 1996) from Lake Erie in August 
and mean daily discharge from the Maumee and Sandusky rivers, Ohio, during May 1986-1995. The years of the 
present study are noted as filled circles. Inshore estimates reflect CPUE at trawling stations of 3-m depth, whereas 
offshore estimates reflect CPUE at stations of 9-m depth. 

Predation.-Predation can influence recruitment success of larval fishes (Hunter 1981). 
Newly hatched walleye larvae, emerging in large numbers, may be especially attractive to 
predators. In tributaries to Oneida Lake, New York, predators congregate and feed on larval 
walleye as they emerge from the substratum (Regier et al. 1969). Many walleye predators, 



      

  

 

 

 

 

 

 

including white perch (Morone americana), white bass (Morone chrysops), and yellow perch 
(Perca flavescens) (Colby et al. 1979), migrate up the Maumee and Sandusky rivers during early 
to mid-May to spawn in the same habitats used by walleye (Schaeffer and Margraf 1987). Thus, 
late-hatching larval walleye may face a substantial predatory gauntlet immediately upon 
hatching. In our work, low survival of late-hatching walleye occurred despite typically low 
discharge, a pattern consistent with predation as an explanation. 

Synthesis of mechanisms.-Regular patterns of larval walleye survival in our rivers may 
derive from a spatiotemporal progression of abiotic and biotic factors driving larval survival 
(Fig. 8). Upon hatching, discharge primarily determined larval survival. Because discharge was 
typically highest during mid- to late-April (after which it declined greatly, except during 1995), 
early-hatched larvae experienced high discharge-related mortality. Although mid- and late-
hatched larvae were less likely to experience high discharges, stochastic storm-related high 
discharges also could occur during these periods. Predation effects most likely concentrate on 
late-hatching larvae. Thus, mid-hatching larvae typically experience low discharges and little 
predation, resulting in consistently high survival to the midstream site relative to earlier and later 
periods of the hatch (Fig. 8). 

Though most larval mortality likely occurs between up- and midstream sites, mechanisms 
operating between mid- and downstream sites may further refine temporal distributions of 
downstream survivors. The few early-hatching larvae surviving initial high discharges may 
survive well through the river as low temperatures slow yolk metabolism, ensuring energetic 
reserves in the face of low food availability (Fig. 8). Similarly, mid-hatching larvae, 
experiencing moderate temperatures and variable food availability (e.g., zooplankton can occur 
in relatively high densities, as in the Sandusky River during 1994), should survive well through 
the lower river. Late-hatching larvae, however, require high zooplankton abundance as they 
typically face high, energetically demanding temperatures with resulting high mortality. 
Ultimately, interactions among the timing of storms, predators, high temperatures, and 
zooplankton availability likely determines the formation and persistence of periods of high 
survival (Fig. 8). 

Though size-dependent mortality explains recruitment variability in some fishes (Miller 
et al. 1988), these processes may  be less   important  for river-spawned walleye. Direct 
effects of turbid river discharge upon larval walleye are probably not size selective across the 
size range of newly hatched larvae. In turn, predation likely would not be size dependent. Weak 
swimming ability of larval walleye (Houde 1969), coupled with large predators (mature white 
perch, white bass, and yellow perch), ensures a high capture probability for predators (Miller et 
al. 1988). In our view, variability in size among individual walleye larvae is much less important 
than time of hatching in driving their survival probabilities. 

Abiotic factors can have powerful, albeit usually indirect (via biotic interactions such as 
food production, predation, etc.), effects on population and community dynamics (Dunson and 
Travis 1991). Large-scale climatic events structure fish recruitment variability, acting to regulate 
proximate factors (Smith and Eppley 1982, Legendre and Demers 1984). Our results are unique, 
however, in that the regular (as opposed to intermittent or catastrophic) direct influence of an 
abiotic factor, river discharge, on larval fish survival occurred during three years. Given the 
direct link with larval survival, climatic conditions during the hatch may accurately, though 
qualitatively, predict walleye year class strength.  
That both bay densities of larval walleye and mean May river discharge are strongly related to 
August abundance of juvenile walleye in Lake Erie suggests that either (1) river-spawned 



 

 

 
 
 

 
 

 
 

 
 

 
 

 
 
 

   

 

walleye are the largest contributor to the Lake Erie walleye population, or (2) that mechanisms 
driving survival of reef-spawned larval walleye are similar to those mechanisms operating on 
river-spawned larvae. The first possibility is unlikely as most Lake Erie walleye spawn on open-
lake reefs (R. Knight, Ohio Division of Wildlife, Fisheries Research Unit, Sandusky, Ohio, 
personal communication). In our view, the second possibility, however, is quite plausible. 
Survival of eggs and newly hatched larvae on the reefs is negatively related to storms and high 
wind events, owing to the abrasive action of waves and the washing of eggs from protective reef 
substrate (Busch et al. 1975, Roseman et al. 1996). Walleye spawn in rivers several weeks before 
reefs as rivers warm more rapidly in spring than the lake (Parrish et al. 1989). Because of 
differences in spawning times, walleye life stages most vulnerable to storm effects (yolk-sac 
larvae in the rivers, eggs on the reefs) overlap in time, storms may ultimately regulate survival in 
both habitats. Earlier observations of synchrony of fish year class strengths over large geographic 
areas in freshwater (Koonce et al. 1977) and marine (Koslow 1984) systems as generated by 
large-scale climatic processes are consistent with this perspective. Linkage between survival 
from rivers and reefs provides insight into the extreme historical variability in Lake Erie walleye 
recruitment, variability greater than if survival was determined independently in these two 
habitats. 

Fig. 8. Conceptual model of generalized trends in river discharge and water temperature (e.g., data from Maumee 
River, 1995) during the larval walleye hatch coupled with the spatiotemporal influence of river discharge, predation, 
water temperature, and zooplankton density on survival of larval walleye during river out-migration. Interactions 
between time of hatching (early-, mid-, and late hatching) and river location (up-, mid-, and downstream) largely 
determine which mechanisms are most important in determining larval survival. Arrows indicate movement between 
sites of larvae hatched during different periods (increased arrow thickness indicates increased relative probability of 
larval survival). Factors influencing larval survival at that location are listed next to each arrow. 



 

 

 

 

 

 

 

 
 

 

 

 

 

Management implications 
Gaining an appreciation of what factors drive walleye recruitment allows managers to 

anticipate year class fluctuations. As the terminal predator, large annual variations in walleye 
year class strength translates to strong community-wide effects, where predation by walleye 
drives species composition and variation in the Lake Erie fish community (Knight and 
Vondracek 1993; M. Kershner, Aquatic Ecology Laboratory, The Ohio State University, 
Columbus, Ohio, personal communication). By regulating prey, walleye effects may then 
cascade through multiple trophic levels (sensu Carpenter et al. 1985). Thus, understanding 
mechanisms regulating walleye abundance in Lake Erie is a necessary first step in understanding 
community structure and function. 

Lake Erie continues to be beset by lake-wide perturbations, such as changing nutrient 
status and invasions of exotic species. Further, even larger scale perturbations, such as global 
warming, probably will influence formation of walleye year classes by altering patterns of 
precipitation and streamflow. Storms are predicted to increase in frequency and intensity during 
late winter and early spring, resulting in greater and more variable streamflows (Nemec and 
Schaake 1982, Gleick 1987) during the critical larval stage for walleye. Thus, managers should 
expect a general decline in walleye year class strength and, consequently, population size in 
response to global warming, with strong year classes becoming increasingly rare. However, 
improving land use practices to reduce overland flow and sediment input would improve 
conditions for survival of larval walleye by reducing periods of extremely high discharges and 
turbidity. Incorporating landscape perspectives into management policies could provide 
effective, proactive measures for blunting effects of climate change on river-spawned larval 
fishes. 

Maximizing temporal breadth of larval production in rivers also should contribute to 
stabilizing the variability of walleye year class strength. At present, spawning walleye are subject 
to intense angling pressure in the Maumee and Sandusky rivers. Because high larval survival can 
arise even from periods of low production, we feel regulations limiting angling pressure on 
spawners may increase walleye production. Further, as numbers of spawners are low during the 
early and late periods of the walleye hatch, these adults should be protected from angling. 
Although these were typically low survival periods during 1993-1995, the stochastic nature of 
storms makes it quite likely that discharge patterns during these times could support high 
survival in future years. Conceivably, these spawners could produce, based on weather 
conditions, abundant survivors. As such, maximizing larval production over the longest possible 
interval should increase total numbers of surviving larvae. By limiting angling to 1-2 wk during 
mid-hatch, at which time spawner densities may be highest, managers could protect early and 
late larval-production periods to the advantage of walleye. Holistic management policies, 
coupling watershed management with efforts to maintain the current lengths of larval-production 
periods, should reduce variability in walleye year class strength in the face of increasing climatic 
and ecosystem variability. 
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