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Memory effect in growing trees1
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Abstract

We show that the structure of a growing tree preserves an information

on the shape of an initial graph. For the exponential trees, evidence of

this kind of memory is provided by means of the iterative equations, de-

rived for the moments of the node-node distance distribution. Numerical

calculations confirm the result and allow to extend the conclusion to the

Barabási–Albert scale-free trees. The memory effect almost disappears, if

subsequent nodes are connected to the network with more than one link.
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1 Introduction

The problem of growing trees belongs to larger class of problems of evolving
networks — a new area with many interdisciplinary applications, from biology
and computational science to linguistics [1, 2, 3]. In statistical mechanics, we
often investigate the state of thermodynamic equilibrium, which is unique and
therefore it cannot preserve any information. However, in other sciences memory
on past states is an essential ingredient of the system. Here we are interested in
search how the structure of the origin of a tree, i.e. of a graph from which the
tree is constructed, influences the overall characteristics of the growing system.

A network containing N nodes is fully characterized by its connectivity ma-
trix C: cN (i, j) = 1 if the nodes i, j are linked together, and cN (i, j) = 0
elsewhere. More convenient but somewhat redundant is the distance matrix
S, where the matrix element sN (i, j) is the number of links along the shortest
path from i to j. It is often simpler to describe a network statistically. A local
characteristics of a network includes the degree distribution, i.e. the probability
that a node is linked to a given number k of neighbors. A global characteris-
tics includes the node-node distance distribution. Whereas the former can be
treated as complete only conditionally [4], a few is known on the latter. Recent
progress of knowledge on the mean node-node distance d ≡ [〈sN (i, j)〉] is due to
applications of equilibrium statistical mechanics, scaling hypotheses and/or as-
sumptions of lack of correlations between nodes [5, 6, 7, 8]. Here, 〈· · · 〉 denotes
an average over N(N − 1) non-diagonal matrix elements and [· · · ] is an average
over different matrices, i.e. different graphs.

By growing we mean adding subsequent nodes to an already existing graph.
When each node is added with one link only (m = 1), a tree — a compact graph
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without loops and without multiple edges — is formed. In trees, a path between
each two nodes is unique, and it cannot be changed during the growth process.
When a node is added, the node-node distance matrix S is increased by one
column and one row. Once the matrix elements are formed, they do not change
their values. However, if nodes are added with two or more links (m > 1), a
kind of shortcuts are formed and some node-node distances may be shortened.

The main goal of this work is to demonstrate, that the node-node distance
distribution of a growing tree preserves an information on the structure of the
initial tree, from which it is formed.

Below we deal with two kinds of growing trees, which differ in the degree
distribution. Let us consider the linking of new nodes to randomly selected
nodes. When the selection is made without any preference, we obtain a so-called
exponential tree. In this case, the degree distribution P (k) = 2−k, where k is
the number of links of a node. Nodes can be selected also with some preference
with respect to their degree. If the linking probability is proportional to the
degree k, we obtain the scale-free or Barabási–Albert networks [9]. In this case,
P (k) ∝ k−γ , with γ > 2.0 [1, 2, 3].

To achieve our goal, the simplest method is to calculate the mean node-node
distance d(N) for trees of N nodes, the formation of which has started from two
different trees with four nodes. This is done in the next section with iterative
equations, which has been derived recently for the exponential trees [10]. In
Section 3, the growth algorithms are introduced, basing on an evolution of the
distance matrix. In Section 4, numerical results are presented for the exponential
trees and the Barabási–Albert scale-free trees. We show also that the memory
on the ancestral network is much reduced, if the trees are substituted by graphs
with cyclic paths, i.e. with m > 1. The last section is devoted to discussion.

2 Weights of exponential trees

Consider the probability that a tree of a given structure is grown. Trees are
different if there is no one-to-one correspondence between their pairs of linked
nodes [11]. Let us denote the number of different trees with N nodes by K(N).
It is easy to check by inspection, that K(2) = K(3) = 1 and K(4) = 2. As
K(3) = 1, the probability — or weight — of the tree of three nodes (Fig. 1(a))
must be one. An exponential tree of four nodes can be formed by linking a
new (fourth) node either to one of two end nodes, or to the central one. Then,
the probability of a chain of nodes (Fig. 1(b)) is 2/3, and the probability of a
star-like-tree (Fig. 1(c)) is 1/3. From the chain, a longer chain (Fig. 1(d)) can
be produced in two ways, then its weight is 2/3 · 2/4 = 1/3. From the star,
another star (Fig. 1(f)) can appear with the probability 1/3 · 1/4 = 1/12. The
remaining tree (Fig. 1(e)) can be formed from either the chain or the star, then
its weight is 2/3·2/4+1/3·3/4 = 7/12. We note that in the case of the scale-free
trees, the weights of the trees presented in Fig. 1 are: 1, 1/2, 1/2, 1/6, 7/12
and 1/4, respectively. This is a simple demonstration, that the weights of trees
in two different classes are different.

Any possible tree can be formed from a tree of three nodes (Fig. 1(a)).
The way to form chains and stars is unique and then, their weights are rela-
tively small. Example giving, the weight of an exponential star of N nodes is
2/(N − 1)!. We could eliminate stars, if we develop trees from the chain shown
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Figure 1: Examples of trees. The Z-like chain (b) and the Y-like star (c) are
the ancestors of the two “families” of growing networks described in the text.

in Fig. 1(b). Seemingly, the weights of other trees should not be changed much,
but all of them are influenced by the lack of the stars. Example giving, in this
case the tree shown in Fig. 1(e) can be formed in one unique way. As a conse-
quence, the whole distribution of weights is rebuilt. With the iterative equations
derived recently [10], we can calculate the mean distance d and the mean square
of distances e ≡ [〈s2N (i, j)〉] for two “families” of trees. One is formed from the
chain-like tree shown in Fig. 1(b) and labeled as “Z”, and another — from the
star-like tree presented in Fig. 1(c) and marked as “Y”. Then, the first “fam-
ily” does not contain stars, and the second one does not contain chains. The
equations are:

d(N + 1) =
(N + 2)(N − 1)

N(N + 1)
d(N) +

2

N + 1
, (1a)

and

e(N + 1) =
(N + 2)(N − 1)

N(N + 1)
e(N) +

4(N − 1)

N(N + 1)
d(N) +

2

N + 1
. (1b)

The information on the initial trees is encoded in the initial values of d(4) and
e(4). It is easy to check, that for the chain dZ(4) = 5/3, eZ(4) = 10/3 and for
the star dY (4) = 3/2, eY (4) = 5/2.

Similar method has been used in [12, 13]. The difference is that here, the
Eqs. (1) are exact, but they apply only to the exponential trees.

3 Numerical algorithm

Two initial trees with four nodes (the chain and the star) are represented in the
computer memory as two distance matrices S(Z) and S(Y ). The starting point
are two matrices for two trees of four nodes:

S4(Z) =









0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0









and S4(Y ) =









0 1 2 2
1 0 1 1
2 1 0 2
2 1 2 0









for the chain and the star, respectively.
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Selecting a node to link a new node is equivalent to select a number q of
column/row of the matrix. Then the matrix is supplemented by new column and
row, which are copies of the q-th column/row but with all elements incremented
by one

∀ 1 ≤ i ≤ N : sN+1(N + 1, i) = sN+1(i, N + 1) = sN (q, i) + 1, (2a)

and obviously
sN+1(N + 1, N + 1) = 0. (2b)

The Eq. (2a) served in the derivation of the iterative formulas (1) [10].
The same numerical technique is applied also to the case of the Barabási–

Albert scale-free trees. The only difference is that in this case, the node q is
selected with preference of the number of its pre-existing links. Namely,

P (q) = k(q)/

N
∑

i=1

k(i),

where k(i) is the number k of links of i-th node. Additional matrix r(i) contains
the indices of row of the distance matrix S where “1” is encountered. Each case
sN (i, j) = 1 indicates a link between nodes i and j. The matrix r(i) is useful
to select nodes of given degree for the scale-free trees and graphs, according to
the so-called Kertész algorithm [14].

Further, the same technique is applied to simple graphs, where new nodes
are attached to previously existing ones by m = 2 links. Then, cyclic paths are
possible and the distance matrix S is to be rebuilt when adding each node. The
algorithm is as follows: Let us suppose that (N +1)-th node is added to existing
nodes p and q 6= p. Then

∀ 1 ≤ i, j ≤ N : sN+1(i, j) = min
(

sN (i, j), sN(i, p) + 2 + sN(q, j)
)

. (3a)

For new, (N + 1)-th, column/row

∀ 1 ≤ i ≤ N : sN+1(N + 1, i) = sN+1(i, N + 1) = min
(

sN (p, i), sN (q, i)
)

+ 1,
(3b)

and again for the diagonal element

sN+1(N + 1, N + 1) = 0. (3c)

One step of construction of the matrix S for simple graphs (m = 2) is
presented in Fig. 2. An example of the construction S for trees (m = 1) is given
in [10].

4 Results of calculations

In Figs. 3 and 4 the dependences (a) ∆d(N) ≡ dZ(N) − dY (N) and (b)
∆e(N) ≡ eZ(N) − eY (N) obtained from growth simulations are presented, for
exponential trees and for scale-free trees, respectively. The results of simula-
tions are averaged over Nrun = 105 independent growths. In Fig. 3 we give also
the results for ∆d(N) and ∆e(N) calculated with Eq. (1).
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Figure 2: Construction of the distance matrix S in the case of growing graphs
(m = 2). The gray sites show randomly chosen columns/rows (nodes to
which new node will be attached). The black sites show matrix elements
which are reevaluated from Eq. (3a) due to newly created shortcuts. The
last columns/rows are constructed according Eqs. (3b) and (3c). Starting
with the Y-like star new nodes were subsequently added to nodes (p, q) =
(

(3, 4), (3, 5), (4, 6), (3, 6), (1, 7)
)

.

In the case of simple graphs (m = 2), the distance matrix S must be reeval-
uated, what makes the time of the calculation substantially larger. The re-
sults for graphs are averaged only over one hundred of independent growths.
The curves d(N) and e(N) for both kind of graphs are shown in Fig. 5.
The linear fits for 100 ≤ N ≤ 1000 are d(N) = 0.7066 ln(N) + 0.213 and
d(N) = 0.4764 ln(N) + 0.8599 for the exponential graphs and the scale-free
graphs, respectively. The functions ∆d(N) and ∆e(N) for both kind of evolving
graphs are shown in Fig. 6.

For the scale-free graphs, we observe some small memory effect, which man-
ifests as a constant mutual shift of the plots e(N) vs. ln(N).

5 Discussion

In the case of the exponential trees, the results of the simulations agree well
with the curves obtained from the iteration equations. This fact supports the
reliability of the numerical equation for the scale-free trees and the graphs with
m = 2, where we have no analytical calculations.

Main result of this work is, that the node-node distance distribution in a
growing tree depends on its initial structure. Our calculations indicate, that
both the average distance d and its second moment e in trees display this kind
of memory. The information is encoded in the constant c1 in the expression
d = 2 ln(N) + c1. The constant c1 varies by about 0.109 and 0.164, when we
change the shape of the initial tree of four nodes from the Y-like star to the
Z-like chain for the exponential and scale-free trees, respectively. In the second
moment e = 4 ln2(N) + c2 ln(N) + c3, it is the constant c2 which depends on
the initial shape. This is true both for the exponential and the scale-free trees.

The memory effect is much reduced or even disappears in the case when new
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Figure 3: The function (a) ∆d(N) and (b) ∆e(N) for exponential trees obtained
with iterative formula (1) as well as from the direct growth simulations. The
results of simulations are averaged over Nrun = 105 independent growths.
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Figure 4: The function (a) ∆d(N) and (b) ∆e(N) for scale-free trees obtained
from the growth simulations. The results are averaged over Nrun = 105 inde-
pendent growths.
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Figure 5: The function (a) d(N) and (b) e(N) for the exponential and scale-free
graphs and different initial configurations obtained from the growth simulations.
The results are averaged over Nrun = 103 independent growths. The dependence
on the initial configuration is not visible in the scale of the plot.
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Figure 6: The function ∆d(N) and ∆e(N) for the exponential and the scale-
free graphs obtained from the growth simulations. The results are averaged over
Nrun = 103 independent growths.

nodes are linked to the network by at least two edges. In this case, the distance
matrix S is rebuilt by new edges which can shorten distances between initially
far nodes by providing new paths between them.

Concluding, we have demonstrated that the growing trees carry an informa-
tion on their initial geometrical structure. This result agrees with our intuition.
In more general meaning, memory effects are quite natural in many known net-
works: movie actor collaboration networks, sexual contact networks or citation
networks, although different meanings are assigned to the term “memory” in
these examples. In particular, all of us are looking for new areas in science where
our next paper could be seminal. Around such papers, networks of citations are
formed, as it happens in the case of Ref. [9]. Sometimes there are two or more
seminal papers, and then the shape of the network depends on their clarity,
ease of mathematical formulation and individual preferences of the readership,
formed in personal contacts. To express this reality in numbers is a fascinating
task.
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