
Twin studies of complex traits, such as behavior or
psychiatric diagnoses, frequently involve univariate

analysis of a sum score derived from multiple items.
In this article, we show that absence of measure-
ment invariance across zygosity can bias estimates of
genetic and environmental components of variance.
Specifically, if the item responses are considered as
multiple indicators of a latent factor, and the aim is to
partition the variance in the latent factor, then the
factor loadings relating the items to the factor should
be equal for monozygotic (MZ) and dizygotic (DZ)
twins. While it seems unlikely, a priori, that these
loadings should differ as a function of zygosity,
certain special measurement situations are cause for
concern. Ratings by parents, or self-ratings of pheno-
types which are more easily observed in others than
via introspection, may be tainted by the co-twin’s
phenotype to a greater extent in MZ than DZ pairs.
We also show that the analysis of sum scores typi-
cally biases both MZ and DZ correlations compared to
the true latent trait correlation. These two sources of
bias are quantified for a range of values and are
shown to be especially acute for sum scores based
on binary items. Solutions to these problems include
formal tests for measurement invariance across
zygosity prior to analysis of the sum or scale scores,
and multivariate genetic analysis at the individual item
or symptom level.

The individual items in most measurement instruments
are designed to measure a single underlying factor or
latent trait. However, the items are rarely pure indica-
tors of the underlying factor. For example, a particular
symptom used to indicate the presence or absence of
depressive disorder may also be sensitive to sleep disor-
ders. If a test is administered to more than one group
and if at least one of the items fails to measure the
same factors equivalently (i.e., does not have the same
factor loading) in those groups, the item is said to lack
measurement invariance (MI), or be measurement non-
invariant (MNI) across the groups. The present article
shows that MNI across monozygotic (MZ) and dizy-
gotic (DZ) twins (hereafter referred to as MNIz;

measurement invariance with respect to zygosity will
be abbreviated as MIz) can bias estimates of genetic
and environmental components of variance. The
potential for MNI across gender or across an environ-
mental grouping variable to bias estimates of G × Sex
or G × E interaction was demonstrated in a previous
report (Lubke et al., 2004).

In factor analysis, a factor is specified to account
for the covariance among a set of indicator measures,
which may be continuous, ordinal or binary
(Mellenbergh, 1994). In the binary case, analyses
based on the threshold model are equivalent to the
normal ogive item response theory (IRT) model
(Takane & de Leeuw, 1987). Such binary item data
are common in the study of behavioral traits, includ-
ing those focusing on complex traits such as
psychopathology and substance use. The factor
model, in both continuous and ordinal data applica-
tions, is the focus of this article. It is the cornerstone
of multivariate genetic analyses; its extensions include
the popular common and independent pathway
models (Kendler et al., 1987; McArdle & Goldsmith,
1990; Neale & Cardon, 1992).

Measurement invariance (Mellenbergh, 1989;
Meredith, 1993; Millsap & Everson, 1993) holds
with respect to a grouping variable if the probability
of an observed test score, or item response, is the
same for members of different groups with the same
score on the latent factor. In concrete terms, failure of
measurement invariance of an item with respect to
zygosity would occur if an MZ twin scored higher (or
lower) on average on the item than would a DZ twin
who has exactly the same score on the latent factor.
An item might operate differently between the zygos-
ity groups because of different sensitivity to variables
other than those used to define the factor. This
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problem could manifest itself as different estimates of
the factor loading in the two groups. Other manifesta-
tions of MNI include different amounts of item-specific
variance and item means that differ for reasons other
than a group differences in the factor mean. In general,
differences between groups on the latent factor — be
they in either the mean or the variance of the factor —
are not problematic. Differences in the factor loadings,
the item-specific means (see below), or the item-specific
variances are indicators of MNI, and are a cause for
concern about the comparison of the similarity of MZ
and DZ twins.

Tests of measurement invariance can be conducted
if and only if the measurement model relating
observed item scores to the underlying factor(s) is ana-
lyzed simultaneously in all groups (Dolan, 2000;
Lubke et al., 2003; Meredith, 1993). Joint, that is,
multigroup, analysis of the items allows a test of
whether the measurement model is the same across
groups. Conversely, if sum scores are precomputed by,
for example, summing individual item scores, all
information about the relationship between individual
items and the underlying factor(s) is lost. Absence of
measurement invariance can no longer be detected.
This problem also applies to factor scores, which are
essentially weighted sum scores.

In genetic epidemiology, it is common practice to
derive sum scores by summing individual question-
naire items or symptom scores. The Eysenck
Personality Questionnaire scales, Extraversion,
Neuroticism and Psychoticism, are computed in this
way (Eysenck & Eysenck, 1975), as are the scale
scores of many other psychological instruments.
Similarly, Diagnostic and Statistical Manual of Mental
Disorders, (4th ed., text rev.; DSM-IV-TR; American
Psychiatric Association, 2000) diagnoses are typically
established when a subject has at least r of a given list
of s symptoms. Thus, these diagnoses are essentially
sum scores that are then subjected to further reduction
by a binary filter. In the present article, we focus on
variance component models that rely on the compari-
son of the similarity of MZ and of DZ twin pairs to
draw conclusions about the relative impact of genetic
and environmental factors. We show that the analysis
of sum or factor scores using additive genetic,
common environment and specific environment vari-
ance components models (ACE models) may result in
biased variance components estimates when the indi-
vidual items from which the sum or factor score is
derived are MNIz. More specifically, if MZ twins’
responses to items assess the latent factor more accu-
rately, then heritability would be biased upwards.

Sum scores are often regarded as an estimate of the
underlying factor score. Obviously, decomposition of
a sum score into genetic and environmental variance
components only makes sense if the items, which form
the sum score, measure the same factor(s) in MZ and
DZ twins. Fitting an ACE-type model to a sum score
relies on the implicit assumption that the items from

which the sum score is derived measure the same under-
lying factor or latent trait regardless of zygosity, in other
words, that the items are MIz. Furthermore, it is
assumed that the items index the latent trait equally well.
It is, however, an empirical question whether these
assumptions hold, and MIz should be established prior
to variance component analysis of sum scores. To detect
noninvariance with respect to zygosity, the relationship
between the individual items and the latent variables can
be modeled simultaneously in the MZ and DZ groups,
and tested for equality.

A second issue we address is that even when MIz
holds, the use of sum scores to estimate variance com-
ponents of a hypothesized latent trait is likely to be
problematic. If the item-specific variance is truly
random error, and uncorrelated between twins, then
estimates of familial variance components, such as
additive genetic or common environment effects,
based on the sum score will underestimate the impact
of these sources on the latent trait. In the event that
some of the item-specific variance is familial (Waller
& Reise, 1992), then variance component estimates
based on sum scores may either over- or underestimate
the latent trait variance components.

In the following sections, we first define the concept
of measurement invariance and then show that a vari-
ance decomposition of sum scores derived from items
that are noninvariant with respect to zygosity may bias
estimates of additive genetic and common environment
variance components. This bias is quantified alge-
braically and displayed graphically for several specific
sets of factor loadings. In the discussion section, we
consider situations in which MNIz is likely to occur
and the advantages of multivariate analysis.

Measurement Invariance
The background information on measurement invari-
ance presented in this section is essentially identical to
that provided in Lubke et al. (2004); it is reproduced
here for convenience because of its central relevance to
the present article. Absence of measurement invariance,
which is also known as differential item functioning
(DIF), has been studied extensively both in the context
of confirmatory factor analysis and IRT (Bloxom,
1972; Byrne et al., 1989; Ellis, 1993; Holland &
Wainer, 1993; Lubke et al., 2003; Marsh, 1994;
McArdle, 1998; Mellenbergh, 1989; Meredith, 1993).
Measurement invariance is defined with respect to a
grouping variable such as race, gender, or in the present
case zygosity, and concerns the measurement model
relating observed scores to underlying latent variables
(Mellenbergh, 1989; Meredith, 1993). The measure-
ment model must be the same for all groups, in the
sense that the probability of observing a given item
score is equal for members of different groups who
have the same score on the underlying latent variable.
More formally, measurement invariance is defined as

f(M | F,S) = f(M | F) [1]
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where observed variables are denoted as M, latent vari-
ables as F, and the grouping (or Selection) variable as S
(Mellenbergh, 1989; see Dolan et al., 2004 for a con-
ceptual explanation). Equation 1 states that, given the
scores on the underlying latent variable(s), the probabil-
ity distribution of the observed scores does not depend
on subpopulation membership, for example, being an
MZ or a DZ twin, but depends only on the scores on
the underlying factor or factors. The distribution of
these latent scores may, however, differ between groups.

An extended single factor model for multiple
observed measures is shown as a path diagram in Figure
1. In this model, the latent factor F1 is, by convention,
shown in a circle as it is not directly observed. It has a
variance VF that is fixed to 1.0 and a mean, shown as the
path µF from the constant Ar (depicted as a triangle) that
is fixed to zero. Variation in the observed scores Sj, j =
1…4 is caused partly by the latent factor and partly by
item-specific error variables E1…E4. The mean of each
observed score is partly a function of the latent factor
mean (here zero) and partly by the measure-specific
mean muMj

. In principle, groups can differ with respect
to the following five components of this model:

1. The factor mean, muF

2. The factor variance, vF

3. The factor loadings, lj

4. The item-specific means, musj

5. The item-specific variances, ej

In the case of binary data, the item-specific means are
replaced by thresholds, and the item-specific variances
cannot be identified and are typically fixed either to
1.0 or to (1 – l 2

j ). We note that by using definition
variables in Mx (Neale et al., 2003), it is possible to
moderate these five components with grouping vari-
ables that may be either continuous (such as age) or
discrete (such as sex). In the present article, we focus
on the effects of moderation of the factor loadings as a
function of zygosity.

If the factor loadings differ across groups, the
interpretation of the underlying factor or trait may
differ as a consequence.1 Suppose that in one group
depression items load strongly on a general factor
and anxiety items have weaker loadings on this
factor. Suppose also that in a second group these
anxiety items have higher loadings on the factor,
while the depression items have lower loadings.
This different patterning of item loadings is an
example of failure of measurement invariance. In
the first group, the depression items have a larger
weight than the anxiety items, so the general factor
would be interpreted as representing liability to
depression. By contrast, in the second group,
anxiety items have larger loadings so the general
factor would be interpreted as an anxiety factor.
This difference in interpretation is lost when sum
scores are derived from the individual items,
because when adding the items, usually the same
weights are used for all items in all groups. In other
words, sum scores are based on the implicit assump-
tion of measurement invariance and are, in the case
of noninvariance, incorrectly interpreted as esti-
mates of the same factor across groups. It would
make little sense to estimate heritability of the psy-
chopathology factor by comparing MZ twins’
similarity for depression with DZ twins’ similarity
for anxiety. Thus, there is a strong case for verifying
factorial invariance across zygosity groups prior to
model fitting.

The incorrect interpretation of a sum score is
especially important when sum score variance is
decomposed into genetic and environmental vari-
ance components. On a conceptual level, it is
questionable whether it makes sense to decompose
sum scores derived from noninvariant items.
However, the problem of analyzing sum scores
extends beyond this issue of conceptual interpreta-
tion. It is shown below that variance components
obtained from modeling sum scores are biased if
measurement invariance does not hold with respect
to zygosity. Hence, absence of MNI across zygosity
is confounded with sources of familial resemblance.
Differences in factors loadings or discrimination
parameters can be detected only in a multivariate
analysis of the individual items carried out simulta-
neously in all groups. That is, it is best to conduct a
multivariate analysis of the items that are measured,
rather than of a scale score derived from them.
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Figure 1
Path diagram of a single latent factor model, illustrating the five 
parameter classes that may be moderated as a function of group 
membership: factor mean, muF ; factor variance, vF ; factor loadings, lj ;
item-specific means, muj ; and item-specific variances, ej .
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For reasons of simplicity, we use the common
factor model with a single factor F and two continu-
ous observed variables, y1 and y2, as a measurement
model to demonstrate two main points. Both concern
the results obtained when a genetic ‘ACE’ model
(consisting of additive genetic [a2], common environ-
ment [c2] and unique environment [e2] variance
components [Neale & Cardon, 1992]) is fitted to
sum scores. 

The arguments made using ordinary algebra in this
section are restated in matrix algebra form in the
Appendix. We can write the measurement model relat-
ing items j = 1…m to an underlying factor in MZ twin
pairs as follows:

[2]

where λjlmz denotes the factor loading of item j mea-
sured on twin 1 in an MZ pair, εjl denotes the residual
variance for this item, and τ1j is the item-specific mean
or ‘regression intercept’. Corresponding equations for
the observed scores in DZ twins can be obtained by
changing the subscript mz to dz. Thus we have
described a simple linear factor model with an inter-
cept term τ.

The sum score of each member of an MZ twin pair
is obtained by adding the scores on the two items:

[3]

Our investigation into the possible effects of
failure of measurement invariance on the estimates
of variance components from sum scores brings to
light another serious potential problem for quantita-
tive genetic studies. When item scores are summed
to provide an indicator of the latent trait, the corre-
lation between twins on the sum score can differ
substantially from their correlation on the latent
trait. As we shall see, the amount of this deviation
varies according to the value of the true latent trait
correlation, and on the variance components of the
residual (item-specific) variances. To a certain
extent, this problem is obvious. Bias from this
source may be considerable, making the use of sum
scores in genetically informative studies (among
others) at best questionable.

Theory Behind Variance Component Bias 
in Sum Scores
Measurement Model

The algebra in the following two subsections is
derived to establish two main principles. First, if the
items contain error (as is likely to be the case), and
this item-specific variance, u2, is nonfamilial in
origin, then the proportion of e2 estimated in the sum
score increases relative to that of the true latent
factor. Second, the relative proportions of a2 and c2

may also be affected by the analysis of sum scores
when there is MNIz.
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Figure 2
Path diagram illustrating the generation of sum scores Sum-T1 and Sum-T2 from latent traits LT1 and LT1 which correlate r.
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Absence of invariance with respect to factor load-
ings means that at least one of the factor loadings in
MZ twins does not equal its counterpart in DZ
twins, λimz ≠ λidz.

The goal here is to demonstrate that the sum score
variance component estimates, â 2

S, ĉ 2
S and ê 2

S are
unlikely to equal those of the latent factor, â2

F, ĉ2
F and

ê2
F. Furthermore, we show that this is the case with

MIz as well as with MNIz. Ignoring the measurement
model relating individual items and the underlying
factor, we write the covariance between the sum
scores of a twin pair, t1 and t2, according to the ACE-
model as:

[4]

where, given the usual assumptions of the additive
multifactorial model, α is fixed to 1.0 and .5 for MZ
and DZ twins, respectively.

If the measurement model for the individual
items (Figure 2) is taken into account, the covari-
ance between sum scores of twin 1 and twin 2 can be
written as:

[5]

or when λ1t1 = λ1t2 and λ2t1 = λ2t2, that is, when mea-
surement invariance with respect to order within a
twin pair (twin 1 vs. twin 2) holds, then:

[6]

where the term involving λ is essentially a weight for
the covariance between the factor scores of a twin pair
(this argument follows from Lubke et al., 2004). The
weight depends on the measurement model, or, more
specifically, on the factor loadings. Let kmz and kdz

denote the weights of MZ and DZ twins, respectively.
Then

[7]

[8]

Note that here, for simplicity, we assume that the item-
specific variance is not correlated between twins. We
return to consider violations of this assumption below.
Also worthy of note is that in the general case of m
items, we have                       , that is, the square of the
sum of the factor loadings. Let the covariance between
twins’ factor scores be decomposed according to the
ACE model:

[9]

[10]

Substituting equations 8 to 10 into equation 6, the
covariances of MZ and DZ pairs’ sum scores are
therefore:

[11]

[12]

The key differences between equations 11 and 12 and
the usual ones for the resemblance between pairs of
twins under the ACE model are the terms k2

mz and  k2
dz.

These terms accumulate all the squared factor loadings
and cross-products of the factor loadings, and therefore
reflect the accuracy with which the observed scores
measure the latent trait. Note that the k2 terms in equa-
tions 11 and 12 apply to the whole of the covariance
between the twins’ factors, regardless of whether this
covariance is due to additive genetic or common envi-
ronment factors. Consequently, if kmz = kdz, that is, MIz
holds, the reduction in correlation of the sum scores is
proportionate for MZ and DZ pairs. This induces a
proportionate reduction of additive genetic and
common environmental (or nonadditive genetic) vari-
ance components. We now demonstrate this property
by expressing variance components for sum scores,
denoted a2

S, c
2
S and e2

S, in terms of the latent factor vari-
ance components a2

F, c
2
F and e2

F.

Variance Component Bias in Sum Scores: Measurement Invariance

Suppose that we were able to measure the latent
factors directly, and computed the variance of the
latent factor, VP, the covariance of MZ twins, rFmz, and
of DZ twins, rFdz. The least squares solution of the
system of equations:

[13]

[14]

[15]

is:

[16]

[17]

[18]

When there is measurement error, the correlations
between twins’ sum scores, rSmz and rSdz, are attenuated
relative to the correlations of the factor scores, rFmz

and rFdz. If MI holds (k = kmz = kdz), then the set of
equations for the sum scores S may be written:

[19]

[20]

[21]

where u2 is additional variation in the sum score due
to sources of variation that are specific to each of the
observed measures.2 Initially, we assume that this
item-specific variance is uncorrelated between twins,
though we relax this assumption later. The solution of
these new predicted covariances is:
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[22]

[23]

[24]

Thus, item-specific variance u2 causes a2
S and c2

S to be
biased downwards relative to the latent trait values
but remain in the same ratio to each other, whereas e2

S

is biased upwards. The actual changes in the sum
score variance component estimates will depend on
the amount and source (genetic or environmental) of
the item-specific variance.

Variance Component Bias in Sum Scores: 
Measurement Noninvariance

Under MNIz, that is, when kmz ≠ kdz, the covariance
between the sum scores for one zygosity may increase
or decrease relative to the sum score covariance for
the other zygosity. Specifically, if MZ pairs’ latent
factors are measured more accurately than DZ pairs’
(kmz > kdz), their covariance will increase, which would
bias the heritability estimate upwards. Conversely, if
MZ pairs are measured less accurately than are DZ
pairs, then estimates of the effects of shared environ-
ment would be inflated at the expense of additive
genetic variance. Algebraically, this bias can be calcu-
lated by substituting kmz and kdz into the expectations
above, and solving the equations: 

[25]

[26]

[27]

In practice, the terms on the right-hand side are the
observed variances and covariances of twins’ sum
scores. Solving these equations yields:

[28]

[29]

[30]

where we have assumed that the difference between
the MZ variance and the MZ covariance has been
used to estimate e2, because the MZ and DZ variances
are expected to differ.

Estimates of e2 are not directly affected by MNIz,
as they are estimated from the difference between the
phenotypic variance and the MZ covariance, and
only kmz influences the latter. However, in a model-
fitting context, where the difference in total variance
between MZ and DZ twins has been obscured, the
estimate of the phenotypic variance of MZ twins
may be incorrect, and the estimate of e2 may be
biased. Again, it must be emphasized that the above
algebra is derived only to establish two main princi-
ples: (a) when sum scores of items containing error
are analyzed, the proportion of e2 increases relative
to that of the true latent factor as long as u2 is nonfa-
milial in origin, and (b) the relative proportions of a2

and c2 can be affected by the analysis of sum scores
when there is MNIz. The amount of bias will depend
on the contributions of genetic and environmental
sources to the item-specific variance.

Impact of Familial Item-Specific Variance

In the event that u2 is not entirely due to measurement
error or specific environment factors unique to the item,
the relationship between the sum score variance compo-
nent and the trait score variance components loses the
simple proportionality identified in equations 23 to 24.
Those with a psychometric background might consider
familial components to item-specific variance to be an
unlikely occurrence. Yet researchers in twin studies will
be familiar with the concept of familial test-specific or
item-specific variance (Waller & Reise, 1992); and
empirical support is found quite regularly, although it is
not ubiquitous (contrast agoraphobia with the other
anxiety disorders in Hettema et al., 2005). Also evident
is that the individual items on questionnaires such as the
EPQ (Eysenck & Eysenck, 1975) vary considerably in
their variance components (Neale et al., 1986).
Therefore, given a sufficiently large item pool, it would
be possible to increase or decrease any of the variance
components of a sum score. Heritability has been pro-
posed as a criterion for the construction of psychological
tests (Jones, 1971). However, heritability per se is not
what is generally desired; rather, we seek sets of items
that accurately define a common construct. It is this con-
struct which is the focus of genetic epidemiological
study; variance components of sum scores may therefore
prove to be poor indicators of the variance components
of the latent trait.

The relative impact of item-specific versus factor
variance components on a sum score is influenced by
two main factors. First is the size of the factor load-
ings, as accumulated into the term k2. Smaller factor
loadings decrease the impact of the latent trait vari-
ance on the sum score. The item-specific variance
components contribute directly to the sum score and
are not attenuated by the size of the factor loadings.
The second key component is the number of items,
because the factor contributes to the sum score vari-
ance not only directly (the variance-based terms λ2

i)
but also by virtue of generating covariance between
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the items (terms of the form λiλj, j ≠ i). The total
number of contributions to the sum score therefore
follows the square of the number of items, whereas
the number of item-specific components increases lin-
early with the number of items. However, the
item-specific variance components are not attenuated
by the size of the factor loadings, which are accumu-
lated into the term k2. Thus the factor variance to
specific variance ratio can be written: k2: mu2 where u
here includes familial and nonfamilial item-specific
variance components.

Multivariate Analysis as an Alternative

The obvious alternative to fitting an ACE-type model
to the univariate sum score is to conduct a multivari-
ate analysis in which the measurement model is
included in the decomposition into genetic and envi-
ronmental variance. Instead of deriving the parameters
of the ACE model from the variance and the single
covariance of the sum score in the twin pairs, the
covariance matrix of individual items or test subscales
would be analyzed. This covariance matrix is a parti-
tioned matrix containing across twin covariances in
the lower left (upper right) block. In practice, this may
be done with analysis of the raw data.

In the multivariate model, all factor loadings are
estimated, as well as the variance components for the
latent factor and for the residual variances (the
common pathway model). It is then possible to test
whether the factor loadings are equal for MZ and
DZ twins — or even for Twin 1s and Twin 2s. If
some of the factor loadings for MZs differ from their
counterparts in DZ twins, and if, as is typically done
in practice, factor loadings are initially fixed to be
equal across genders, there is no simple way in which
the parameters aF, cF and eF (the variance components
of the latent factor) can compensate for the resulting
misfit. Given sufficient sample size, fitting a model
with factor loadings restricted to be equal across
zygosity, when in fact they are not, would result in a
poor overall fit of the measurement model. In a mul-
tivariate analysis, equality of factor loadings across
zygosity is therefore a hypothesis that can be tested
by comparing models with and without the equality
restrictions using a likelihood ratio test.
Furthermore, it is possible to test whether the pheno-
typic means (or item thresholds) are equal across
zygosity and, given ordinal or continuous level of
measurement, whether the item-specific variances (θi)
are equal for the two groups.

The multivariate model discussed here is known
as the ‘common pathway’ or ‘psychometric factors’
model (Kendler et al., 1987; McArdle & Goldsmith,
1990; Neale & Cardon, 1992). Historically, fitting
this model to binary or ordinal data has faced tech-
nical difficulties, but these have largely been
overcome via approaches such as marginal
maximum likelihood (Bock & Aitkin, 1981; Schmitt
et al., 2005).

Illustration With Simulated Data

Continuous Data

To illustrate the bias in the variance components esti-
mates of the latent trait that can occur in the analysis of
sum scores derived from noninvariant items, we simu-
lated data according to the model shown in Figure 2.
This model begins at the top of the diagram with the
correlated latent traits, F1 and F2 of a pair of twins.
According to the usual factor model, the observed mea-
sures of Twin 1 (M1-T1 to M1-T3) are caused partly by
the latent factor, via paths l1 to l3, and partly by residual
components of variance shown as double-headed arrows
(1 – l2

1 and so on). These components are set to result in
observed measures with unit variance, though this is not
a necessary constraint. The observed measures then gen-
erate the observed sum score (SUM-T1) of Twin 1 via
paths with fixed values of unity. Using the usual rules of
path analysis (Neale & Cardon, 1992), it is possible to
obtain the predicted variance of SUM-T1 and SUM-T2
and their covariance, whence their correlation can also
be computed. A simple Mx (Neale et al., 1999) script for
this purpose is provided on the web site
http://www.vcu.edu/mx/examples.html under the zygos-
ity measurement invariance link, although the algebra
in equations 23 to 24 above could be used instead.

The effect of the size of the factor loadings on the
sum score correlation was considered only for the
case where all the factor loadings are equal. The
loadings were varied from .9 to .1, and the latent
trait correlations were varied from .9 to .1. First,
nine continuous measures of the latent trait were
considered, which is close to a best case scenario, as
few studies will have as many continuously distrib-
uted indicators of a latent trait. The predicted
correlation between twins’ sum scores are depicted
graphically in Figure 3. Two points are especially
noteworthy. First, the attenuation of correlation in
the sum scores compared to the true latent trait cor-
relation is not great when the factor loadings are
greater than .7. For example, with factor loadings of
.8 the sum score correlation is still .78, compared to
.9 for the latent trait correlation. Second, the
absolute amount of loss of correlation decreases for
lower initial correlations. The strict proportionality
of the loss of correlation seen in this figure is exactly
as predicted by the equations 11 and 12 above. In
the context of the classical twin study, therefore, the
MZ correlation suffers greater absolute attenuation
than that of the DZ. However, per equations 23 to
24 above, the familial variance components for the
sum scores remain in the same proportion to each
other as they are for the latent trait.

Binary Data

Most behavioral data is initially collected in the form
of binary items or ordinal items with relatively few
categories (Likert scales). Many so-called continuous
measures, such as Eysenck Personality Questionnaire
Neuroticism (Eysenck & Eysenck, 1975) — to name
but one example — are computed as simple sum
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scores from a number of binary items. Given that this
type of assessment is very common, and that behavior
genetic analyses of such measures are popular, it is
important to consider the binary case. To address this,
we simulated binary data using a simple threshold-
based item response probability model. First, pairs of
latent trait (factor) scores (LT1 and LT2) were
sampled from a bivariate normal distribution with a
unit variances, zero means and correlation r. Second,
continuous variable test scores were generated accord-
ing to the formula

where ET1 was sampled from a univariate normal dis-
tribution with zero mean and unit variance. Twenty
items were sampled, with equal factor loadings (akin
to a Rasch model) and a threshold tj for item j set at
–1.8 + .2j to give item difficulties ranging from z
scores of –1.8 to + 1.8 at intervals of .2SD. The prob-
ability of a positive response for a subject with
continuous score MT1 was:

0 if MTj < tjp (response = 1) = [31]{ 1 if MTj ≥ tj

The binary item scores were then summed to produce
a scale score ranging from zero to 20. This procedure
was repeated to generate 100,000 pairs of sum scores
for the 81 combinations of latent trait correlations

(from .9 to .1) and factor loadings (also from .9 to .1).
The polychoric correlation was computed for the
twins’ sum scores for each dataset, and these results
are depicted in Figure 4.

Three features of Figure 4 are noteworthy. First,
there is greater attenuation of the correlation with this
procedure than in the continuous data case. Even with
all 20 items having factor loadings of .9, the latent
trait correlation of .9 is estimated to be .85 for the
sum score — greater attenuation than for the case
with continuous data with only nine measures.
Second, this reduction increases quite rapidly as the
factor loadings decrease; with factor loadings of .6 the
sum score correlation is .6 versus .9 for the latent
trait. Third, as in the continuous case, the pattern is
linear, so there is less absolute loss of correlation for
smaller than for larger correlations.

A scale with 20 items is approaching a best case sce-
nario; in practice, scales are often constructed with a
smaller number of items.3 Therefore, the simulation
was repeated for the 10-item and 5-item cases. For the
10-item case, alternate items were selected from the 20-
item dataset, starting with the first. The 5-item dataset
was constructed by taking every fourth item, starting at
the second, to yield items with thresholds at –1.6, –.8,
0, .8 and 1.6 standard deviations from the mean.
Results of these simulations are shown in Figures 5a
and 5b, respectively. The increase in error due to the
smaller number of items is substantial, especially for the
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Figure 3
Correlation between sum scores calculated from nine continuous traits as a function of true latent trait correlation and size of factor loading.
Sum scores were generated according to the model shown in Figure 2.
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5-item case, where the initial factor correlation of .9 is
reduced to .53 when factor loadings of .7 are used.
Bearing in mind that loadings of .4 or more are often
retained during factor analysis for the purposes of scale
construction, the difference in familial resemblance for
sum scores and for the latent traits which they are sup-
posed to measure could be substantial.

Effects on Variance Components

Measurement Invariance

The implications of these findings for variance compo-
nents estimates based on sum scores were considered
under two conditions. First, even with measurement
invariance, where factor loadings are equal across the
two zygosities, equations 23 to 24 show that substan-
tial bias may accrue from the use of sum scores. The
bias is depicted for the two lines marked a2 and c2 in
Figure 6. The values of a2 and c2 were computed manu-
ally using the formulae a2 = 2(rMZ – rDZ) and
c2 = rMZ – a2 (equivalent to using the least squares fit
function and appropriate for illustration). Given factor
loadings of .8, the sum score variance components are
â2

S = .544 and ĉ2
S = .176 instead of the values of a2

F = .6
and c2

F = .2 for the latent trait. This bias increases as the
factor loadings decrease.

Measurement Noninvariance

Two forms of MNIz were considered. First, the MZ
factor loadings relating the items to the latent trait

were set to be .1 greater than those of the DZ twins.
Figure 7 overlays two lines, marked a2̂ MZ > DZ and
c2̂ MZ > DZ, which plot the variance components for
this form of measurement noninvariance. Adding this
form of MNI slightly counteracts the adverse effects of
using sum scores. The estimate â2

S is increased com-
pared to the value under measurement invariance
condition, and ĉ2

S is decreased. Indeed, ĉ2
S becomes neg-

ative when the factor loadings are small; under the
usual maximum likelihood estimation procedure,
which imposes a zero lower bound on variance com-
ponents, this parameter would be estimated at zero,
and â2

S would be inflated. 
Second, we examined the case where DZ twins’

factor loadings were .1 greater than those of the MZ
twins. Results under this condition are shown in
Figure 8. As expected, heritability is biased down-
wards, and common environment variance is biased
upwards in this condition.

Discussion
This article demonstrates that variance component
estimates based on sum scores are likely to be
biased estimates of latent trait variance components.
This is a serious concern for twin studies, given that
many psychological scales are sum scores. In addi-
tion, many DSM diagnoses — presence or absence
of major depression, or of substance use disorder —
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Figure 4
Correlation between sum scores calculated from 20 binary traits as a function of true latent trait correlation and size of factor loading. 
Sum scores were generated according to the model shown in Figure 2.
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Figure 5
Bias in correlations as a function of factor loading and initial correlation. 
Observed variables are sum scores derived from (top) 10 binary items and (bottom) 5 binary items.
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Figure 6
Estimated variance components for a scale based on nine continuous items, as a function of factor loading size. 
Latent trait correlations for MZ and DZ twins were set at .8 and .6, corresponding to variance components of a2 = .6 and c2 = .2. Measurement 
invariance across MZ and DZ twins (MIz) holds.

2̂

2̂
MZ > DZ2̂

2̂ MZ > DZ

MZ factor loadings (DZ are .1 less for MZ > DZ lines)

Figure 7
Estimated variance components for a scale based on 20 binary items. 

Latent trait correlations for MZ and DZ twins were set at .8 and .6, corresponding to variance components of a2 = .6 and c2 = .2. Lines denoted a2̂
and c2̂ are the estimates from sum scores; those with MZ > DZ appended are for the case of greater factor loadings for MZ pairs.
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are themselves based on symptom counts, which are
a form of sum score.

We also show that variance component bias occurs
when measurement invariance with respect to zygosity
fails. A key question for discussion is how likely such
failure of MI would be in practice. Four possibilities
seem plausible. One is that with self-report data, twins
might judge themselves in some relative fashion by
comparing themselves to their twin. For example,
antisocial behavior is frequently accompanied by little
insight when assessed by self-report, whereas external
observers — such as their relatives or teachers —
appear to observe it with better agreement and preci-
sion (Kendler et al., 2002). In the absence of good
introspection data, twins may tend to score themselves
as similar to their co-twin. If MZ twins are initially
more similar (by virtue of genetic factors) the effects
of the genetic factors could be amplified by the bias
accrued from partly rating the co-twin instead of
oneself. A second, perhaps more common, situation is
in the analysis of parent or teacher ratings, such as are
often used in studies of juvenile twins. If, in cases of
doubt about Twin A, the rater uses their knowledge of
Twin B to supplement their assessment of Twin A,
then again measurement noninvariance may be seen as
a function of zygosity. Were such effects operating on
the items from which sum-scores or factor scores are

derived, it seems likely that a difference in total vari-
ance between MZ and DZ pairs may be seen.
Unfortunately, such variance differences may be con-
founded with genuine sibling interaction (Carey, 1986;
Eaves, 1976; Neale, 1985; Neale & Cardon, 1992) or
other processes, such as parental contrast, which also
generate differences in total variance. In fact, MNIz
itself would typically generate differences between the
total variances of MZ and DZ twins, so it seems
unlikely that MNIz contributes to variance component
bias for many traits because such variance differences
are rarely observed.

For certain measures, two further possibilities
exist. For physical traits, such as finger print ridge
count or skin-folds from different areas of the body, it
seems very unlikely that the measurement would not
perform equally well in MZ and DZ twins. Some pos-
sible mechanisms remain, however. First, if there are
genetic factors involved in MZ or DZ twinning which
have a pleiotropic influence on the precision of mea-
surement of certain characteristics, measurement
noninvariance might result. This possibility seems, a
priori, very unlikely for most traits. Second, a practice
effect could occur in some study designs. For example,
suppose that the researcher taking the skin-fold (or
ridge count, etc.) makes a more accurate assessment
on the second twin than on the first, by virtue of

564 Twin Research and Human Genetics December 2005

Michael C. Neale, Gitta Lubke, Steven H. Aggen, and Conor V. Dolan

DZ factor loadings (MZ are .1 less for DZ > MZ lines)
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Figure 8
Estimated variance components for a scale based on 20 binary items. 

Latent trait correlations for MZ and DZ twins were set at .8 and .6, corresponding to variance components of a2 = .6 and c2 = .2. Lines denoted a2̂
and c2̂ are the estimates from sum scores; those with MZ > DZ appended are for the case of greater factor loadings for MZ pairs.
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having recently measured someone morphologically
very similar. In this case, we might expect a measure-
ment-order effect, but only in MZ twin pairs. In
principle, this effect could be detected quite accurately
if the order of assessment within a twin pair is known,
by testing for measurement invariance across Twin 1
and Twin 2. Third, suppose that the distribution of
age differs between the MZ and DZ twins. If the trait
under consideration does not show measurement
invariance with respect to age, then MNIz will result.
This failure of invariance with respect to a characteris-
tic correlated with zygosity may be the most
significant concern.

The analysis of sum scores precludes the detection
of group specific factor loadings, which are a form of
noninvariance. If undetected, absence of measurement
invariance associated with zygosity will cause bias in
the estimates of variance components. The direction of
this bias is to increase estimates of additive genetic
variance and to decrease estimates of common envi-
ronment variance if MZ twins’ measures are better
indicators of the latent trait than those of DZ twins.
This pattern of bias is reversed when DZ twins’ assess-
ments are the better latent trait indicators. Most
noteworthy is that even when measurement invariance
holds with respect to zygosity, using sum scores of
items — even under the relatively ideal circumstances
of 20 binary items considered here — there is consid-
erable attenuation of heritability and some inflation
of random environment variance components.
Multivariate analysis of the items themselves would
effectively eliminate this bias, and permit tests of
measurement invariance across groups. Recent
advances in statistical methods, including generalized
marginal maximum likelihood (Aggen et al., 2005;
Schmitt et al., 2005), asymptotic weighted least squares
including missing values (Muthén & Muthén, 2004),
and Bayesian approaches (Eaves & Erkanli, 2003),
together with advances in computer hardware perfor-
mance, make these methods relatively practical today.

It remains common practice to fit genetic variance
components models to data which consist of sum
scores. Frequently, such scores depart from normality,
with floor or ceiling effects generating severe skewness
or kurtosis or both. Indeed, for studies of psy-
chopathology it is not uncommon to observe a reverse
J-shaped distribution for the sum scores. One
approach to analyze such data is to take a logarithm
or square root transformation, possibly following age
regression, in order to yield a trait distribution which
is approximately normal. The analysis of such trans-
formed sum scores may yield variance components
estimates which depart even further from those of the
latent trait than do sum scores themselves.

Several limitations of the present article should be
considered. First, the model used here is akin to a
common pathway model, but without residual
measure-specific familial components. Clearly, genetic
or shared environment factors that influence particular

items (as opposed to the general factor) would
increase the sum score correlation between relatives.
Therefore, when we move from the sum-score
approach to estimating the full model, we may not see
the large increases of familial correlation that Figures
3 and 4 would imply. However, the variance compo-
nents estimated for the hypothesized general factor
would not be contaminated with item-specific vari-
ance, which would be a considerable advantage.
Second, it may be argued that the common pathway
model typically does not fit very well compared to the
‘independent factors’ or ‘biometric factors’ model in
which three factors are specified, and the correlation
between twins’ factors are set to 1.0 for the shared
environment, zero for the specific environment, and to
1.0 or .5 for the MZ or DZ additive genetic factor.
This well-known model is in fact a submodel of the
less widely applied three factor common pathway
model. Application of the constraints that: c = e = 0
for the first factor, a = e = 0 for the second factor, and
a = c = 0 for the third factor of the three factor
common pathway model reduces it to the single
factors independent pathway model. Thus, addition of
a sufficient number of latent (common pathway)
factors would overcome the problem of poor model fit
of the single common pathway model.

One valuable feature of using the latent trait model
directly is that it should increase statistical power to
detect quantitative trait loci (QTL) that influence the
latent trait. Genome scanning using a multivariate
model with ordinal data still presents statistical chal-
lenges, requiring multivariate analysis at repeated
intervals on the genome. However, this computational
burden may be easily shared by a cluster or grid com-
puting infrastructure, which is growing in popularity.
Nevertheless, to run permutation or bootstrap tests to
evaluate evidence for linkage, even a large cluster
would be heavily burdened. A compromise, in the
mean time, would be to only run such tests in and
around regions where substantial signals exist. Genetic
factor scores (Molenaar et al., 1990) may also provide
an efficient starting point, although these suffer from
the limitation that, except under unusual ideal mea-
surement conditions, different factor scores have
different amounts of intrinsic error.

Although the significance of this article may be
considered to apply only to twins, a simple change of
label to the latent traits at the top of Figure 2 allows
consideration of the relationship between traits —
comorbidity in the case of disorder-related latent traits
such as psychopathology or substance use — or
between them and their risk factors. That is, we could
consider Figure 2 as a model for different latent traits
in the same individual. Note that in this case, the cor-
relation between the item-specific components may be
less across traits within person than they are within
trait across twins. This would likely be the case for
different traits (say, sum scores of cognitive ability
items correlated with sum scores of depression items).
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Here the sum score correlations would be very likely
to underestimate the latent trait correlation. On the
other hand, repeated measures of the same trait in the
same individual could have higher item-specific
covariances, in which case the sum score correlations
might not underestimate the latent trait correlation.
The beauty of item-level analysis is that origin of the
correlation between sum scores can be partitioned into
that due to the latent trait correlation and that due to
item-specific components.

A final point to note is that the multivariate or lon-
gitudinal study of psychopathology or substance use —
or virtually any aspect of behavior — could benefit
from the analysis of the latent trait, as opposed to the
sum score. Aggregate scores presuppose that a particu-
lar and rather unlikely measurement model holds —
that there is no item-specific variance and that all factor
loadings are equal. Yet there is no need to make this
assumption, and it is clearly practical to test it. At least
in principle, the behavioral scientist should attempt to
analyze what has been measured. Nothing, other than
computer time, is lost and much is gained from the
analysis of data at their original level of measurement.

Endnotes

1 For the equivalence relation of factor loadings in
the common factor model and discrimination para-
meters in IRT models, see Lord & Novick, 1968.

2 u2 = Var(ε1) + Var(ε2) in equation [3].

3 Often the factor loadings vary substantially
between items, but that is not explored here.
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Appendix
The purpose here is to clarify the relationship between genetic and environmental variance components of a
latent factor, and the estimates obtained from the analysis of sum scores of items that measure, with error, this
latent factor. Beginning with the latent factors of twins, as at the top of Figure 2, we write the covariance matrix
of the factors of the twins, F1 and F2, as:

The matrix Λ contains the loadings (path coefficients) from these latent factors to the twins’ measured
items, M1 – T1 to M2 – T2 (neglecting M3 – T1 and M3 – T1 in the figure as they add nothing to the present
discussion) as follows:

and matrix Θ is diagonal with elements θj for measure j. In principle, Θ may differ between MZ and DZ
twins, although we do not explore that possibility here. The covariance of the measured items, Σ, is given
by:
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[33]

To compute the covariance between the sum scores, we use an elementary matrix which relates the measured
variables to the sums with unit loadings:

to obtain the covariance of twins’s sum scores:

[34]

[35]

[36]

Substituting u2 = θ 2
1 + θ 2

2 and k = λ1 + λ2, we obtain:

The expected covariances between twins’ factor scores under the usual ACE variance components model are:

and

so the expected covariances between twins’ sum scores are therefore:
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