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To achieve security in wireless sensor networks, it is important to be able to encrypt and authenticate messages
sent between sensor nodes. Before doing so, keys for performing encryption and authentication must be agreed
upon by the communicating parties. Due to resource constraints, however, achieving key agreement in wireless
sensor networks is non-trivial. Many key agreement schemes used in general networks, such as Diffie-Hellman
and other public-key based schemes, are not suitable for wireless sensor networks due to the limited computational
abilities of the sensor nodes. Pre-distribution of secret keys for all pairs of nodes is not viable due to the large
amount of memory this requires when the network size is large. To solve the key pre-distribution problem, two
elegant key pre-distribution approaches have been proposed recently.

In this paper, we provide a framework in which to study the security of key pre-distribution schemes, propose a
new key pre-distribution scheme which substantially improves the resilience of the network compared to previous
schemes, and give an in-depth analysis of our scheme in terms of network resilience and associated overhead. Our
scheme exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the
probability that communications between any additional nodes are compromised is close to zero. This desirable
property lowers the initial payoff of smaller-scale network breaches to an adversary, and makes it necessary for
the adversary to attack a large fraction of the network before it can achieve any significant gain.
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1. INTRODUCTION

Recent advances in electronic and computer technologies have paved the way for the pro-
liferation of wireless sensor networks (WSNSs). Sensor networks usually consist of a large
number of ultra-small autonomous devices. Each device, called a sensor node, is battery
powered and equipped with integrated sensors, data processing capabilities, and short-
range radio communications. In typical application scenarios, sensor nodes are spread ran-
domly over the terrain under scrutiny and collect sensor data. Examples of sensor network
projects include SmartDust [Kahn et al. 1999] and WINS.

Sensor networks are being deployed for a wide variety of applications [Akyildiz et al.
2002], including military sensing and tracking, environment monitoring, patient monitor-
ing and tracking, smart environments, etc. When sensor networks are deployed in a hostile
environment, security becomes extremely important, as these networks are prone to differ-
ent types of malicious attacks. For example, an adversary can easily listen to the traffic,
impersonate one of the network nodes, or intentionally provide misleading information to
other nodes. To provide security, communication should be encrypted and authenticated.
The open problem is how to bootstrap secure communications between sensor nodes, i.e.
how to set up secret keys between communicating nodes.

This problem is known as tHeey agreemergroblem, which has been widely studied in
general network environments. There are three types of general key agreement schemes:
trusted-server schemes, public-key schemes, and key pre-distribution schemmted-
serverschemes depend on a trusted server for key agreement between nodes; an example
is Kerberos [Neuman and Tso 1994]. This type of scheme is not suitable for sensor net-
works because in the locations where WSNs are deployed, one cannot generally assume
that any trusted infrastructure is in plaéaublic-keyschemes depend on asymmetric cryp-
tography and require some sort of public-key infrastructure to be in place; an example
of such schemes is an authenticated key agreement protocol using public-key certificates.
However, as pointed out by Perrig, et al. [Perrig et al. 2001], the limited computation and
energy resources of sensor nodes often make it undesirable to use public-key algorithms
in WSNs. A third way to establish keys is vie-distribution where (secret) key infor-
mation is distributed to all sensor nodes prior to deployment. Such schemes seem most
appropriate for WSNSs.

If it is known which nodes will be in the same neighborhood before deployment, pair-
wise keys can be established between these nodes (and only theseanpdes) How-
ever, most sensor network deployments are random; thus,aspghri knowledge about
the topology of the network does not exist. A number of key pre-distribution schemes do
not rely on prior knowledge of the network topology. A naive solution is to let all nodes
store an identicamastersecret key. Any pair of nodes can use this master secret key to
securely establish a new pairwise key. However, this scheme does not exhibit desirable net-
work resilience: if a single node is compromised, the security of the entire sensor network
is compromised. Some existing studies suggest storing the master key in tamper-resistant
hardware to reduce the risk, but this increases the cost and energy consumption of each
sensor. Furthermore, tamper-resistant hardware might not always be safe [Anderson and
Kuhn 1996].

At the other extreme, one might consider a key pre-distribution scheme in which each

Iwireless Integrated Network Sensors, University of California. See: http://www.janet.ucla.edu/WINS.
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sensor stored/ — 1 keys, each of which is known to only one other sensor node (here, we
let N denote the total number of nodes in the network). This scheme guarantees perfect
resilience because any number of compromised nodes does not affect the security of any
uncompromised pairs of nodes. Unfortunately, this scheme is impractical for sensors with
an extremely limited amount of memory becaugecould be large. Moreover, adding

new nodes to a pre-existing sensor network is difficult when using this scheme because the
existing nodes do not have the new nodes’ keys.

Recently, two key pre-distribution schemes suited for sensor networks have been pro-
posed. Eschenauer and Gligor [Eschenauer and Gligor 2002] proposed a random key pre-
distribution scheme which may be summarized as follows: before deployment, each sensor
node receives a random subset of keys from a large key pool; to agree on a key for commu-
nication, two nodes find a common key (if any) within their subsets and use that key as their
shared secret key. Now, the existence of a shared key between a particular pair of nodes
is not certain but is instead guaranteed only with some probability (which can be tuned by
adjusting the parameters of the scheme). Eschenauer and Gligor note that this does not
present an insurmountable problem as long as any two nodes can securely communicate
via a sequence of secure links; see Sections 4 and 7 for further discussion.

Based on this scheme, Chan, Perrig, and Song [Chan et al. 2003] proposed a general-
ized “g-composite” scheme which improves the resilience of the network (for the same
amount of key storage) and requires an attacker to compromise many more nodes in order
to compromise any additional communication. The difference between this scheme and the
previous scheme is that tihecomposite scheme requires two nodes to §iffdith ¢ > 1)
keys in common before deriving a shared key and establishing a secure communication
link. Itis shown that, by increasing the valueg@fetwork resilience against node capture
is improved for certain ranges of other parameters [Chan et al. 2003].

1.1 Main Contributions

The primary contribution of this work is a new key pre-distribution scheme which offers
improved network resilience (for the same storage constraints) compared to the existing
schemes mentioned above. The scheme requires more computation than previous schemes,
but we show that this extra computation is small compared to that required by public-key
schemes. We provide a thorough theoretical analysis of the security of our scheme, as well
as its associated overhead. A high-level overview of this scheme, and a discussion of its
advantages, appears below. As part of our analysis of the security of this scheme, we also
introduce a rigoroulamework(i.e., formal definitions of security) appropriate for analyz-

ing key pre-distribution schemes for wireless sensor networks. Somewhat surprisingly, we
found that prior definitions of security for key pre-distribution schemes were insufficient
for our intended application; thus, we believe our framework is of independent interest and
should prove useful for further work in this area.

Our key pre-distribution scheme extends and improves upon Blom’s key pre-distribution
scheme [Blom 1985] by combining this scheme with the random key pre-distribution meth-
ods discussed previously. Blom proposed a key pre-distribution scheme that afigws
pair of nodes to find a secret pairwise key between them. Compared to the “trivial” scheme
mentioned earlier in which each node stof8s— 1) keys, Blom's scheme only requires
nodes to stora + 1 keys, where\ < N. The tradeoff is that, unlike thgV — 1)-pairwise-
key scheme, Blom’s scheme is not perfectly resilient against node capture. Instead it has
the following A-secure propertyas long as an adversary compromises at mosbdes,
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uncompromised nodes are perfectly secure. When an adversary compromises mare than
nodes, all pairwise keys in the entire network are compromised.

The threshold\ can be treated as a security parameter in that selection of a larger
leads to a more secure network. This threshold property of Blom’s scheme is a desirable
feature because an adversary needs to attack a significant fraction of the network in order to
achieve high payoff. Howevel also determines the amount of memory required to store
key information, as increasingleads to higher memory usage. The goal of our scheme is
to increase the network’s resilience against node capture in a probabilistic sense (and not
in a perfect sense, as in the Blom scheme) without using too much memaory.

Blom’s scheme uses single key space to ensure that any pair of nodes can compute
a shared key. Motivated by the random key pre-distribution schemes presented previ-
ously [Eschenauer and Gligor 2002; Chan et al. 2003], we propose a hew scheme using
multiple key spaces. That is, we first construcspaces using Blom’s scheme, and each
sensor node carries key information fran{(2 < 7 < w) randomly selected key spaces.
Now (by the properties of the underlying Blom scheme), if two nodes carry key informa-
tion from a common space, they can compute a pairwise key. Of course, it is no longer
certain that two nodes can generate a pairwise key (as in Blom’s scheme); instead (as in
previous random key pre-distribution schemes), we have only a probabilistic guarantee
that this will be possible. Our analysis shows that using the same amount of memory (and
for the same probability of deriving a shared key), our new scheme is substantially more
resilient than previous probabilistic key pre-distribution schemes.

To further improve the resilience of our approach while maintaining connectivity of the
network, we develop a two-hop-neighbor key pre-distribution scheme. The ideais to let the
direct neighbor of a sender forward messages, so that nodes that are two hops away from
the sender can also receive them. The nodes that are two hops away are kiwauihep
neighbors Treating two-hop neighbors as “direct” neighbors, the number of neighbors of
each sender increases fourfold. The consequence is that the resilience threshold can be
improved as well. Our results show that under certain conditions, the threshold can be
improved by a factor of four compared to our initial scheme.

The remainder of this paper is organized as follows. Section 2 describes our proposed
framework for analyzing the security of key pre-distribution schemes in terms of their ef-
fectiveness in establishing “secure channels” between the network Adtlesalso show
a simple method to convert any secure key pre-distribution scheme into a scheme for es-
tablishing secure channels. Section 3 reviews Blom’s key pre-distribution scheme which
will be used as a building block for our main key pre-distribution scheme, described in
Section 4. Section 5 rigorously quantifies the resilience of our scheme to node capture,
and compares our scheme with existing key pre-distribution schemes. Section 6 presents
the communication and computation overheads of our scheme. Section 7 describes our
two-hop-neighbor key pre-distribution scheme. We conclude in Section 8.

1.2 Other Related Work

The Eschenauer-Gligor scheme [Eschenauer and Gligor 2002] and the Chan-Perrig-Song
scheme [Chan et al. 2003] have been reviewed earlier in this section. Detailed comparisons
with these two schemes will be given in Section 5.

Blundo et al. proposed several schemes allowing any group drties to compute

2Interestingly, secure key pre-distribution is necessarynbtsufficient, for establishing secure channels.

ACM Journal Name, Vol. V, No. N, Month 20YY.



a common key which is perfectly secret with respect to any coalition ather par-

ties [Blundo et al. 1993]. When = 2, their main scheme may be viewed as a special case
of Blom’s scheme [Blom 1985], which is reviewed in Section 3. Although both Blom’s
scheme (fom = 2) and the main scheme of Blundo, et al. (for arbitrajymatch the
known lower bound [Blundo et al. 1993] in terms of their memory usage for any desired
resiliencet, we stress that this lower bound holusly when (1)all groups of sizex must

be able to compute a shared key and (2) the network mystifectlyresilient to at most
captured nodes. By relaxing these requirements (slightly) and consideripgptiabilistic
analogues of the above, we obtain more memory-efficient schemes.

Perrig et al. proposed SPINS [Perrig et al. 2001], a security architecture in which each
sensor node shares a secret key with a base station. In this scheme, two sensor nodes cannot
directly establish a secret key; however, they can set up a shared key using the base station
as a trusted third party. The scheme described in this work does not rely on any trusted
parties after nodes have been deployed.

A similar approach to the one described in this paper was independently developed by
Liu and Ning [Liu and Ning 2003], which was published at the same time as the conference
version of this paper [Du et al. 2003]. Compared to [Liu and Ning 2003], this paper pro-
vides a more thorough theoretical security analysis and communication overhead analysis;
we also introduce a rigorodsamework(i.e., formal definitions of security) appropriate for
analyzing key pre-distribution schemes for wireless sensor networks. Moreover, we also
describe a further improvement using multi-hop neighbors.

2. A SECURITY FRAMEWORK FOR KEY PRE-DISTRIBUTION SCHEMES

Before describing our primary scheme in detail, we first propose a general framework in
which to analyze the security of key pre-distribution schemes in general. Our starting
point is the following simple observation (which, however, we found lacking in previous
work): the goal of a key pre-distribution scheme is not simply to distribute keys, but rather
to distribute keyswhich can then be used to secure network communicat@hile the
former is necessary for the latter, it is decidedbt sufficient. As an example, we show
below that although the Eschenauer-Gligor scheme ensures that thg kestablished by
some pair of nodes and j remains unknown to an adversary (with high probability, for
some fraction of compromised nodes), the schernresicuref K;; is used to authenticate
the communication between these nodes. Related problems arise in the schemes of Blom,
Blundo, et al., and Chan-Perrig-Song, as well. This observation emphasizes the importance
of precise definitions of security, as well as rigorous proofs in some well-defined model.
We develop the framework as follows: We first define key pre-distribution schemes, and
describe for such schemes a “basic” level of security. This definition (informally) cap-
tures the idea that an adversary should be unable to determine the key shared by some
pair of users (except with low probability), and roughly corresponds to the level of secu-
rity considered in previous work in this area. We then define a stronger notion of security
which we believe more accurately represents the level of security expected from key pre-
distribution schemes when usedpractice We focus specifically on the case of message
authentication, yet our results easily extend to the case of pairwise encryption. Our defini-
tion (informally) requires that an adversary be unable to insert a bogus message which is
accepted as legitimate by one of the nodes (except with low probability). Schemes meeting
this, more stringent notion of security are said to achsma@ure pairwise authentication
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After introducing these definitions, we show that a scheme meeting the “basic” notion
of security does not necessarily achieve secure pairwise authentication. On a more positive
note, we show a simple way to convert any scheme achieving the “basic” level of security
to one whichdoesachieve secure pairwise authentication.

Our definitions, as well as our results, are described here in a relatively informal fashion.
Yet, it should be straightforward for the interested reader to derive formal definitions and
statements of our results from the discussion below.

We begin with a discussion of key pre-distribution schemes. We view such schemes
as being composed of algorithms for key generation, key distribution, and key derivation.
In the randomizedtey generatiophase, some master secret informatibis established.
Given S and a node identity, a deterministidey distributionalgorithm generates infor-
mation &* which will be stored by nodé. Finally, during thekey derivationphase, two
distinct nodes and; holding k' andk’, respectively, execute an algorithiderive and
output a shared kek;; € {0,1}¢ or L if no such key can be established. We denote exe-
cution of this algorithm by nodé (holding informationk?) asDerive(k?, i, j); we always
requireDerive(k', i, j) = Derive(k’,j,i). We assume the key derivation stage is deter-
ministic, but allow that it may require interaction between nodasd ;. Note that a pair
of nodesi, j is not guaranteed to be able to establish a sharedikey~ 1. We assume
that the probability (over choice of master k€ythati andj can establish a shared key is
the same for any # j, and refer to this as theonnectivity(denoted by) of the scheme.

We define our “basic” level of security via the following game: Fix node identities
andj, and run an instance of the key pre-distribution scheme. An adversary is given the
information {k%, ..., ki} for ¢t randomly-selected nodes, where neitheror j are in
the set{i,...,4:} (this models adversarial compromise of these nodes, with concomi-
tant exposure of the secret information stored thereon). The adversary “succeeds” if: (1)
K;; #1, and (2) the adversary can successfully output the/Kgy We will say that a
key pre-distribution scheme g, ¢)-secure if, for any, j, the probability that an adversary
succeeds is at most (In the above formulation, we have not restricted the computational
abilities of the adversary in any way. Clearly, this relaxation can also be considered.)
Note that meaningful security is obtained only wheg p, since the first condition (i.e.,

K;; #1) only holds with probabilityp.

Before introducing a more useful notion of security, we define a pairwise authentication
scheme. This is simply a key pre-distribution scheme with an additroratage authenti-
cationalgorithmMac andmessage verificatiomlgorithmVrfy. Now, if nodes, j establish
a shared key;; #.1, nodei can authenticate its communication to ngdas follows (
can authenticate its communication itgimilarly): before sending message, nodes
computesag = Macg,; (m) and sendsag along withm; upon receivingm, tag), node
j acceptsn only if Vrfyg,, (m,tag) = 1. For completeness, we defitac, (m) = for
all m, andVrfy | (m, tag) = 0 for all m, tag.

We now define secure pairwise authentication via the following gamei &ixlj, and
run an instance of the pairwise authentication scheme. An adversary i(given . , k% }
as before. Additionally, the adversary can repeatedly make an unlimited number of mes-
sage authentication requests of the fdvkac(i’, 5/, m), with the effect that nodé authen-
ticates message for node;j’ (using keyk;,) and returns the resultingg to the adversary.

(We stress that', ;' € {i,j} is allowed). Finally, the adversary outputs*, tag*) and
“succeeds” if: (1)Vrfy . (m*,tag*) = 1 (in particular, this will requiref;; #1), and
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(2) the adversary had never requestt (i, j, m*) or Mac(j,i, m*). Success corresponds

to the adversary “inserting” the bogus messagewhich is accepted as valid by one of

1,7 even though neither node authenticated this message. Finally, we say that a scheme
is a (¢, €)-securepairwise authentication schenik for any (i, j), the probability that a
polynomial-time adversary succeeds in the above game is atand$dte that we must

now limit the computational abilities of the adversary since secure message authentication
for an unbounded number of messages is impossible otherwise.

It is instructive to note that a key pre-distribution scheme secure in the basic sense need
notbe a secure pairwise authentication scheme. For example, consider a scheme in which
K;; is equal toK/; (for some(i',j") # (4,4)) with some high (i.e., non-negligible)
probability; this is true for both the Eschenauer-Gligor and Chan-Perrig-Song schemes.
Now, even if an adversary does not compromasg nodes, and even if it cannot guess
K;; (and hence the scheme remains secure in the basic sense), the scheme is not a secure
pairwise authentication scheme. In particular, an adversary can take messages that were
authenticated by and intended foy’, and send these messageg tohile claiming they
originated fromi; with high probability (namely, whenevet; ;; = K;;), the adversary’s
insertion goes undetected.

This problem of “repeated keys” has been noticed (although informally) in previous
work. However, we stress that subtle problems may arise even when the probability of
“repeated keys” is small. Whenever the keys used by different pairs of parties are not
independentin a probabilistic sense), a formal proof of secure pairwise authentication
will not be possible in general. In fact, this reflects a serious potential vulnerability, as
the presence of dependent keys leaves open the possibiliglabéd-key attacken the
message authentication code or the lower-level primitives (i.e., block ciphers) from which
the MAC is constructed. The possibility of such related-key attacks also rules out the easy
“fix” in which nodes pre-pend the identities of the sender/receiver to any authenticated
messages; this does nothing to prevent related-key attacks.

Given the above, one should focus on designing secure pairwise authentication schemes
rather than secure key pre-distribution schemes. Luckily, it is simple to derive the former
from the latter as follows: Lei(;; be the key derived by nodésandj in some key pre-
distribution scheme which is assumed to be secure in the basic sense discussed above.
These nodes then computg; = H (i, j, K;;), whereH is a hash function modeled as a
random oraclgBellare and Rogaway 1993]. This kdy;; is then used by andj (as the
key for any secure MAC) to authenticate their communication as suggested above. It can
be shown that if the initial scheme (& ¢)-secure in the basic sense, and if the probability
of forgery for the MAC is¢’, then the modified scheme is(& ge + €')-secure pairwise
authentication scheme, wheyeés a bound on the number of hash function queries made
by an adversary. The proof is straightforward, and is omitted here.

Since one may always convert any secure key pre-distribution scheme into a secure
pairwise authentication scheme, we will analyze the security of our proposed scheme in
the “basic” sense with the understanding that the above transformation should be applied
before the scheme is used in practice. This modular analysis of security is (we believe)
simpler, more intuitive, and less prone to error.
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3. BACKGROUND: BLOM'S KEY PRE-DISTRIBUTION SCHEME

Blom proposed a key pre-distribution method that allows any pair of nodes in a network
to be able to derive a pairwise secret key [Blom 1985]. As long as ho more\thades
are compromised, the network is perfectly secure (we call thistbecure property). We
briefly describe how Blom's\-secure key pre-distribution system works (we have made
some slight modifications to the scheme in order to make it more suitable for sensor net-
works, for the essential features remain unchanged).

During the pre-deployment phase, the base station first constrgts &) x N matrix
G over a finite fieldGF(q), whereN is the size of the network ang > N. Matrix G
is public information; any sensor can know the content§’pfind even adversaries are
allowed to knowG. Then the base station creates a randam 1) x (A + 1) symmetric
matrix D overG F(q), and computes al x (A+1) matrix A = (D-G)T, where(D-G)T
is the transpose db - G. Matrix D needs to be kept secret, and should not be disclosed to
adversaries or any sensor node (although, as will be discussed later, one(ow Gfi©
will be disclosed to each sensor node). Because symmetric, it is easy to see:

A-G=D-6&"-G¢=G"-D' . G=G"-D-G
= (A-Q)T.

This means thad - G is a symmetric matrix. If we lek’ = A-G, we know thati(;; = K,
wherekK;; is the element ik located in theth row andjth column. We uséf;; (or K;;)

as the pairwise key between nodand nodej. Fig. 1 illustrates how the pairwise key
K;; = Kj; is generated. To carry out the above computation, nodasj should be able

to computek;; and K ;;, respectively. This can be easily achieved using the following key
pre-distribution scheme, fagr=1,..., N:

(1) store thekth row of matrix A at nodek, and
(2) store thekth column of matrixG' at nodek.®

Therefore, when nodesand; need to establish pairwise key, they first exchange their
columns ofG and then they can compuf€;; and K;, respectively, using their private
rows of A. Because7 is public information, its columns can be transmitted in plaintext.
It has been shown [Blom 1985] that the above schemesiscure if any\ 4+ 1 columns of
G are linearly independent. Thissecure property guarantees that no coalition of up to
nodes other thahand; can computds;; or K ;.

An Example of Matrix G

We show an example of matri. Note that any\ + 1 columns ofG must be linearly
independent in order to achieve thesecure property. Since each pairwise key is repre-
sented by an element in the finite figl'(¢), we must sefq| to be larger than the key size
we desire. Thus, if 64-bit keys are desired we may chqasethe smallest prime number
larger thar2®* (alternately, we may chooge= 2%%); note that for all reasonable values of
N we will haveq > N as required. Let be a primitive element ofF'(¢); that is, each
nonzero element id:F'(¢) can be represented by some powesofA feasibleG can be

3We will show later that a sensor need not store the whole column, because each column can be generated from
a single field element.
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Fig. 1. Generating Keys in Blom’s Scheme

designed as follows [MacWilliams and Sloane 1977]:

1 1 1 .- 1
s s 3 . SN
2

a—|s (82)2 (83)2 (SN)Q

s>‘ (SQ)A (SS)A (SN)A

It is well-known thats’ # s7 if i # j mod ¢ (this is a property of primitive elements).
SinceG is a Vandermonde matrix, it can be shown that ARyl columns ofG are linearly
independent when, s2, 53, ..., sV are all distinct [MacWilliams and Sloane 1977]. In
practice,G can be generated by the primitive elemerdf GF(q). Therefore, when we

store thekth column ofG at nodek, we only need to store the seell at this node, and

any node can regenerate the column given the seed. Tradeoffs between memory usage and
computational complexity will be discussed later in the paper.

4. MULTIPLE-SPACE KEY PRE-DISTRIBUTION SCHEME

To achieve better resilience against node capture, we propose a new key pre-distribution
scheme that uses Blom’s method as a building block. Our idea is based on the following
observations: Blom’s method guarantees thay pair of nodes can establish a shared
secret key. If we imagine a graph in which each sensor node is a vertex and there is an
edge between nodes only if they can establish a shared key, then Blom’s scheme results in
acompletggraph (i.e., and edge exists between all node pairs). Although full connectivity
is desirable, it is not necessary. To achieve our goal of key agreement, all we need is a
connectedjraph, rather than a complete graph. Previous work show$&yhaiuiring the
graph to be connected rather than complete, the information stored by each sensor node
can be reduced

Before we describe our proposed scheme, we defikeyaspacegor spacein short)
as a pair of matriceéD, ) as defined in Blom’s scheme. We say a node picks a key
spaceg D, G) if the node carries the secret information generated flbin) using Blom’s
scheme. Two nodes can calculate pairwise key if they have picked a common key space.

4.1 Key Pre-Distribution Phase

During the key pre-distribution phase, we need to assign key information to each node,
such that after deployment, neighboring sensor nodes can establish a shared, secret key.
Assume that each sensor node has a unigue identity, whose range istivagsh We also
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select the parametersw, and A, where2 < 7 < w. These parameters determine the
security and performance of our scheme, as will be discussed later in the paper. Our key
generation/distribution phase consists of the following steps:

Step 1: GeneratingG matrix. We first select a primitive element from a finite field
GF(q), where|q| is larger than the desired key length (and ajsa- N), to create a
generator matrixG of size (A + 1) x N. Let G(j) represent thgth column ofG. We
provideG(j) to nodej. As we have already shown in Section 3, althodgly) contains

(A + 1) elements, each sensor only needs to store one field element (the second element
of the column), which can be used to regenerate all the elemenit§jin Therefore the
memory usage for storing(;) at a node is just a single element. Since the seed is unique
for each sensor node, it can also be used as a node identity.

Step 2: GeneratingD matrices. We generate random, symmetric matrice3y,. . ., D,
of size(A+1) x (A\+1). We call each tuplé&; = (D;,G) (fori =1,...,w), akey space.
We then compute the matri; = (D; - G)T. Let A;(j) represent thgth row of A;.

Step 3: Selectingr spaces. We randomly select distinct key spaces from the key
spaces for each node. For each spgceelected by nodg, we store thgth row of 4; (i.e.
A;(j)) at this node. This information is secret; under no circumstance should a node send
this information to any other node. According to Blom’s scheme, two nodes can establish
a common secret key if they have both picked a common key space.

SinceA; isanN x (A + 1) matrix, 4;(j) consists of A + 1) elements. Therefore, each
node needs to stoif@ + 1)7 elements in its memory. Because the length of each element
is (roughly) the same as the length of the secret keys, the memory usage of each node is
(A + 1)7 times the length of the key (we do not count the space required to store the seed
for G(j), since this may serve as the node identity).

4.2 Key Agreement Phase

After deployment, each node needs to discover whether it shares any space with its neigh-
bors. To do this, each node broadcasts a message containing the following information:
(1) the node’s id, (2) the indices of the spaces it cartiasd (3) the seed of the column of
G it carries®

Assume that nodesandj are neighbors, and they have received the above broadcast
messages. If they find out that they have a common space,.sétyey can compute their
pairwise secret key using Blom’s scheme: Initially nedsA. (i) and seed fo6 (i), and
nodej hasA.(j) and seed for7(j). After exchanging the seeds, nodean regenerate
G(j) and nodej can regeneraté'(i); then the pairwise secret key between nodasd,
K;; = Kj;, can be computed in the following manner by these two nodes independently:

Kij = Kj; = Ac(i) - G(j) = Ac(g) - G(4).

After secret keys with neighbors are set up, the entire sensor network forms the following
key-sharing graph

DEFINITION 4.1. (Key-sharing graph).et V' represent all the nodes in the sensor net-

41f we are concerned about disclosing the indices of the spaces each node carries, we can use the challenge-
response technique to avoid sending the indices [Chan et al. 2003].
5As mentioned earlier, we could also let the node identity be the same as the seed.
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work. A key-sharing grapbry.;(V, E) is constructed in the following manner: For any two
nodesi andj in V, there exists an edge between them if and only if (1) nodesl; have

at least one common key space, and (2) nedexlj can reach each other (i.e., are within
wireless transmission range).

We now show how two neighboring nodesand j who do not share a common key
space could still establish a shared secret key. The idea is to use the secure channels that
have already been established in the key-sharing gtaphas long as; is connected,
two neighboring nodesand; can always find a path &', fromi to j. Assume that the
path isi, vy, ..., v, j. TO establish a common secret key betweéemd j, nodes first
generates a random kéy. Theni sends the key to, using their secure linky; sends the
key towvs using the secure link between andv,, and so on until receives the key from
v;. Nodesi andj use this secret kel{ as their pairwise key. Because the key is always
forwarded over a secure link, no nodes beyond this path can determine the key.

4.3 Computing w, 7, and Memory Usage

As we have just shown, to make it possible for any pair of nodes to be able to find a secret
key between them, the key sharing graph. (V, E') needs to beonnectedGiven the size

and the density of a network, how can we select the values #ordr such that the graph

G5 is connected with high probability? We use the following three-step approach, which

is adapted from [Eschenauer and Gligor 2002]. Although this approach is heuristic and
not rigorous, it has been suggested and used in previous work in this area [Eschenauer and
Gligor 2002; Chan et al. 2003].

Step 1. Computing required local connectivity. Let P, be the probability that the key-
sharing graph is connected. We callgibbal connectivity We uselocal connectivity
to refer to the probability of two neighboring nodes sharing at least one space (i.e., the
probability they can establish a common key). The global connectivity and the local con-
nectivity are related: to achieve a desired global connecti®itythe local connectivity
must be higher than a certain value; we call this value¢heired local connectivityand
denote it byp,equired-

Using results from the theory of random graphs [i&dnd Rnyi 1959], we can relate
the average node degrédi.e., the average number of edges connected to each node) to
the global connectivity probability?, for a network of sizeV (for N large):

(N —

N
For a given density of sensor network deploymentplée the expected number of neigh-
bors within wireless communication range of a node. Since the expected node degree
should be at least as calculated above, the required local connectiyjty,,ir.q can be
estimated as:

d= D [In(N) — In(—In(P.))] . (1)

d

Prequired = —- (2)
n

We stress that this only guarantees connectivity in a heuristic (and not a rigorous) sense:
to apply the theory of random graphs it must be the case that a node hawttigether
nodes uniformly distributed throughout the graptiere, however, nodes only have edges
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to their physically-close neighbors. Yet, we are not aware of any problems in practice with
using this heuristic estimate.

Step 2: Computing actual local connectivity.After we have selected values forandr,

the actual local connectivity is determined by these values. Wp usg,; to represent the

actual local connectivity, namely,....; is the actual probability of any two neighboring
nodes sharing at least one space (i.e., the probability that they can establish a common
key). Sincep,ciuar = 1 — Pr(two nodes do not share any space),

Pactual = 1 — (T)(E,)‘QF) =1- m ®)

T

The values of,.+.q; have been plotted in Fig. 2 whenvaries fromr to 100 andr =
2,4,6,8. For example, one can see that, whes 4, the value ofv must be at most 25 in
order to achieve local connectivity,.;,q; > 0.5.

o
2

°
>

o
IS

Pr[sharing at least one key]
3 o
& &

Fig. 2. Probability of sharing at least one key when two nodes each randomly chogisases fronw spaces.

The collection of sets of spaces assigned to each sensor form a probabilistic quorum
system [Malkhi et al. 2001]: the desire is that every two sensors have a space in common

with high probability. Next we show that if > ,/In ﬁ\/& then the probability

of intersection is at leasi,t.q;. FOr example, whem > m@, the probability of
intersection is at least/2. This helps explain the behavior evidence in Fig. 2. A proof
of this fact, similar to proof of the “birthday paradox”, is as follows: It is well-known that
1—x <e*forall z > 0. Therefore,

(CEDE
actua =1-——=
Pactual (w—27)lW!
:1_(1_Z> - V(1T
w w-—1 w—T7+1
> 1_9—(54‘“)_#‘ +o=5)
2
>1l—e @
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Accordingly, we have
1

T<y/In ——M—Vw.
1- Pactual

Thus, the value of to achievep,ta; (for givenw) is at most, /In —1—/w.

1—pactual

Step 3: Computingw and 7. Knowing the required local connectivify,cquir.a and the
actual local connectivity,.;.q1, in order to achieve the desired global connectivitywe
should ha\/@actual > Prequired- Thus:

(W=7 _ (V-
(w=27)lw! = nN

Therefore, in order to achieve a certdih for a network of sizeNV and the expected
number of neighbors for each node beingwe just need to find values af andr such
that Inequality (4) is satisfied.

1—

Y (ln(N) — In(~ n(P,))] (4)

Step 4: Computing memory usageAccording to Blom’s scheme, a hode needs to store
a row from anN x (A + 1) matrix (D - G)T; therefore, for each selected space, a node
needs to carr\ + 1 elements; Hence the total memory usagéor each node is:

m=(\+1)T. (5)

(As mentioned earlier, we do not count the field element needed to gei§iat&nce this
can also serve as the node identity.)

5. SECURITY ANALYSIS

We evaluate the multiple-space key pre-distribution scheme in terms of its resilience against
node capture. Our evaluation is based on two metrics: (1) Wheades are captured,

what is the probability that at least one key space is broken? This analysis shows when the
network starts to become insecure. (2) Whenodes are captured, what fraction of the
additional communication (i.e., communication amangapturednodes) also becomes
compromised? This analysis shows the expected payoff an adversary obtains after captur-
ing a certain number of nodes.

5.1 Probability of At Least One Space Being Broken

We define the unit of memory size as the size of a secret key (e.g., 64 bits). In Blom’s
scheme, for a space to hesecure, each node needs to use memory ofsize Therefore,
if the memory usage i8: and each node needs to carrgpaces, the value of should be
| 2] — 1. We use this value fok in the following analysis.

Let S; be the event that spac% is broken (fori = 1,...,w), and letC,, be the event
thatx nodes are compromised in the network. Furthermore§;let S; be the joint event

that either spacs; or spaceS;, or both, is broken and lét= ~. Hence, we have

w

Pr(at least one space is brokg@,,) = Pr(S; US; U---US, | Cy).

According to the Union Bound,
Pr(S; U U8, | C:) <Y Pr(Si| Ca).
=1
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Due to the fact that each key space is broken with equal probability,

> Pr(S; | Cr) = wPr(S1 | Cr).

=1
Therefore,

Pr(at least one space is brokgé,,)

< Pr(Si [ Co) = wPr(S1 | Ca). (6)
i=1

We now need to calculater(S; | C,), the probability of spacé; being compromised
whenz nodes are compromised. Because each node carries information paces, the
probability that each compromised node carries information apistt) = ~. Therefore,
after x nodes are compromised, the probability that exagtlyf thesex nodes contain
information aboutS; is (j)@j(l — 6)*=J. Since spacé; can be broken only after at least
A+ 1 nodes are compromised (by thesecure property of the underlying Blom scheme),
we have the following result:

Pr(S | Cp) = Z (j)eja_e)m—j. 7)

J=A+1
Combining Inequality (6) and Equation (7), we have the following upper bound:

Pr(at least one space is brokeé,.)

x> (@7 ®

We plot both simulation and analytical results in Fig. 3. From the figure, the two results
match each other closely, meaning that the union bound works quite well in the scenarios
we discuss. Fig. 3 shows, for example, that when the memory usage is set toi2G@t
to 50, andr is set to 4, the value of for each space i$9 = |23°| — 1, but an adversary
needs to capture about 380 nodes in order to be able to break at least one key space with

reasonably-high probability.

Authentication PropertyDue to the property of Blom’s scheme, all keys generated in a
space are pairwise keys. Therefore, when the space is not yet compromised, keys in this
space can be used directly for authentication (note, however, that thisatdjuarantee
secure pairwise authentication in the sense of Section 2). After a space is broken, however,
an adversary can generate all the pairwise keys in that space, and keys in that space can no
longer be used for authentication purposes.

5.2 The Fraction of Network Communication that is Compromised

To understand the resilience of our key pre-distribution scheme, we need to find out how the
capture ofr sensor nodes by an adversary affects the rest of the network. In particular, we
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Fig. 3. The probability of at least one key space being compromised by the adversary when the adversary has
capturedr nodes fn = 200, w = 50). p in the figure represents, c¢v.q;-

want to find out the fraction of additional communication (i.e., communication among the
uncaptured nodes) that an adversary can compromise based on the information retrieved
from thex captured nodes. To compute this fraction, we first compute the probability that
any one of the additional communication links is compromised aftevdes are captured.
Note that we only consider the links in the key-sharing graph, and each of these links is
secured using a pairwise key computed from the common key space shared by the two
nodes of this link. We should also notice that after the key setup stage, two neighboring
nodes can use the established secure links to agree upon another random key to secure
their communication. Because this key is not generated from any key space, the security
of this new random key does not directly depend on whether the key spaces are broken.
However, if an adversary can record all the communications during the key setup stage,
he/she can still compromise this new key after compromising the corresponding links in
the key-sharing graph.

Let ¢ be a link in the key-sharing graph between two uncompromised nodeds doed
the communication key used for this link. LBt represent the joint event that belongs
to spaceS; and space; is compromised. We usk € S; to represent thatX belongs to
spaceS;”. The probability ofc being broken given: nodes are compromised is:

Pr(cis broken| C,;) = Pr(B; UByU---UB, | Cy).

Sincec can only use one key, everifs, ..., 5, are mutually exclusive. Therefore,
Pr(cis broken| C,) = > Pr(B; | C;) = wPr(By | C,),
i=1

because all events; are equally likely. Note that
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Pr((K € S1) N (S is compromisedn C,,)
Pr(C,) '
Since the eventK € S;) is independent of the eveit or the event§; is compromised),

Pr(K € S1) - Pr(S; is compromisedn C,)
Pr(C;)
= Pr(K € S;) - Pr(S; is compromised C,,).
Pr(S; is compromised C,) can be calculated by Equation (7). The probability tRat

belongs to spacs,; is the probability that link: uses a key from spacy. Since the choice
of a space fromw key spaces is equally probable, we have:

PY(Bl | Cz) =

Pr(B:i|Cy) =

Pr(K € S1) = Pr(the link c uses a key from spacy) = l
w

Therefore,

Pr(cis broken| C,)

= wPr(B |Cy) =w- 1 - Pr(S; is compromised C,,)

w

= Pr(S5; is compromised C,)

- > (@ ®
: Jj) \w w
j=A+1

Assume that there arg secure communication links that do not involve any of the
compromised nodes. Given the probabilty(c is broken| C, ), we know that the expected
fraction of broken communication links among thosknks is

~ - Pr(cis broken| C,)

Y
= Pr(cis broken| C,,)
= Pr(S; is compromised C,). (10)

The above equation indicates that, given thaiodes are compromised, the fraction of
the compromised secure communication links outside of thosempromised nodes is
the same as the probability of one space being compromised. This follows directly from
the linearity of expectations.

5.2.1 Comparison.Fig. 4 compares our scheme (the one with solid lines) with the
Chan-Perrig-Song schemeg£ 2, ¢ = 3) and the Eschenauer-Gligor scheme=1). The
figure clearly shows the advantages of our scheme. For example, in both the Chan-Perrig-
Song and Eschenauer-Gligor schemes, whea 200 andp,cva: = 0.33 an adversary
needs to compromise less than 100 nodes in order to comprdgfisef the links. In
our scheme, however, the adversary needs to compraitiseodes before compromising
10% of the links. Therefore, our scheme quite substantially lowers the initial payoff to
the adversary for smaller-scale network breaches. Chan, Perrig, and Song also proposed
a modification of their scheme using multipath key reinforcement to improve the secu-
rity [Chan et al. 2003]. The same technique can be applied to our scheme to improve the
security as well; we leave further comparison to our future work.
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Fig. 4. The figures show the probability that a specific random communication link be-
tween two random nodes; is compromised after an adversary has capturaddes, not
includingi or j. The variablen denotes the memory usage (where the unit of memory is
the length of a shared key), apgl....; denotes the probability that a random pair of nodes
can establish a secure link.

In Blom’s scheme, whem = 200 the network is perfectly secure if less thzi nodes
are compromised, but is completely compromised as so@fitasodes are compromised
(Pactual 1S always equal ta in Blom’s scheme).

5.2.2 Further Analysis.Even though Equation (9) can be used for numerical computa-
tion, it is too complicated to figure out the relationship betweem, w, andr. According
to the results shown in Fig. 4, there is a small range where the fraction of the compro-
mised secure communication links increases exponentially with respecMi@ develop
an analytical form to estimate this range. It should be noted that Equation (9) is the tail of
the binomial distribution. Therefore, using the bound on the tail of the binomial distribu-
tion [Peterson 1972], we can derive the following theorem regarding that range.

THEOREM 5.1. Assume thah = * >> 1, s.t. A + 1 = \. Define the entropy function
ofy,0<y<1l,asH(y)=—-ylny— (1 —y)In(1l —y)andH'(y) = dH (y)/dy. For all
x> A+1,

E——— S C L N 3] 1—0)",
2 xa(l—a) Z () :

j=X2+1
wherea = 21,0 = T and E(«, 0) = H(0) + (o — 0)H'(0) — H(a). Furthermore, if
r< 22 (11)
T

then

x

> (”“"> /(1 —0)" 7 < e *F0),
J

J=A+1
PROOFE Assume that: > A + 1. According to the bound on the tail of binomial distri-
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bution [Peterson 1972], Equation (9) can be bounded as follows:

1 a—aw(l_a)—(l—(x)xeax< (1 a)x < Z ( )03 1_ ) —J

2y/za(l — a) J=A+1

and ifa > 6, then

x

Z (j) Qj(l _ e)z*j < afax(l _ a)*(lfa)moaz(l _ 9)(1704)957 (12)

J=A+1

wherea = 2t andf = . Since\ = 2 > 1, A + 1 ~ . Consequentlyy ~ 2 = 2
By taking the logarithm of the upper bound of Inequality (12) and muIUpIymgtH;y We
have

f%m (orw( — )~ (-egar(y fa)ﬂ*a)ﬁ)

= —H(a) —alnfd— (1 —-a)ln(l —0)

= —H@)+HBO)+@—-—a)lnbd+[(1-0)—(1—-a)]ln(l-290)
= —H(a)+ H(®) + (a — 0)(—1Ind + In(1 — 9)).

(

SinceH'(y) = dH(y)/dy = In(1 — y) — Iny,

éln a™%(1 — )" (Im®zgor (] — 9)(170‘)1/’) = FE(a,0)
where
E(a,0) = H®) + (o — 0)H'(0) — H(a).

Finally,

m T

a>0 —= — > —

xT w

— < %, (13)
T

giving the claimed result. ]

According to [Peterson 1972F(«, 0) < 0whenz > 7%, So, whenr > 22, the lower
bound indicates that the tail of the binomial distribution increases exponentially with re-
specttar. Itis also true thaF(«, 8) > 0 when Inequality (11) is satisfied [Peterson 1972].
The upper bound indicates that the tail of the binomial distribution can be exponentially
bounded away fromt whenz is not close tos. For example, when is 25% away from
7F (e, x = 0.75 x 7 = 413) andm = 200, 7 = 2, andw = 11, then the upper bound
is 5089 = 0.006, which is two orders of magnitude smaller thanHence,” can be
used as an estimation (upper bound) on the valuewhere the fraction of compromised
links increases exponentially with respectitoSo the adversary can obtain higher payoff
when the number of nodes it compromises is closé#a The results shown in Fig. 4
verify that this estimation is quite accurate.

Based on the above discussion, the number of nodes an adversary needs to compromise
to gain a significant payoff is linearly related to the amount of the memory used when
andr are fixed. That is, if the probability of any two nodes sharing at least one space,
Pactual, 1S fixed, then increasing the memory space at each node linearly increases the
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degree of security. For fixed memory usage, the security is linearly related t8ince
w andr are related t@,.t.q1, ONE should choose those valuescofindr that satisfy the
requirement on global connectivity and at the same time yield the largest vatge Bor
example, by using Inequality (4), one may find all pdits ) satisfying the requirement
on the global connectivity. Among all the pairs, the one with the largest valyg gives
the best security.

6. OVERHEAD ANALYSIS
6.1 Communication Overhead

According to our previous discussions, the probabifity;..; that two neighbor nodes
share a key space is less than 1. When two neighboring nodes are not connected directly,
they need to find a path (in the key-sharing graph) to connect to each other. In this section,
we investigate the number of hops required on this path for various parameters of our
scheme. When the two neighbors are connected directly, the number of hops needed to
connect them is obviously 1. When more hops are needed to connect two neighbor nodes,
the communication overhead of setting up the security association between them is higher.

Let p,(¢) be the probability that the smallest number of hops needed to connect two
neighboring nodes i6. Obviously,p;, (1) IS pactuai- FOrpr(2), the third node connecting
these two nodes must be in the overlapped region of the transmission range éfamstie
nodej, as shown in Fig. 5.

Fig. 5. Overlap Regiot,,eriqp(2)

The size of this overlapped region is:

Aovertap(z) = 2r? cos™! (2—27“) — 22— (%)2, (14)

wherer is the transmission range of each node. The total number of nodes in the overlap
region is:

n
Noverlap(z) - WAO’UCT'lap(Z)?

wheren is the total number of sensor nodes in the transmission range of a sensor node.

We then calculatey, (2, z), the probability that and; are not connected directly but
there exists at least a common neighbor connecting them, given that the distance between
i andj is z:
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ph(Qa Z) = (]— - pactual)[l - p2,1(2)]
wherep, 1 (2) is the probability that none of the common neighborsarfid; is connected
to both of them given thatand; are not connected.
The value ofp, (2) can be calculated as the averagef2, z) throughout all the possi-
ble values of:
pr(2) = [ [f(2)p(2,2)dz
0

wheref(z) is the Probability Density Function (PDF) of

0z 0z T 0z

A similar approach may be used to calculatg3). The only difference is that, in the
case ofp,(3), we need to find the probability that two nodes, nodesnd v, that are
neighboring to nodesand j, respectively, should provide a secure link between nédes
andj, as shown in Fig. 6.

f(z) P B

_OF(Z) _0[Pr(Z<z)] _ 0 {7722] 2%

)

Fig. 6. Overlap Region fap,(3)

We provide the full derivations af,(2) andp,(3) in Appendix A. The final results are
as follows:

r(2) = (1 = Pactuat)
1 %[260571(%)*?4'\/@]
.{12/0 YPs 3 dy

pu(3) ~ 1= pu(1) — pr(2)] [1_2/012
27 (1 Wzi [2005*1@)—1\/@} dydo dz]

A(Ps2)”

where
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Fig. 7. Distribution on the number of hops required to connect neighbots §0)

26 =207 + (5]
()’
7—17—17—MaXa,b)

mes-gr 2T L (O

w727'—c W7277(T7a)
T—a—c T—b—c
= \/y?+ 22+ 2yz cos(h).

We plot the values opy (1), pr(2), andpy(3) in Fig. 7. From these figures, we can
observe thapy, (1) + pn(2) =~ 1 whenr is large (i.e., the probability that at most 2 hops
are required is essentially 1).

P22 = 1—

ZZ

6.2 Computational Overhead

As indicated in Section 3, it is necessary for nodes to calculate the common keys by using
the corresponding columns of matrix. If the Vandermonde matrix is chosen as the
matrix, the dominating computation cost in our scheme is duE\te- 1 multiplications

in the field GF(¢): A — 1 come from the need to regenerate the corresponding column
of G from a seed, while the othexr come from the inner product of the corresponding
row of (DG)T with this column ofG. Note that this can easily be reduced to only
multiplications using Horner’s rule for polynomial evaluation. (Althougt\) additions

in GF(q) are also necessary, these are dominated by the field multiplications.)

To analyze the computational overhead of these modular multiplications, we compare
our computation with thé?S A public key encryption algorithm, whose cost makes it un-
suitable for sensor networks. We show that the energy consumption of the modular multi-
plications in our scheme is far less than that of RSA. This is due to two factassmall
and the block size is small.

According to Equation (5), whem = 200 andr = 4, X is about50; the total number
of multiplications is then roughly00 (this assumes a naive implementation which does
not apply Horner’s rule). If we choose 64 bits as the size of a secret key, then our mod-
ular multiplications are 64-bit computations. In total, then, we need routffily64-bit
modular multiplications. For the RSA signature scheme using a 1024-bit modulus, the
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length of the private exponent usually needs to be roughly 1024 bits as well. Thus, a single
exponentiation requires approximately 1500 multiplications. Moreover, a single multipli-
cation modulo a 1024-bit integer is rougl’(l%%)2 = 256 times more expensive than a
single multiplication modulo a 64-bit number. Therefore, computing an RSA signature
is roughly 256 % = 3840 times more expensive than deriving a shared key in our
scheme. Assuming that the energy cost is proportional to the number of multiplications,
the cost of our scheme is aboyf;; that of RSA. In a mid-range processor such as the
Motorola MC68328 “DragonBall” (see [Carman et al. 2000]), the cost of our scheme is
only 25 times more expensive than a 128-bit AES block cipher evaluation (AES is consid-
ered as very energy-efficient); i.e., the computational cost of our scheme is equivalent to
encrypting a 3200-bit message using AES.

Moreover, we mention two simple ways to improve the efficiency of our scheme. First,
note that generating the necessary columizafieed only be donenceby each node;
that is, node can generaté:(i) once (at the outset of the key-establishment phase) and
then broadcast this column to each node with whom it desires to establish a common key.
This reduces themortizedcost of establishing a key to only multiplications (this is
an improvement if Horner’s rule is not used above); this can also be further optimized if
it is expected that nodes will need to compute a large number of shared keys. Second,
to derive 64-bit keys it is not necessary work over a single figld(q) with |q| > 64;
instead, one can define the key as the concatenation of four “sub-keys” that each lie in a
field GF(q) with |q| > 16. (For example, a single key space o' (24) can be mapped
to four independent key spaces oeF (2'6). This assumeg!® > N.) This will be more
efficient sincet\ multiplications in a 16-bit field are more efficient thammultiplications
in a 64-bit field. The key observation is that security is not affected by working@¥&t)
whereq is “small”; this is because our security arguments are information-theoretic and do
not rely on any “cryptographic hardness” of the fiéld’(q).

7. IMPROVING SECURITY USING TWO-HOP NEIGHBORS

In this section we describe a way to further improve the security of our key pre-distribution
scheme. Based on Inequality (4), we have

e .
2 (]\:l;\/'l)(ln(N) — In(—In(F%))). (15)

Notice that the left side is smaller whenis larger, and the right side is smaller when
n is larger when other parameters are fixed. Therefore, when the networkvsidee
global connectivityP,, andr are fixed, we can select a largerif the expected number
of neighborsn increases while still satisfying the above inequality. We know immediately
from Inequality (11) that the larger the value wfis, the more resilient the network will
be. Therefore, increasingcan lead to security improvement.

There are two ways to increaseor an existing sensor network: the first is to increase
the communication range, but this also increases energy consumption. The second way is
to use two-hop neighbors. A two-hop neighbor of neds a node that can be reached
via one ofv’s one-hop (or direct) neighbors. To send a message to a two-hop neighbor,
v needs to ask its direct neighbor to forward the message. Since the intermediate node
only forwards the message and does not need to read the contents of the message, there
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is no need to establish a secure channel between the sender and the intermediate node, or
between the intermediate node and the two-hop neighbor. As long as the sender and its
two-hop neighbor can establish a secure channel, the communication between them will
be secured.

If two nodes; andj, are two-hop neighbors and both of them carry key information from
a common key space, they can find a secret key between themselves using the following
approach: First, they find an intermediate nddbat is a neighbor to both of them. Nodes
1 andj then exchange their identities and public part of key space informatioh Viaen,
1 andj find a common key space, and compute their secret key in that common key space.
7 andj can then encrypt any future communication between themselves using this secret
key. Although all future communication still needs to go through an intermediate node,
e.g.,I, the intermediate node cannot decrypt the message because it does not have the key.

After all direct neighbors and two-hop neighbors have established secure channels among
themselves, the entire network formsExtended Key-Sharing Gragh., in which two
nodes are connected by an edge if there is a secure channel between them, i.e. these
two nodes (1) have at least one common key space, and (2) are either direct neighbors
or two-hop neighbors. Once we have formed the ,, key agreement between any pair
of two neighboring nodesandj can be performed based 6#;, in the same way as it
is performed based on the original Key-Sharing Gréhhy. The difference between this
scheme and th&';;-based key agreement scheme is that indpg,-based key agreement
scheme, some edges along a secure path might be an edge between two-hop neighbors,
thus forwarding is needed.

7.1 Security Improvement

Security can be improved significantly if key agreement is based gn. When we treat

a two-hop neighbor as a neighbor, the radius of the range covered by a node doubles,
so the area that a node can cover is increased by four times. Therefore, the expected
number of neighbora’ for each node iz, is about four times as large as thatdf..
According to Equations (1) and (2), to achieve the same connectiitys that ofGy,

the value ofp,cquireqa fOr Gers is one fourth of the value Op,cquirea for Gis. Thus,

the value ofpycivuar fOr Gegs is one fourth of the value of,cruar fOr Grs. As we have
already shown, whenis fixed, the larger the value afis, the smaller the value @f, ;..

is. For example, assuming a network si¥e= 10,000 and the desirable connectivity

P, =0.99999, if we fix 7 = 2, we need to select = 7 for the G s-based key agreement
scheme; however, using.;s-based scheme, we can select 31. The security of the

latter scheme is improved significantly. By using Equation (11), there is a&dgu{~

4.5) times security improvement of the two-hop-neighbor scheme over the basic 1-hop-
neighbor scheme. Using Equation (9), we plot the security property of the above two cases
in Fig. 8.

7.2 Overhead Analysis

Such security improvement does come with a cost. If the length (the total number of
edges) of a path between two nodesis), s is ¢, the actual number of hops along this path

is larger thar? because some edgesGh; connect two two-hop neighbors. For each
node, the number of two-hop neighbors on the average is three times the number of one-
hop neighbors if nodes are uniformly distributed. Therefore, assuming that the probability
of selecting a two-hop edge and a one-hop edge is the same, for a path ofdetiggh
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Fig. 8. Comparison: The left curve uses the 1-hop-neighbor schemedwith7 and+ = 2), and the right
curve uses the 2-hop-neighbor scheme (with- 31, andr = 2). Both figures achieve the same desirable global

connectivity P. = 0.99999.

expected actual length %* 20 + i x ¢ = 1.75¢ (note: in practice, we can achieve better
than1.75¢ because we usually prefer the one-hop edge if both a one-hop edge and a two-
hop edge are candidates for a secure path).p].&t) be thep;, (¢) value of the two-hop-
neighbor scheme and lgf (¢) be thep,, (¢) value of the basic scheme (only using direct
neighbors); assume the maximum length of the shortest path between two neighhors is
Therefore, the ratio between the overhead of the two-hop-neighbor scheme and that of the
basic scheme can be estimated using the following formula:
(1) + 30y L1750 pfy(£)
T , (16)

2oy Coph(0)
where we do not need to multiply first term witkir5 since if two neighbors share a com-
mon key, then the length of path between them is 1 and is never a two-hop edge. For
example, the overhead ratio of the two schemes used in Fig3.83snamely with3.18
times more overhead, the resilience can be improvetltimes. The communication cost

discussed here occurs only during the key setup phase, so it is a one-time cost. The idea of
two-hop neighbors can be extended to multi-hop neighbors, and the security can be further

improved.

/
Relative Overheag: %

8. CONCLUSIONS

We have proposed a framework in which to analyze the security of key pre-distribution
schemes. We hope this framework will be useful to others working in this area. Much
work remains to fully flesh out these definitions, and perhaps to achieve a more efficient
construction of a secure pairwise authentication scheme without relying on the random
oracle model.

We have also presented a new pairwise key pre-distribution scheme for wireless sensor
networks. Our scheme has a number of appealing properties. First, our scheme is scalable
and flexible. For a network that uses 64-bit secret keys, our scheme allows\up-tp%*
sensor nodes. These nodes do not need to be deployed at the same time; they can be added
later, and still be able to establish secret keys with existing nodes. Second, compared to
existing key pre-distribution schemes, our scheme is substantially more resilient against
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node capture. Our analysis and simulation results have shown, for example, that to com-
promisel0% of the secure links in the network secured using our scheme, an adversary has
to compromise 5 times as many nodes as he/she has to compromise in a network secured
by Chan-Perrig-Song scheme or Eschenauer-Gligor scheme. Furthermore, we have also
shown that network resilience can be further improved if we use multi-hop neighbors.

We have conducted a thorough analysis of the efficiency of our scheme. We have shown
that whenp, 1. > 0.33, a node can (with very high probability) reach any neighbor
within at most 3 hops. The computational requirements of our scheme are modest. Al-
though our scheme involves modular multiplications, we have shown that the energy cost
in establishing a key is (at worst) about the same as encrypting a 3200-bit message using
AES. We also noted a number of ways to further optimize the computation of our scheme.

APPENDIX
A. CALCULATION OF Py (2) AND Py (3)

We present our calculation @f,(2) andpy,(3) in this appendix. We assume the distance
between two nodesandj is z.

A.1 Calculation of pp,(2)

The third node connecting these nodes must be in the overlapped region of the transmission
range of nodeé and nodej, as shown in Fig. 5.
As stated in Equation (14) the size of this overlapped region is:

2
bttt 207 (5) -+~ ()

wherer is the transmission range of each node.
Since, on the average, each node haighbors that are connected to it with wireless
communication, the nodal density inside the transmission range is:

n
p=—3
T2

Thus, the total number of nodes in the overlap region is:

Noverlap (Z) = ponerlap (Z) .

Let px(2, z) be the probability that and;j are not connected directly but there exists at
least a common neighbor connecting them, given that the distance betaeénis z:

pr(2,2) = Pr{fi¢j]N[3 e N;NN; s.t.l < iandl < j]}
= Pr{isj}-Pr{3t e N;NN; st.l < iandl < jli &5}
= (1 - pactual)[l - p2,1(2)]

whereN; andV; represent the set of nodes that are in range of n@ahelj, respectively,
p2.1(%) is the probability that none of the common neighbors ahd is connected to
both of them given that andj are not connected, arg means two nodes share at least
one key space (connected). According to independence of key selections on each node,
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P21 (Z) = (p272)NO‘UErla,p(Z)

wherep, » is the probability that a neighbor nodg of  and; is not connected to both of
them given thai and;j are not connected:

= BGE) () ()
Lo GG =20 + (5]
()’

where () is the number of ways to selectkeys fromw key spaces fot, (“77) is the

T

number of ways to select completely differenkeys forj, and (¥) — 2(“-7) + (*7*7)

T

gives the number of ways to select keys f@uch that is connected to bothandj.
The PDF ofz can be expressed #$z),

)

b

f(2)

_OF(Z) 0Pr(Z<=z)] 0 [wmz*] 2z
0z 0z T 0z [ ]

mr? r2’

thus,pp (2) is

" 2z (s
ph(z) = / (1 _pactual)ﬁ |:1 - (pQ,Q)NUUE’ZaP( ):| dz
0

(1 Pctual) {1 2 P Ol dy}

where we substitute with y = 2.

r

A.2 Calculation of py,(3)

pr(3) can be calculated with a similar method. We definé3, z) as the probability that
3 hops are needed to connect ne@ad nodej, given that the distance between them is
(z<r):

ph(37 Z)

Pr{[i &j]N [Vl € N;NN; (is not connected to bothand;j | N

[Ju € N; andv € N s.t.u < i andv < j andu < v]}
= [1=pa(1) = pa(2)][1 — p3,1(2)]

wherel — ps3 1(2) is the probability that there exists at least a pair of nadesdv con-
nected to each other and connectedand; separately, given thatand; are not directly
connected, nor can they be connected through another common neighbor.

The exact calculation afs 1 (=) is complicated. We give an approximation as follows:
For every neighbot of nodej, we find all the possible node, which may satisfyi <
u < v < j. We calculate the number of such pairgofv).

Assuming that node is at location(y, #) from origin of j, the distance between node
andi is x:
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= \/y2 + 22 + 2yz cos(h).

Obviously, node: should reside in the shaded area in Fig. 6. The expected number of
nodes residing in the small neighborhood 9f6) is py - dy - df. The number of nodes in
the overlap region of circlé and circlev, Agyeriap(z), can be expressed- Ammp( x).
So the total number of pairs 6f,, v), given that the distance betwegandj is z, is:

2m T
Z) = / / /)Zy : onerlap(‘r) dy df
0 0

where, similar to Eq. (14Woperiap(@) = 2r2 cos™ (&) — - /r? — (£)2.
So,

p31(2) = (p32)™? (7)

whereps - is the probability that for a pair of nodes ¢ N; andv € N, security con-
nections cannot be made through pathi, v, andj given thati andj are not directly
connected or through a common neighbgr. can be estimatéds follows:

7—17—17—MaXa,b)

e D SR ()

a=1 b=1 c=1
- 2 — 27 — —2r — (1 —
. (w 7') (w T c) (w T— (7 a)) (18)

c T—a—c T—b—c
where (%) is the number of ways to seleetkeys fromw key spaces fof, (“7) is the
number of ways to select completely differenkeys forj, a represents the number com-
mon keys shared by andi, b represents the number common keys shared agd j, ¢
represents the number common keys shared égdv, (“’ 2T) gives the number of ways
to select the common keys differentitand; from the pool of key space$“ 2 c) is the
number of ways to select the— a — c keys foru, and(“~ 2r—(r= “)) gives the number of

T—b—
ways to select the — b — c keys forv.
Based on the distribution af, p;,(3) is:

@ ~ [ 2= - (2] [1 ~ (532)") d.

72

We substituter, y, andz with 2’ = £, 4/ = ¥ andz’ =

Z. We further simplify our
notation by dropping the primes from these varlables Thus,

ph(3) ~ [1_ph(1)_ph(2)] [1_2/0 Z(ﬁg,g) 027r 01::*2[2&)5 1 % \/1 % ]dyd@dz‘|.

6Eq. (18) is an approximation because the probability is obtained by assuming only that awdl¢ are not
connected.
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