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Abstract— The Internet architecture provides an unse-
quenced datagram delivery service. Nevertheless, many
higher-layer protocols, such as TCP, assume that packets
are usually delivered in sequence, and consequently suffer
significant degradation when packets are reordered in flight.
While there have been several recent proposals to create pro-
tocols that adapt to reordering, evaluating their effective-
ness requires understanding the dynamics of the reordering
processes prevalent in the Internet. Unfortunately, Inter-
net packet sequencing is a poorly characterized and under-
studied behavior. This failing can be largely attributed to
the lack of accurate and universally applicable methods for
measuring packet reordering. In this paper, we describe a
new set of active measurement techniques that can reliably
estimate one-way end-to-end reordering rates to and from
arbitrary TCP-based servers. We validate these tools in a
controlled setting and show how they can be used to mea-
sure the time-domain distribution of the reordering process
along a given path.

I. I NTRODUCTION

This paper considers a deceptively simple, yet prac-
tically challenging problem: how to accurately measure
packet reordering in the Internet environment and how to
report such measurements in a useful way.

The motivation for this problem arises from the inter-
action between the abstract service guarantees provided
by the Internet architecture and the concrete service as-
sumptions made by higher-layer protocols. The Internet
architecture guarantees only a noisy, unsequenced and un-
reliable datagram service – any packet may be corrupted,
dropped, or reordered in transit. In principal, higher-level
protocols must be designed to tolerate and recover from all
such errors transparently. In practice, real protocols and
applications are optimized around common case assump-
tions about how real Internet infrastructures behave under
normal conditions. Consequently, most protocols assume
that corruption, packet loss and reordering are infrequent

events or occur primarily under deterministic conditions.
When these assumptions are not met, existing protocols
can suffer in performance, correctness, or both. For exam-
ple, it has been shown that the Transmission Control Pro-
tocol (TCP) fares poorly under some wireless channels due
to the increased levels of random packet loss [18]. Simi-
larly, recent empirical analyses of packet corruption have
suggested that many errors may be undetected in long-
lived TCP streams due to the design assumptions of the
Internet checksum algorithm [15].

While less appreciated, packet sequencing errors can
present similar problems to current protocols. For ex-
ample, TCP’s fast retransmit optimization assumes that
packet reordering is sufficiently rare than any reordering
event spanning more than a few packets implies a loss [14].
Since TCP also assumes that losses are primarily caused
by buffer overflows, these reordering events can be mis-
interpreted as congestion signals and cause the sender to
dramatically reduce its throughput [10], [3]. Similarly, in-
teractive streaming media protocols, such as Voice-Over-
IP, assume that sequencing errors are sufficiently rare that
media playout buffers are only necessary to absorb inter-
packet jitter [7]. Finally, some protocols incorporate com-
pression or non-idempotent state transitions that can pro-
duce inconsistent results in the presence of sequencing er-
rors [4], [17], [13].

However, compared to network characteristics such as
loss or delay, the dynamics of packet reordering are far
less well understood. A significant part of the problem
is the lack of standard experimental techniques for mea-
suring the phenomena. Previous reordering studies have
used measurement tools that are inherently biased, such as
ping, or methodologies that scale poorly, such as analyz-
ing multi-site packet traces. As well, the lack of a standard
measurement methodology has hampered the creation of a
standard reordering metric. Consequently, the results be-
tween different studies can superficially vary by an order
of magnitude – creating significant confusion and contro-
versy about the prevalence of reordering.

In this paper, we describe a collection of techniques that
provide one-way reordering measurements in both direc-
tions between a probe host and most TCP-based servers
on the Internet. We also propose a primitive metric – the
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number of exchanges between pairs of test packets – that
can be used to summarize reordering activity for a known
load. While simplistic, this metric captures the essence of
any reordering process and can be further parameterized
to capture more sophisticated phenomena. As an example,
we show how parameterizing packet exchanges by inter-
vening delay can be used to describe the reordering pro-
cess as a function of time.

The remainder of this paper is structured as follows: In
Section II we review the previous work in this area and de-
scribe its strengths and limitations. Section III describes
how our measurement algorithms work, followed by sec-
tion IV which describes our controlled validation results
and our experiences using the resulting tools in the Internet
environment. This section concludes with our early expe-
rience extracting time-domain distributions of reordering
behavior, leading to our conclusion in Section V.

II. RELATED WORK

The two best known measurement studies that discuss
reordering behavior are Paxson’s 1997 general measure-
ment study [10] and Bennett et al’s study of exchange point
reordering [2]. Each is worth discussing briefly.

Paxson’s study is based on a series of measurements
taken between 35 computers on the Internet as follows:
100KB files were transferred between all pairs of ma-
chines, packet traces were collected passively, and the TCP
sequence numbers in each trace were analyzed to deter-
mine if any TCP segments were delivered out-of-order.
One important strength of this approach is that it allows
unidirectional measurements to be made – and in fact Pax-
son reports that reordering activity was asymmetric on the
paths measured (although, as we will explain, it is diffi-
cult to distinguish if this is a property of the path or of the
test). Overall, Paxson reports reordering in two ways: the
fraction of sessions with at least one reordering event (12
and 36 percent across two measurement periods) and the
fraction of packets that were reordered (2 and 0.3 percent
in the direction of data transfer and 0.6 and 0.1 percent in
the opposite direction).

However, there are several shortcomings to this ap-
proach. First, it is difficult to scale this methodology op-
erationally. Performing such tests requires permission to
execute code on both endpoints of any measured path – a
requirement that seems difficult to scale to significant frac-
tions of the Internet. For example, it seems unlikely that
such an approach could be used to estimate reordering on
paths to commercial information services such as cnn.com
or yahoo.com. A second problem is that this technique
does not produce an unbiased estimate of the reordering
behavior on a path. Since reordering is known to be a time-

varying process, the delay between sample packets could
have a strong influence on how much reordering will occur.
TCP’s natural dynamics will produce highly variable sam-
ples as packets are sometimes compressed and sometimes
spread apart. Sources of this variation include the delayed
acknowledgment mechanism (also mentioned by Paxson),
differences in serialization delay due to different packet
sizes, and the usual flow and congestion control mecha-
nisms that can suddenly increase or decrease the number
of packets sent during an interval. The end result is that
this style of passive measurement is effective at estimating
the reordering seen by a one-way 100KB TCP data trans-
fer in situ, but it is unclear if it can be generalized to infer
what might happen to a different application with different
dynamics.

Bennett et al. describe a very different approach to
measuring reordering based on active probes. The au-
thors generate estimates by sending repeated ICMP echo
request packets to a remote host and then evaluating the
order of the ICMP echo reply packets that are generated
in response. The benefit of this approach is that it al-
lows paths to arbitrary hosts to be measured, so long as
the end host will respond to ICMP requests. As with Pax-
son, Bennett et al., also report reordering in two different
ways. For bursts of five 56-byte packets they report that
over 90 percent saw at least one reordering event. Then,
isolating a host with significant reordering, they report that
100 packet bursts of 512 bytes each produce similar results
using a synthetic metric based on how many Selective Ac-
knowledgment (SACK) option records would be needed to
cover the out-of-order replies [6].

The most obvious limitations of this approach arise from
the use of the ICMP echo request/reply protocol for mea-
surement. Using this method it is not possible to distin-
guish if a packet was reordered before it arrived at the re-
mote host or after it left the remote host. Consequently, the
measurements produced can both underestimate the total
reordering and overestimate the re-ordering in either direc-
tion. Since most protocols are more sensitive to reordering
in one direction than another this ambiguity can be quite
important [2], [3]. Also, the use of ICMP as a fine-grained
measurement tool is problematic since system and network
operators alike increasingly filter and rate-limit such traf-
fic to address security concerns. As well, neither metric
used in this study seems easy to generalize: The number
of bursts that have one reordering event is highly sensitive
to the size of the burst, while the number of SACK blocks
covering a reordered sequence is highly TCP-dependent.

Finally, there have been efforts within the IETF to define
active measurement protocols designed expressly for mea-
suring packet reordering [8]. These approaches eliminate



the biases caused by overloading existing TCP sessions or
the ICMP protocol, but still require deployment at each
endpoint measured.

Despite the limitations of existing studies, several re-
searchers have used them to justify modifications to TCP
designed to better tolerate packet reordering [16], [3], [20],
[1]. Most of these approaches dynamically change the fast
retransmit threshold in response to estimated changes in
the reordering rate. All of these projects would benefit
from access to contemporary empirical data, since they
cannot validate the impact of these changes without un-
derstanding the prevalence of reordering phenomena in to-
day’s networks.

III. R EORDERING MEASUREMENT TECHNIQUES

In developing tools that actively measure reordering we
had two principle goals: accuracy and ubiquity. An ideal
tool should produce correct and consistent results, provid-
ing estimates of the reordering activity on theforward path
from the user’s host to an arbitrary endpoint and on the
reverse pathfrom the endpoint back to the user’s host.
Achieving these goals practically is a tricky matter, how-
ever, since it is generally infeasible to deploy new ser-
vices on the remote endpoints. Consequently, our tech-
niques leverage the behavior ofexistingTCP and IP proto-
cols and their implementations – turning any host export-
ing a TCP/IP service into a de facto measurement server.
While this approach is very powerful, it can also be sen-
sitive to minor protocol violations and variations in im-
plementation. In particular, we encountered considerable
challenges posed by network aliasing devices, such as load
balancers, that required us to develop multiple techniques.

In the remainder of this section, we first review the TCP
and IP features that we leveraged to produced our algo-
rithms, and then describe a series of measurement tech-
niques that use standard TCP behavior and common IP im-
plementation characteristics to arrive at estimates of one-
way reordering behavior under varying practical limita-
tions.

A. TCP/IP review

IP is an unreliable, unsequenced datagram protocol. It
provides three important features: network-layer address-
ing, per-protocol demultiplexing, and fragmentation. For
the purposes of this paper only the last quality is worth re-
viewing. Since different network links may support differ-
ent maximum frame sizes, it is possible that a router may
need to fragment an IP datagram into several smaller data-
grams. To allow a remote host to reassemble these frag-
ments, the IP packet header includes an identification field
(IPID), that is specified by the sender. When a datagram

is fragmented, the same identification field is copied into
each fragment and the receiver uses this value as a key to
associate fragments from the same datagram. For this pro-
cedure to work the value of IPID must be unique for all
outstanding packets between a sender and receiver pair. In
practice, most implementations guarantee this property by
minimizing the probability thatany IPID will be repeated
in a given time period. The traditional implementation of
IPID uses a single global counter that is incremented for
every packet that a host sends. This common implementa-
tion artifact implies that when looking at two packets from
the same host, with IPIDx and IPID y, if y > x, the
packet with valuex was sent before the packet with value
y (modulo wraparound, which is easily detected). How-
ever, some newer implementations use alternative schemes
for security reasons, such as small random increments and
per host-pair counters, so any assumptions about this field
must be validated before they can be trusted.

TCP is a connection oriented protocol that provides full-
duplex reliable in-order data communication over unreli-
able network protocols, particularly IP. To provide the or-
dering guarantee, TCP includes a sequencing mechanism
that associates a sequence number with each byte of data.
Each TCP header contains the sequence number of the
first byte of data being transmitted, and an acknowledg-
ment (ACK) number indicating the next byte of data that
the host is expecting to receive. The receiving host uses
the sequence numbers written by the sender to reassemble
packets in the correct order, while the sending host uses
the ACK numbers written by the receiver to advance its
sliding flow control and congestion control windows.

A receiver can generate an ACK for each data packet
received, but in practice most TCP implementations use a
delayed acknowledgmentalgorithm in the hopes of piggy-
backing an ACK on an outgoing data packet. Implemen-
tation guidelines indicate that ACKs should not be de-
layed by more than 500ms or two received data packets,
but these guidelines are not uniformly followed, especially
during slow start [9].

Finally, when a TCP receiver receives an out-of-order
data packet it responds by acknowledging the last in-
sequence packet it received. This signal allows the sender
to quickly infer that a packet has been lost if multiple du-
plicate acknowledgments are received. To make this opti-
mization work, the delayed acknowledgment algorithm is
suspended for out-of-order data and acknowledgments are
sent immediately.

B. Single Connection Test

TheSingle Connection Test, as its name implies, uses a
single connection to the remote host, established using the
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Fig. 1. Packet sequences generated by the single connection
test. All forward path packets are denoted with a dashed line
and all reverse path packets a solid line. Sequence numbers
and acknowledgment numbers are labeled explicitly above
each packet.

standard TCP three-way handshake. Once this connection
is established, measurement samples are obtained one at a
time, each composed of two phases: a preparation phase
and a measurement phase. During the preparation phase,
a sequence “hole” is created at the receiver by sending a
slightly out-of-order packet repeatedly until the sender re-
ceives an acknowledgment indicating that an earlier packet
is expected. For example, in Figure 1, it is assumed, with-
out loss of generality, that the initial sequence number ex-
pected is 1. The local host then transmits a packet with
sequence number 2 (abbreviated here asdata 2) to the re-
mote host. The receiver responds with an acknowledgment
indicating that byte 1 is still expected (abbreviatedack 1)
and permits the sender to infer that byte 2 has been queued
at the receiver. Once the connection has been prepared a
reordering measurement is made by sending two sample
packets to the remote endpoint. The sequence numbers of
these packets are selected to straddle the previous out-of-
order data packet queued at the remote host. In the illus-
trated example, these sample packets are 1 byte TCP data
packets labeleddata 1anddata 3 respectively.

This particular relationship between the sequence num-
bers used is chosen because it forces the receiver to re-
spond differently depending on the order in which the sam-
ple packets are received. This quality allows the sender
to eventually infer whether the packets, or their acknowl-
edgments, were reordered in flight. If both packets arrive
in order, then the receiving host will acknowledge them
in order –ack 2 andack 4 in the figure. If the packets
are delivered out-of-order, then the receiving host will first
generate an acknowledgment for the “hole” followed by
an acknowledgment for the whole series –ack 1 followed

by ack 4. Since these are the only two combinations possi-
ble, the sender can determine if the acknowledgments were
reordered themselves by checking if the acknowledgment
for the whole sequence,ack 4, arrives first.

A limitation of this approach is that it requires two
samples to be generated and delivered from the remote
endpoint. There are two practical reasons why this may
not occur. First, if one of the sample packets or one of
the acknowledgments is lost then the resulting single ac-
knowledgment may be insufficient to determine whether
the sample packets on the forward path were reordered
and can never determine if there was reordering on the
reverse path. For reasonable loss rates this problem can
be addressed simply by discarding such samples (although
this may bias the measurement if loss is correlated with
reordering).

However, the second and more serious problem is posed
by the delayed acknowledgment algorithm. In the com-
mon case in which packets are delivered in-order, the re-
ceiver may choose to only send a single acknowledgment
for the whole sequence,ack 4, which does not allow the
sender to infer anything about ordering in either direction.
To mitigate, but not solve, this problem we can reverse the
order in which sample packets are sent (data 3 is sent fol-
lowed bydata 1) since the receiver will not delay acknowl-
edgments for out-of-order packets (as mentioned before,
this is critical to support the fast retransmit error detection
function). To infer whether these packets are reordered, we
simply invert the forward path algorithm (e.g. the arrival of
ack 1 followed byack 4 indicates that the packets arrived
in order, whileack 3 followed byack 4 indicates reorder-
ing). However, the sending host still cannot differentiate
between a lost packet on the reverse path and a forward
path reordering event (e.g. a loneack 4 is ambiguous).

C. Dual Connection Test

To address the previous limitations, we developed an al-
ternative approach leveraging the traditional IPID gener-
ation function across pairs of TCP connections between
local and remote hosts. In thisDual Connection Test,
a measurement sample is a pair of packets, one sent on
each connection, that are labeled with sequence num-
bers one greater than that expected by their respective re-
ceivers. Since these packets are interpreted as being out-
of-order they are acknowledged immediately by the re-
ceiver, thereby avoiding the delayed acknowledgment is-
sue. Under the assumption that IPID increases monotoni-
cally across TCP connections to the same destination, we
can infer whether the acknowledgments were reordered by
validating that packets are received in the same order of
their respective IPIDs. Once we have determined the or-
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Fig. 2. Packet sequences generated by the dual connection
test. It is assumed thattwo TCP connections are already
established. Packets belonging to each connection are dis-
tinguished by wavy and straight lines respectively.

der the packets were sent by the remote host it is possible
to determine the order in which the sample packets were
received. This is based on the observation that packets are
acknowledged in the order they are received by the remote
host (this is true in almost all systems since transport-layer
processing is handed in the kernel, frequently driven di-
rectly by an interrupt). Consequently, the sender may infer
whether its sample packets were reordered by comparing
whether the difference between the IPIDs of the acknowl-
edgments is consistent with the order in which the sam-
ple data packets were sent. It is for this reason that two
connections are used, since each data packet can be easily
associated with its companion acknowledgment using the
source and destination port numbers as a key.

Unfortunately, while the dual connection test does not
fall prey to delayed acknowledgments, it does have prob-
lems of its own. The first problem is the reliance on a
strictly increasing function used to generate the IPID val-
ues. For example, recent versions of Linux (2.4 and on)
use MTU Path Discovery by default and, since fragmenta-
tion cannot happen, transmit packets with IPID equal to 0.
Moreover, modern versions of OpenBSD generate pseudo-
random IPIDs and FreeBSD has a similar option that can
be enabled .1 Consequently, we must validate any assump-
tions about IPID before using it to disambiguate packet
order. Another, more serious, related issue is that our re-
liance on two connections creates problems when connec-
tions are aliased through a transparent load balancing de-
vice. While in our experience these devices do not manipu-
late the IPID field, by design they may assign each connec-
tion to a separate host – thereby invalidating our assump-
tion that both connections use the same IPID address space

1As well, modern versions of Solaris maintain a per-destination IPID
counter, but since our techniques do not depend on IPID being unique
across destinations this is not a complication.
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Fig. 3. An example of what happens to theDual Connection
test when there is a transparent load balancer in the middle.
There is no way to differentiate between the two situations
in this example.

and producing spurious results. Figure 3 provides a graph-
ical depiction of this problem. Unfortunately, while most
hosts on the Internet do not sit behind load balancers, many
sites of interest do – particularly those providing consumer
content.

To address both issues, we compare the difference of the
IPID values between each pair of adjacent packetsbetween
connections and each pairwithin a connection. If the un-
derlying IPID space is shared between connections and is
strictly increasing, then the latter differences will continu-
ally dominate the former (since a new data packet is only
sent after both connections receive their ACK). In contrast,
if IPID is set randomly or if a load balancer is present
then there will be poor correlation in this measure. This
analysis allows us to validate whether a particular host is
amenable to the dual connection test before collecting spu-
rious measurements.

D. SYN Test

For the specific problems presented by load balancers,
we present a third approach, theSYN Test, based on related
pairs of TCP SYN packets. We observe that load balancers
cannot operate on a per-packet basis, but instead must bal-
ance requests per-flow or at larger granularities. Conse-
quently, for any given TCP connection a load balancer will
always forward packets to the same host. The most com-
mon implementation strategy to ensure per-flow granular-
ity is to hash on the four-tuple: (sources address, source
port, destination address, destination port), but others will
use SYN packets to establish explicit per-flow state.

We can exploit the per-flow granularity of load bal-
ancers by transforming our measurement packets toap-
pear to belong to the same flow. In particular, we send
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pairs of sample packets that are identical TCP SYNs that
differ only in their starting sequence number being slightly
offset. Since all fields that are used to key a flow identity
are the same, these packets will be routed to the same host.

To determine reordering, this test exploits details of
TCP’s three way handshake. The first SYN packet will
cause the remote host to enter the SYNRECV state and
generate a SYN/ACK in response. However, when the sec-
ond SYN arrives, a number of things may happen. Strictly
following the TCP specification, if the second SYN’s se-
quence number is inside the allowable window (which it
will be if the SYNs arrive in order) then a RST should
be generated, otherwise the remote host should respond
with a pure ACK (indicating the SYNs arrived out of or-
der). However, in practice, this portion of the TCP spec-
ification is poorly understood and the most common im-
plementationsalways respond to a second SYN with a
RST, allowing reordering to be inferred simply as shown
in Figure 4. Finally, we can always determine if the orig-
inal SYNs were reordered in flight by examining the se-
quence number in the first transmitted SYN/ACK. Since
the SYN/ACK will acknowledge the sequence number of
the first packet received, it is easy to determine if it was
sent in response to the first or second packet transmitted
by the sender.

While this test is singularly useful for tolerating the
effects of load balancers, it has two obvious drawbacks.
First, it depends on parts of TCP semantics that are not
consistently implemented. For example, a small number
of implementations generate dual RST packets or only re-
spond to the first SYN. Second, this test has a signifi-
cant non-technical challenge since a large number of trials
may be misconstrued as a small “SYN Flood” Denial-of-
Service attack. In practice, we have not experienced this
problem, but we have also been very careful to limit the
rate at which SYNs are generated and make sure to fully

establish a connection and then close it down.

E. TCP Data Transfer test

Finally, an obvious point of comparison is to simply ini-
tiate a TCP data transfer (for example, an HTTP GET re-
quest to a Web server) and evaluate whether packets are
delivered in order. We can mitigate the problems of TCP
congestion control dynamics by generating acknowledg-
ments for the largest sequence number received, even if
intermediate data is lost, and by artificially restricting the
flow of information from the remote server by restricting
the advertised receiver window and the advertised Maxi-
mum Segment Size (MSS). However, this test is only use-
ful for measuring reverse path reordering, from the remote
host to the local host. It cannot be used to determine if
packets sent to the Web server are likely to be reordered.
As well, it requires that the remote host be running a Web
server, or similar public data transfer server, and requires
that there be an object of sufficient size to fill two pack-
ets (this is a problem in practice for sites that use HTTP
redirects, which fit in a single packet).

IV. VALIDATION AND EXPERIENCE

All of the tests previously described were implemented
as an extension to thesting tool described in [12]. Pro-
grammable packet filters and firewall filters were used to
allow a user-level test program to generate and receive ar-
bitrary IP packets without conflicting with the kernel’s net-
work stack.

A. Controlled Validation

We tested the resulting tool in a controlled environment
in which all traffic was routed through a FreeBSD-based
router under our administration. We modified the popular
dummynettraffic shaping package on the router to swap
adjacent packets according to a specified probability dis-
tribution [11]. During the testing period a machine in close
proximity to the measurement machine was chosen as the
remote host to keep the amount of real reordering at a min-
imum. We used two separate uniform random distributions
for the forward and reverse path reordering rates, and the
mean of each distribution was varied to include all combi-
nations of 1%, 3%, 5%, 10%, 15%, and 40% (in the TCP
data transfer test only the reverse path distribution was ma-
nipulated). We collected 100 samples for each measure-
ment technique for each combination of the distribution
means. A network trace was captured for every test run
and this trace was analyzed to find the actual number of
sample packets that were reordered during the trace. This
number was compared to the number reported by the var-
ious reordering tests. Out of the 114 tests there were8



Fig. 5. CDF of reorderering rates across all paths measured.

discrepancies in the forward direction and2 in the reverse
direction. Of these,7 of these were off by one reorder
event (out of 100 samples) and the remainder were off by
2 reorder events. We believe both discrepancies reflect
minor implementation corner cases that were incorrectly
handled (although we have not completely confirmed that
hypothesis). Overall, of the 114,000 samples, 99.99% of
the samples were confirmed as correct.

B. Experience

We also ran the same tests against a set of live hosts on
the Internet from a single probe machine located at UCSD.
We selected 15 hosts to include a representative from all
major operating systems and to include several highly pop-
ular hosts (such as yahoo.com and hotmail.com). We
also included 35 hosts chosen randomly from approxi-
mately 18,000 hosts generated from the Yahoo random
URL database [19]. Over the duration of 20 days, we con-
ducted continuous measurements of these hosts, cycling
through all four tests on each host and then cycling round-
robin to the next host. Over the three week period, this
produced approximately 850 measurements per host per
test, where each individual measurement consisted of 15
samples .2 Not all tests were able to work with all hosts.
In particular, the dual connection test was ruled out due to
non-monotonic IPID behavior from 8 hosts (likely due to
transparent load balancers) and a constant IPID value of 0
from another 9 hosts (likely running Linux 2.4).

These measurements are not intended to be representa-
tive of the Internet as a whole, but simply to demonstrate
the variety of results that can be obtained using our meth-
ods. Overall, as illustrated in the CDF in Figure 5, we ob-
served that over 40% of the paths tested experience some

2The TCP Data Transfer test is an exception. It consists of variable
number of samples depending on the number of packets required to
transfer the root Web object from the remote host

Fig. 6. Forward path reordering as measured by theSingle Con-
nection test and theSYN Test. The Dual Connectiontest
could not be used because www.apple.com uses a load bal-
ancer.

reordering during the 20 day period. It is also clear that
for the sites we chose there is more forward path reorder-
ing that reverse path reordering. It is possible that this is
an artifact of using a single vantage point, but it is impos-
sible to determine without using additional probe hosts.
Furthermore, we found that the amount of reordering is di-
rectly related to the time between consecutive packets sent
from the probing host; we study this behavior in more de-
tail in Section IV-C. Finally, although not shown here, our
experiments showed more than 15% of measurements had
at least one reordered sample.

It is difficult to perfectly validate results in the Inter-
net setting since we do not know the true order in which
packets were sent or received by the remote host. In-
stead, the best alternative is to compare the results of the
different tests to one another, under the assumption that
since they all measure the same underlying process their
results should be similar. For example, Figure 6 illus-
trates the mean reordering rate measured on the path to
www.apple.com using the single connection test and the
SYN test. As demonstrated by this example, the com-
parison cannot be perfect since the samples of each test
are taken at different times. Consequently, these measure-
ments can only be considered “paired” under the assump-
tion that the reordering process is stationary over the time-
period between measurements.

Given these limitations, we compute a standard pair-
difference test statistic [5] for each host, comparing the
results of each pair of tests. The null hypothesis is that the
difference between tests can be explained purely in terms
of intra-test variability. With a 99.9% confidence interval
we find that the single connection test and the SYN test
provide similar results (78% of the forward path tests and



93% of the reverse path tests support the null hypothesis).
The dual connection test however shows lower similarity
to the other forward path tests, and to the SYN reverse path
test, but has high similarity to the other two reverse path
tests. We do not currently have an explanation for this dis-
crepancy, other than the limitations of this analysis (visual
inspection of the raw measurement data does not reveal ob-
vious differences). Finally, the results from the TCP data
transfer test closely matched the SYN and dual tests (90%)
but was significantly different from the single connection
test (73% of hosts rejected the null hypothesis). Exam-
ining these cases by hand, we find that during periods of
significant reordering, the TCP data transfer tests can pro-
duce significantly lower estimates of reordering than the
other approaches – sometimes less than half as many re-
ordering events.

C. Characterizing Reordering Dynamics

The discrepancy between our tests and the baseline TCP
data transfer experiment led us to reexamine the metric we
use to describe reordering. In all of our approaches we
chose to report reordering as the probability that a pair of
back-to-back packets is reordered over a given time inter-
val. This is a fairly primitive notion of reordering that can
easily be extrapolated to calculate the reordering proba-
bility of a sequence of packets under the assumption that
reordering is an IID process. However, for several reasons,
this assumption is almost certainly invalid.

In thinking about this problem, we reflected on the phys-
ical source of reordering in existing Internet routers. From
previous work [2] and discussions with router designers
we identified two likely culprits. The first is inverse mul-
tiplexing and load balancing within a switch, which can
allow a newer packet to be placed in a long queue while
an older packet is placed in a short queue. Generally, most
vendors using these techniques spend considerable effort
to avoid this situation, particularly within a flow. Another
source of packet reordering is packet striping across mul-
tiple L2 links. Many vendors continue to implement such
striping on a per-packet basis and consequently, if a newer
packet is placed on a link with a longer queue than an older
packet, then reordering may occur. Since queues drain at
a constant rate, the likelihood that this occurs is related to
the inter-arrival time between the two packets. Packets that
are more spread apart can tolerate a greater queue imbal-
ance than those that are more compressed in time.

In the case of the TCP data transfer test, full-sized data
packets of 1500 bytes were used, whereas the other tests
consist of minimum sized packets of roughly 40 bytes.
Consequently, the added serialization delay in the former
case increases the delay between the leading edge of each

Fig. 7. Reordering probability along a single path as a func-
tion of inter-packet spacing between two minimum sized
TCP packets using the dual connection test. The spacing,
indicated on the y-axis, is measured in microseconds. 1000
samples were taken at each point using 1 usec increments
between points for all spacings below 200 usecs, and 20 usec
increments thereafter.

packet – possibly reducing the probability that the two
packets will be reordered if they are assigned to different
queues.

To explore this hypothesis, we modified our tests to ac-
cept an inter-packet gap as a parameter. By varying the
spacing between two sample packets we can evaluate the
dynamics of the reordering process as a function of time
(although this is currently limited to forward path reorder-
ing where we can easily control packet spacing in a fine-
grained manner). Figure 7 illustrates the results of this
approach applied to one path that demonstrated significant
reordering. Minimum-sized back-to-back packets are re-
ordered more than 10 percent of the time, which quickly
drops off to less than 2 percent after 50 microseconds of
delay is added and approaches zero after 250 microsec-
onds. Distribution measurements such as these are strictly
more powerful than a traditional summary statistic, such
as the average reordering rate. Using the distribution it
is possible to predict how different protocols and applica-
tions would be impacted by the reordering process, with-
out needing to construct a unique test (e.g., SACK blocks)
for each protocol. For example, we can infer that, during
bulk data transfer, full-sized data packets are less likely to
be reordered than streams of compressed acknowledgment
packets.

V. CONCLUSION

The Internet architecture makes few guarantees about
the underlying service provided. Nevertheless, higher-
layer protocols are engineered to take advantage of the
common behavior, and as a consequence they are penal-



ized when these assumptions are not met. At the same
time the Internet is highly heterogeneous and is constantly
changing. For any set of assumptions, there is a time or
place on the network where they are invariably incorrect
and will cause problems. To debug such problems and
understand how network characteristics are evolving, it is
critical to have the tools and metrics for measuring and de-
scribing these conditions in a complete manner.

In this paper we focused on the problem of packet re-
ordering. Packets may be reordered for many reasons,
including DiffServ scheduling and buffer management,
multi-path routing, layer 2 retransmission (particularly
across wireless links), or simply due to highly variable
load when routers make use of fine grained data paral-
lelism. Whatever the reason, this violation of the in-
sequence assumption can significantly degrade the perfor-
mance of protocols like TCP. However, there has not pre-
viously been an accurate technique for easily measuring
reordering, nor sufficient understanding of how reordering
works to define a meaningful metric.

We have developed three techniques for accurately mea-
suring one-way packet reordering rates in the existing In-
ternet infrastructure. Each of these has its strengths and
flaws, but as a whole they provide a significant advance-
ment on previous methods. We have validated each ap-
proach in a controlled environment and shown that the
tests are roughly consistent with one another in a live Inter-
net setting. Moreover, we demonstrate that our tests can be
modified to measure the distribution of the reordering pro-
cess over time and argue that this representation is more
meaningful than a single scalar metric. Finally, looking
forward, we believe that the toolset we have developed
provides a reasonable framework for producing more con-
clusive results about reordering in different parts of the In-
ternet and evaluating whether it occurs frequently enough
to justify changes to existing protocol assumptions.
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