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Abstract

In a binary symmetric relationship, A is re-
lated to B if and only if B is related to A.
Symmetric relationships between k participat-
ing entities can be represented as multisets
of cardinality k. Cardinality-bounded mul-
tisets are natural in several real-world appli-
cations. Conventional representations in re-
lational databases suffer from several consis-
tency and performance problems. We argue
that the database system itself should pro-
vide native support for cardinality-bounded
multisets. We provide techniques to be im-
plemented by the database engine that avoid
the drawbacks, and allow a schema designer to
simply declare a table to be symmetric in cer-
tain attributes. We describe a compact data
structure, and update methods for the struc-
ture. We describe an algebraic symmetric clo-
sure operator, and show how it can be moved
around in a query plan during query optimiza-
tion in order to improve performance. We de-
scribe indexing methods that allow efficient
lookups on the symmetric columns. We show
how to perform database normalization in the
presence of symmetric relations. We provide
techniques for inferring that a view is sym-
metric. We also describe a syntactic SQL ex-
tension that allows the succinct formulation of
queries over symmetric relations.
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1 Introduction

A relation R is symmetric in its first two attributes if
R(x1, x2, . . . , xn) holds if and only if R(x2, x1, . . . , xn)
holds. We call R(x2, x1, . . . , xn) the symmetric com-
plement of R(x1, x2, . . . , xn). Symmetric relations
come up naturally in several contexts when the real-
world relationship being modeled is itself symmetric.

Example 1.1 In a law-enforcement database record-
ing meetings between pairs of individuals under inves-
tigation, the “meets” relationship is symmetric. 2

Example 1.2 Consider a database of web pages. The
relationship “X is linked to Y ” (by either a forward or
backward link) between pairs of web pages is symmet-
ric. This relationship is neither reflexive nor antire-
flexive, i.e., “X is linked to X” is neither universally
true nor universally false. While an underlying rela-
tion representing the direction of the links would nor-
mally be maintained, a view defining the “is linked to”
relation would be useful, allowing the succinct speci-
fication of queries involving a sequence of undirected
links. 2

Example 1.3 Views that relate entities sharing a
common property, such as pairs of people living in the
same city, will generally define a symmetric relation
between those entities. 2

Example 1.4 Example 1.1 can be generalized to al-
low meetings of up to k people. The k-ary meeting
relationship would be symmetric in the sense that if
P = (p1, . . . , pk) is in the relationship, then so is any
column-permutation of P . 2

Example 1.5 Consider a database recording what
television channel various viewers watch most dur-
ing the 24 hourly timeslots of the day.1 For
performance reasons,2 the database uses a table

1This example is based on a real-world application developed
by one of the authors, in which there were actually 96 fifteen-
minute slots.

2A conventional representation as a set of slots would require
a 24-way join to reconstruct V .



V (ID, V iewDate, C1, . . . , C24) to record the viewer
(identified by ID), the date, and the twenty-four chan-
nels most watched, one channel for each hour of the
day. This table V is not symmetric, because Ci is not
interchangeable with Cj: Ci reflects what the viewer
was watching at timeslot number i. Nevertheless, there
are interesting queries that could be posed for which
this semantic difference is unimportant. An example
might be “Find viewers who have watched channels 2
and 4, but not channel 5.” For these queries, it could
be beneficial to treat V as a symmetric relation in or-
der to have access to query plans that are specialized
to symmetric relations. 2

There is a natural isomorphism between symmetric
relationships among k entities, and k-element multi-
sets.3 We phrase our results in terms of “symmetric
relations” to emphasize the column-oriented nature of
the data representation in which columns are inter-
changeable. Nevertheless, our results are equally valid
if expressed in terms of “bounded-cardinality multi-
sets”.
Sets and multisets have a wide range of uses for

representing information in databases. Bounded car-
dinality multisets would be useful for applications in
which there is a natural limit to the size of multisets.
This limit could be implicit in the application (e.g.,
the number of players in a baseball team), or defined
as a conservative bound (e.g., the number of children
belonging to a parent). We will demonstrate perfor-
mance advantages for bounded-element multisets com-
pared with conventional relational representations of
(unbounded) multisets.
Storing a symmetric relation in a conventional

database system can be done in a number of possi-
ble ways. Storing the full symmetric relation induces
some redundancy in the database: more space is re-
quired (up to a factor of k! for k-ary relationships), and
integrity constraints need to be enforced to ensure con-
sistency of updates. Updates need to be aware of the
symmetry of the table, and to add the various column
permutations to all insertions and deletions. Queries
need to perform I/O for tuples and their permutations,
increasing the time needed for query processing.
Alternatively, a database schema designer could

recognize that the relation was symmetric and code
database procedures to store only one representative
tuple for each group of permuted tuples. A view can
then be defined to present the symmetric closure of
the stored relation for query processing. The update
problem remains, because updates through this view
would be ambiguous. Updates to the underlying table
would need to be aware of the symmetry, to avoid stor-
ing multiple permutations of a tuple, and to perform
a deletion correctly. For symmetric relations over k
columns, just defining the view (using standard SQL)
requires a query of length proportional to k(k!).

3A multiset is a set except that duplicates are allowed.

For both of the above proposals, indexed access to
an underlying symmetric relationship would require
multiple index lookups, one for each symmetric col-
umn.
A third alternative is to model a symmetric re-

lation as a set [3] or multiset. Instead of record-
ing both R(a, b, c, d, e) and R(b, a, c, d, e), one could
record R′(q, c, d, e), S(a, q), and S(b, q), where q is a
new surrogate identifier, and R′ and S are new ta-
bles. The intuition here is that q represents a multi-
set, of which a and b are members according to table
S. Distinct members of the multiset can be substi-
tuted for the first two arguments of R. To represent
tuples that are their own symmetric complement, such
as R(a, a, c, d, e), one inserts S(a, q) twice. This rep-
resentation uses slightly more space than the previous
proposal, while not resolving the issue of keeping the
representation consistent under updates. Further, re-
constructing the original symmetric relation requires
joins.
We argue that none of these solutions is ideal, and

that the database system should be responsible for pro-
viding a “symmetric” table type. There are numerous
advantages to such a scheme:

1. The database system could choose a compact rep-
resentation (such as storing one member of each
pair of symmetric tuples) and take advantage of
this compactness in reducing the amount of I/O
required. This representation can be used both
for base tables that are identified as symmetric,
and for materialized views that can be proven to
be symmetric.

2. The database system could go even further, and
add a symmetric-closure operator to the query al-
gebra. A query plan over a symmetric relation
could then be manipulated using algebraic iden-
tities so that the symmetric closure is applied as
late as possible. That way, intermediate results
will be smaller, and queries will be processed more
efficiently.

3. Integrity would be checked by the database sys-
tem. Single-row updates would be automatically
propagated to the other column permutations if
necessary. Inconsistencies would be avoided, and
schema designers would not have to re-implement
special functionality for each symmetric table in
the database.

4. The database system could index the multiple
columns of a symmetric relation in a single index
structure. As a result, only one index traversal is
necessary to locate tuples with a given value for
some symmetric column.

In this paper, we propose techniques to enable such
a “symmetric relation” table type. We provide:



• An underlying abstract data type to store the
kernel of a symmetric relation, i.e., a particular
nonredundant subset of the relation. We show
how updates on this data type would be handled
by the database system. We describe how rela-
tional normalization techniques should take ac-
count of symmetric relations during database de-
sign. Both normalization and the proposed rep-
resentation of symmetric relations aim to remove
redundancy, so combining these two approaches
should be beneficial.

• An extension of the relational algebra with a sym-
metric closure operator γ. We show how to trans-
late a query over a symmetric relation into a query
involving γ applied to the kernel of the relation.
We provide algebraic equivalences that allow the
rewriting of queries so that work can be saved by
applying γ as late as possible.

• A method for inferring when a view is guaran-
teed to be symmetric. By using this method, the
database system has the flexibility to store a ma-
terialized view using the more compact represen-
tation.

• A syntactic extension to SQL that allows the suc-
cinct expression of queries over symmetric rela-
tions.

Related Work

Surprisingly, there has been little past work on
specialized implementations of symmetric relations
(or bounded-cardinality set/multisets) within the
database system. The only literature we are aware of
that addresses this problem is [3], where database-level
implementation is advocated, but specific implementa-
tion techniques are not described.
An object-relational database system can pro-

vide explicit structures for representing set-valued at-
tributes that are physically embedded in a stored tu-
ple, and can be manipulated directly [6, 7, 8]. For ex-
ample, Oracle provides an object-relational collection
type called a VARRAY [1]. VARRAYs allow the embed-
ded representation of arrays having a fixed cardinality
bound. A database schema designer could use this
kind of system to implement the set-based represen-
tation of symmetric relations mentioned above, with-
out the need for joins to reconstruct the symmetric
relation. Nevertheless, one must give up first nor-
mal form and/or use an extended relational database
system. Further, the encapsulation of these collection
types means that the full set has to be dereferenced
for accesses and element updates. For example, it is
not possible to index the elements of a VARRAY, and
so finding rows with VARRAYs containing a particular
element must be performed using a full table scan.

The expressive power of cardinality-bounded sets
has been previously studied in the context of an object-
based data model [4, 5].

2 The Kernel

Definition 2.1 γXY (R) denotes the symmetric clo-
sure operator over symmetric attributes X and Y
of relation R(X,Y, Z1, . . . , Zn).

4 (x, y, z1, . . . , zn) ∈
γXY (R) if and only if either (x, y, z1, . . . , zn) ∈ R or
(y, x, z1, . . . , zn) ∈ R. 2

If R is symmetric with respect to X and Y , then we
aim to determine a minimal relationM such that R =
γXY (M). By choosing a minimalM , we can represent
R compactly. Several minimal relations M satisfy this
constraint. Each such M chooses a particular element
from each pair of complementary tuples.
While the choice of minimal relation M does not

matter in terms of space consumption, we shall see
that certain algebraic equivalences (such as Lemma 3.4
below) hold only if there is a consistent single choice
of M for all tables. Thus, we impose a total order
(which may be arbitrary) on the domain of X and
Y , and insist that the representative tuple chosen has
X ≤ Y according to this order. The resulting relation
is unique, and is denoted by kerXY (R), or just ker(R)
when X and Y are clear from context. kerXY (R) =
σX≤Y (R).
We propose that the database stores ker(R) as the

internal representation of R. Assuming a set seman-
tics (as opposed to a multiset or bag semantics) for
symmetric relations, updates are handled as follows:

Insert ( R(X,Y,Z1,...,Zn) )
{
If (Y<X) then swap(X,Y);
If (X,Y,Z1,...,Zn) is not in ker(R) then

append (X,Y,Z1,...,Zn) to ker(R);
}

Delete ( R(X,Y,Z1,...,Zn) )
{
If (Y<X) then swap(X,Y);
If (X,Y,Z1,...,Zn) is in ker(R) then

remove (X,Y,Z1,...,Zn) from ker(R);
}

An update is just a delete followed by an insert,
assuming the deletion was successful.
A symmetric table implementation should also ad-

dress systems issues such as how locking and logging
are performed on rows of such tables. These issues de-
pend on the locking and logging protocols used, and
are beyond the scope of this paper.

4In general, X and Y are vectors (of equal length) of type-
compatible attributes. For clarity of presentation, we shall omit
vector notation, and employ examples in which X and Y are
single attributes.



The formalism above allows multiple disjoint pairs
of symmetric attributes. Thus, if R is symmet-
ric in X,Y and also symmetric in V,W , it makes
sense to talk about kerXY (R), kerVW (R), and
kerXY (kerVW (R)) = kerVW (kerXY (R)). We can also
generalize symmetry to more than two attributes.

Definition 2.2 A relation R(Z1, . . . , Zn) is sym-
metric in Z1, . . . , Zk when R(Z1, . . . , Zn) holds if
and only if for every permutation P of Z1, . . . , Zk,
R(P (Z1), . . . , P (Zk), Zk+1, . . . , Zn) holds. Each
such R(P (Z1), . . . , P (Zk), Zk+1, . . . , Zn) is a sym-
metric complement of R(Z1, . . . , Zn). We define
kerZ1,...,Zk

(R) to include only those tuples from R
with Z1 ≤ . . . ≤ Zk. 2

Indexing

Indexing of all symmetric attributes in ker(R) should
be done in a single index structure, so that a single in-
dex lookup suffices to find tuples with some symmetric
attribute equal to a given probe value.

2.1 Normalization

Database normalization and the proposed kernel rep-
resentation both aim to remove redundancy. However,
normalization may be hampered by the presence of
symmetry in the data.

Example 2.1 Consider a database describing meet-
ings of pairs of people that take place in certain lo-
cations at certain times, as in Example 1.1. Sup-
pose that the initial database design has the schema
U(P1, P2, L,D, T,A), where P1 and P2 are the parties,
L is the location, D is the date, and T is the time.
A is a law-enforcement agent assigned to monitor the
meeting, and multiple agents can be assigned to a sin-
gle meeting. The schema designer is aware that the
database system provides facilities for symmetric rela-
tions, and wishes to take advantage of these facilities
by declaring U to be symmetric in P1, P2.
Suppose that there can be only one meeting that

takes place in a given location on a given date and
time. The symmetric redundancy prevents the expres-
sion of functional dependencies having LDT on the left
hand side. As a result, the “obvious” normalization
of the table into the meets relation M(P1, P2, L,D, T )
and the monitors relation S(L,D, T,A) is missed. 2

The solution to the problem identified in Exam-
ple 2.1 is to apply the kernel first, and then try to nor-
malize the result using standard normalization tech-
niques. In Example 2.1, it is possible to identify the
functional dependency LDT → P1P2 in kerP1P2

(U).
This functional dependency allows the normalization
of kerP1P2

(U) into kerP1P2
(M) and S; M is repre-

sented as a symmetric relation.

2.2 Implementation

It is straightforward to implement the γ operator. For
each input tuple output that tuple in addition to tuples
formed by permuting the symmetric attributes (but
don’t output a tuple twice if two permutations gener-
ate the same tuple). However, in a practical database
system, the mapping from algebraic operators to im-
plementations is not necessarily a direct one. For ex-
ample, it is common to implement a scan operator
with predicates, so that the getnext function returns
the next row satisfying the predicates. This choice al-
lows the scan operator to choose an appropriate access
structure, such as an index if one exists.
In a similar way, the natural implementation of

symmetric closure should also incorporate predicates
on the symmetric attributes. The predicates allow for
the efficient use of available access methods, and may
avoid the generation of permutations that will be im-
mediately filtered out. The predicates may come from
selection operators or from join operators.

Example 2.2 Consider again the M table from Ex-
ample 2.1, in which the Pi attributes store the identi-
fiers of persons involved in a pairwise meeting. Sup-
pose that σP2=456(M) is a subexpression of a query
to be evaluated. Let K = ker(M) be stored by the
database, so that the subexpression can be evaluated as
σP2=456(γP1P2

(K)). Suppose also that we store a single
index structure for the columns P1 and P2. For sim-
plicity of presentation, assume that the database knows
that for all rows of M , P1 6= P2.
Then by implementing an operator for the combined

selection and symmetric closure, we can directly look
up tuples in K having 456 for either of the symmetric
attributes, and for each match return the permutation
with P2 = 456. The alternative permutation is never
generated.
If we implemented symmetric closure as a

stand-alone operator, then the best we could
do would be to rewrite σP2=456(γP1P2

(K)) as
σP2=456(γP1P2

(σP1=456∨P2=456(K))). (See Lemma 3.2
below.) The pushed selection conditions allow the use
of the index on K. However, both permutations of
each matching row in K are generated, one of which
will be filtered by the outer selection condition. 2

In the general case for Example 2.2, it is possible
that P1 = P2. A limited form of duplicate elimina-
tion would then be needed to avoid generating an out-
put row twice from a single input row. Also observe
that the problems highlighted by Example 2.2 become
worse for symmetric relations over more than two at-
tributes.
For a fixed number of symmetric columns, the sym-

metric closure operator can be expressed in relational
algebra in terms of the union and attribute-renaming
operators. Thus neither γ nor the kernel operator add



to the expressive power of relational algebra. Never-
theless, by abstracting the γ operator one can derive
implementations directly for γ (or γ together with se-
lection). The situation is analogous to the join oper-
ation which, though expressible in terms of selection
and cartesian product, is best implemented directly.

3 Query Optimization

Given a query that mentions a symmetric relation R,
we assume that we have physically stored just K =
ker(R). In an algebraic expression for a query that
accesses R, we use γ(K) in place of R.
In order to minimize the size of intermediate results,

it would be beneficial to push other operators inside
the symmetric closure operator γ, where possible. To
support such an endeavor, we now describe algebraic
equivalences that can form the basis of such rewriting
rules. For simplicity of presentation, we phrase these
rules for binary symmetric relations. Generalizations
to higher symmetric arity are possible.
For the following results, we assume that S1 and

S2 are arbitrary relations with attributes including X
and Y , such that all rows satisfy X ≤ Y . T represents
an arbitrary relation that does not have attributes X
or Y . Except for Lemma 3.6, the equivalences hold
under both a set semantics and a multiset semantics
(in which duplicate rows are permitted) for relations.

Definition 3.1 Let θ be a condition on X and Y , and
(possibly) other attributes. Let θ′ be formed from θ by
substituting X for Y and vice versa. We say that θ is
a symmetric condition on X and Y if θ ≡ θ′. Given a
nonsymmetric condition θ, we call the condition θ∨ θ′

the symmetric closure of θ, which we denote by θ̂ when
the attributes X and Y are clear from context. 2

Example 3.1 Symmetric selection conditions on X
and Y include X = Y , X2 + Y 2 = 1, and any
condition that mentions neither X nor Y . Symmet-
ric join conditions on R.X and R.Y include R.X =
S.A ∧ R.Y = S.A, R.X2 + R.Y 2 = S.A2, and condi-
tions that do not mention R.X or R.Y . The condition
R.X − R.Y > 7 is not symmetric; its symmetric clo-
sure is R.X −R.Y > 7 ∨R.Y −R.X > 7. 2

Symmetric conditions can be pushed below the sym-
metric closure.

Lemma 3.1 If θ is a symmetric condition, then

• σθ(γXY (S1)) = γXY (σθ(S1))

• γXY (S1) 1θ T = γXY (S1 1θ T )

2

Because the symmetric closure of a condition is al-
ways symmetric, Lemma 3.1 implies the following re-
sult, which allows us to push down partial information
from selections on the symmetric attributes.

Lemma 3.2 For an arbitrary condition θ,

• σθ(γXY (S1)) = σθ(γXY (σθ̂(S1)))

• γXY (S1) 1θ T = σθ(γXY (S1 1θ̂ T ))

2

Lemma 3.3 Suppose θ is a condition that implies
X ≤ Y . Then σθ(γXY (S1)) = σθ(S1). 2

Lemma 3.4

• γXY (S1) ∪ γXY (S2) = γXY (S1 ∪ S2)

• γXY (S1) ∩ γXY (S2) = γXY (S1 ∩ S2)

• γXY (S1)− γXY (S2) = γXY (S1 − S2)

• γXY (S1)× T = γXY (S1 × T )

2

Lemma 3.5 If attribute list G includes both X and
Y , then πG(γXY (S1)) = γXY (πG(S1)). 2

Lemma 3.6 Under a set semantics: (a) If attribute
list G includes neither X nor Y , then πG(γXY (S1)) =
πG(S1). (b) If attribute list G includes X but not Y ,
and if G′ is the same as G except that X is replaced
by Y , then πG(γXY (S1)) = πG(S1) ∪ πG′(S1). 2

Definition 3.2 Let A
~f
G(R) denote the aggregate of re-

lation R, grouped by the columns in the list G, com-

puting the aggregate functions ~f . 2

Lemma 3.7 If grouping attributes G include both X

and Y , then A
~f
G(γXY (S1)) = γXY (A

~f
G(S1)) 2

Aggregates grouping by X alone or Y alone can use
Lemma 3.7 to first compute the aggregate grouped by
X and Y . Assuming that the aggregate functions are
incrementally computable, the coarser aggregates can
then be computed in a subsequent operation.

Lemma 3.8 Let G be grouping attributes other than

X and Y , and let ~f contain just idempotent aggregates

such as min and max. Then A
~f
G(γXY (S1)) = A

~f
G(S1).

2

It is tempting to think of analogous equivalences to
those of Lemma 3.8 for other aggregates. However,
a row in the kernel maps to either one or two rows
in the symmetric closure, depending on whether the
symmetric attributes have equal values. To take ac-
count of this difference, one can split the kernel into
two fragments.

Lemma 3.9 Let G be grouping attributes other than

X and Y , and let ~f contain just linear aggregates such

as sum and count. Let 2 ~f denote the aggregate that

computes double the aggregate functions ~f . Then



• A
~f
G(γXY (σX<Y (S1))) = A

2~f
G (σX<Y (S1))

• A
~f
G(γXY (σX=Y (S1))) = A

~f
G(σX=Y (S1))

2

For incremental aggregate functions, one can com-

pute A
~f
G(γ(S1)) by partitioning S1 into two pieces, us-

ing Lemma 3.9.
To be able to compose the various lemmas above,

we need to verify that in each case the subexpression
created by pulling γ up one level retains the property
that X ≤ Y . This verification is straightforward, and
is omitted here.

Example 3.2 Consider again the “meets” relation
M(P1, P2, L,D, T ) from the law-enforcement database
of Example 2.1. Let S(V, . . .) be another relation in-
dicating that person V is a suspect. Let R(W, . . .) be
a relation indicating that W is a location being moni-
tored. The law-enforcement user poses the query

S 1V =P1
M 1W=L R

to find meetings involving suspects at monitored loca-
tions. Suppose M is stored in the database as K =
kerP1P2

(M). Using Lemmas 3.1 and 3.2, the query
can be rewritten so that it has the following tree form:

%
%
%%

e
e

ee

¶
¶
¶
¶

e
e

e
ee

R K

1W=L

1V =P1∨V =P2

S

σV =P1

γP1P2

The joins are pushed below the γ operator, one fully
and the other partially. When the joins are selective,
the rewritten plan is more efficient than one in which
γ is applied directly to K, because (a) the symmetric
closure is applied to fewer tuples, and (b) the operators
below γ are applied to fewer tuples. 2

Example 3.3 Suppose that in Example 2.1 we simply
wish to list all records in the meets relation, without
redundancy. The user writes the query as

σP1≤P2
M.

If K = kerP1P2
(M), then the query can be rewritten

as σP1≤P2
(γP1P2

K). By Lemma 3.3, this expression
is equivalent to σP1≤P2

K. One can even use semantic
query optimization to observe that P1 ≤ P2 is an in-
tegrity constraint on K, which allows further simplifi-
cation of the query to simply K. Thus, even if the user
does not query the kernel, appropriately formulated
queries over the symmetric closure can achieve the per-
formance that would have been available by querying
the kernel directly. 2

3.1 Conditions Revisited

Consider again the “meets” relation M , and suppose
that we wish to identify pairs of meetings that share
one (or more) members. Assume there is no index
available on M . Using subscripts to distinguish two
instances of M , we might write this query as

M1 1M1.P1=M2.P1
M2 (Q1)

This query cannot be effectively optimized, because all
permutations of tuples in the two instances of M need
to be generated to test the condition on P1.
Now imagine we defined a function overlapR,S ,

where R and S are symmetric relations on X1, . . . , Xn

and Y1, . . . , Ym respectively. Suppose that r and s rep-
resent rows of R and S respectively. Applied to (r, s),
overlapR,S returns the cardinality of the multiset inter-
section of {r.X1, . . . , r.Xn} and {s.Y1, . . . , s.Ym}. In
other words, overlapR,S returns the number of com-
mon values among the symmetric attributes of the two
rows. The overlap function can be implemented effi-
ciently, even for symmetric relations of high arity, by
sorting the symmetric attributes from each tuple and
then scanning through each list.
Given this overlap function, we can rephrase the

query above as

σθ(M1 1overlap
M1,M2

≥1
M2) (Q2)

Here θ is the condition M1.P1 ≤ M1.P2 ∧ M2.P1 ≤
M2.P2; like in Example 3.3, the outer selection re-
moves redundant copies of qualifying rows. This query
can be optimized, because the join condition is sym-
metric. After several transformations, the query be-
comes

K1 1overlap
K1,K2

≥1
K2

where K = kerP1,P2
(M). The overlap function can

be implemented particularly efficiently on kernels, be-
cause the symmetric attributes are already in order.
There is a difference between formulations Q1 and

Q2 of the query: Q1 requires the first symmetric at-
tribute of each component row to be the common
member, while Q2 does not.5 Thus, if the user doesn’t

5Also, Q1 will output two rows for pairs of meetings between
the same two people, while Q2 outputs one.



need a special way of identifying the common mem-
ber, then it pays (in terms of query execution time)
to use the formulation Q2. The trick is to formulate
the query using properties of the set of symmetric at-
tributes where possible, because such conditions are
always symmetric and can be better optimized.
Finally, note that the overlapR,S ≥ 1 test can be

expressed alternatively as r.X1 = s.Y1 ∨ r.X1 = s.Y2 ∨
r.X2 = s.Y1 ∨ r.X2 = s.Y2. Nevertheless, we advocate
the use of a specialized overlap function, because (a) it
simplifies the job of identifying symmetric conditions
for the query compiler, (b) for symmetric relations of
higher arity the equivalent logical expressions become
unwieldy, and (c) the overlap function can be used to
test other kinds of set-oriented relationships, such as
disjointness and subset relationships.
The arguments in favor of a special overlap func-

tion for join conditions extend also to selection con-
ditions. Definition 3.1 (the symmetric closure of a
condition) can be extended to k-ary conditions by
taking the disjunction of all expressions formed by
permuting the symmetric columns. Thus, in a sym-
metric relation of arity k with symmetric columns
P1, . . . , Pk, the closure of P1 = 123 is P1 = 123 ∨
· · · ∨ Pk = 123. The closure of P1 = 123 ∧ P2 = 456
has k(k − 1) disjuncts. These expressions are un-
wieldy, and are likely to hide optimization alternatives
from a realistic query optimizer. Instead, we propose
to represent the symmetric closure of P1 = 123 as
“{123} Among {P1, . . . , Pk}” and the closure of P1 =
123 ∧ P2 = 456 as “{123, 456} Among {P1, . . . , Pk}”.
This representation is compact, and can represent the
closure of common conditions that equate an attribute
with a constant. It also allows for easier recognition
of efficient plans, such as using a common index on
{P1, . . . , Pk}, by the query compiler.

4 Inferring Symmetry

Being able to infer that a subexpression is symmet-
ric enables additional options for query optimization.
Also, if we can infer that a materialized view is guar-
anteed to be symmetric, then we can choose to store
it in the more compact form, saving space and query
processing time.
To formulate the inference problem, we use the no-

tion of a conjunctive query [9] to represent a view. An
ordinary subgoal employs a table predicate, while a
built-in subgoal employs an interpreted predicate, such
as equality or “<”. An ordinary subgoal is symmetric
if its predicate is a table that is marked as symmet-
ric in the database schema. For ease of presentation
we shall assume that we are dealing with binary sym-
metric relations whose symmetric attributes are the
leftmost attributes as written.

Definition 4.1 Let

Q(X,Y, ~Z) : −B(X,Y, ~Z, ~W )

be a conjunctive query, where B is a conjunction of

subgoals. QT (X,Y, ~Z) is the conjunctive query defined
by

QT (X,Y, ~Z) : −B(Y,X, ~Z, ~W )

with X and Y interchanged in B. 2

Note that (QT )T = Q, and that containment map-
pings from Q to QT are isomorphic to containment
mappings from QT to Q.

Lemma 4.1 Let Q be a conjunctive query containing
nonsymmetric ordinary subgoals, and no built-in sub-
goals. Q is symmetric if and only if there exists a
containment mapping from Q to QT . 2

Example 4.1 Let E(K,M) represent an employee re-
lation, where K is the unique key of the employee, and
M is the employee’s manager. Let Q be the conjunc-
tive query

Q(K1,K2) : −E(K1,M), E(K2,M).

QT is then

QT (K1,K2) : −E(K2,M), E(K1,M)

and the identity mapping is a containment mapping
from Q to QT . We therefore conclude that Q is sym-
metric in K1 and K2. 2

When subgoals may themselves be symmetric, a
simple containment mapping is not sufficient, as il-
lustrated by the following example.

Example 4.2 Consider again table E from Exam-
ple 4.1. Let S be a symmetric relation; think of
S(M1,M2) as meaning that M1 and M2 are siblings.
Let Q be the conjunctive query

Q(K1,K2) : −E(K1,M1), S(M1,M2), E(K2,M2).

Q is indeed symmetric. However, QT is

Q
T (K1,K2) : −E(K2,M1), S(M1,M2), E(K1,M2)

and the identity mapping is not a containment map-
ping from Q to QT . The mapping that interchanges
M1 and M2 is not a containment mapping, because
S(M1,M2) in Q maps to S(M2,M1) in Q

T . 2

Definition 4.2 Let h be a symbol mapping from a
conjunctive query Q : −B to a conjunctive query
Q′ : −B′. We say that h is a symmetric containment
mapping from Q to Q′ if h(Q) = Q′, and for every
subgoal S in B, either (a) h(S) appears in B′, or (b)
S is symmetric and the symmetric complement of h(S)
appears in B′, or (c) S is a built-in subgoal, and h(S)
is equivalent to a subgoal of B′. 2



Unlike parts (a) and (b), part (c) of Definition 4.2 is
not syntactic identity; it depends on the proof system
available to demonstrate equivalence. Part (c) allows
us to identify symmetric conditions (Definition 3.1) in
a logic-based formalism.

Lemma 4.2 Let Q and Q′ be conjunctive queries with
ordinary subgoals that may be symmetric, and no built-
in subgoals. Q is contained in Q′ if and only if there
exists a symmetric containment mapping from Q′ to
Q. 2

Lemma 4.3 Let Q be a conjunctive query containing
ordinary subgoals that may be symmetric, and no built-
in subgoals. Q is symmetric if and only if there exists
a symmetric containment mapping from Q to QT . 2

Lemma 4.3 resolves the difficulty of Example 4.2,
because the mapping that interchanges M1 and M2 is
a symmetric containment mapping. As in the nonsym-
metric case [9], when built-in subgoals are allowed we
lose the “only-if” part of Lemma 4.3.

Lemma 4.4 Let Q be a conjunctive query containing
ordinary subgoals that may be symmetric, and built-in
subgoals. Q is symmetric if there exists a symmetric
containment mapping from Q to QT . 2

4.1 Optimization using Inference

Suppose we can infer that a query subexpression is
guaranteed to be symmetric. Then we can deliber-
ately insert a “kernelization” operation paired with a
symmetric closure operation, and move the predicates
around to minimize the size of intermediate results.
Thus we can benefit from the proposed query opti-
mization techniques of Section 3 even if we do not have
any stored kernels in the database.

Example 4.3 Consider again table E from Exam-
ple 4.1. We write E1 and E2 to distinguish two in-
stances of E in a single query, and we similarly sub-
script the attributes of E. Consider a query

(E1 1M1=M2
E2) 1θ1 R1 . . . 1θm

Rm.

Suppose that none of the θi conditions mention K1

or K2. We begin by inferring that the subexpression
(E1 1M1=M2

E2) is symmetric in K1 and K2; see Ex-
ample 4.1. We can therefore rewrite the query as

γK1,K2
(σK1≤K2

(E1 1M1=M2
E2)) 1θ1 R1 . . . 1θm Rm.

By repeatedly applying Lemma 3.1, this is equivalent
to

γK1,K2
(σK1≤K2

(E1 1M1=M2
E2) 1θ1 R1 . . . 1θm Rm)

which is more efficient than the original expression
because the intermediate joins are smaller. 2

5 Extending SQL

In this section, we extend SQL with features that al-
low the expression of bounded-cardinality multisets
as database columns. Our extended SQL can be
translated into the algebra described previously. The
proposed syntactic constructs enable the succinct ex-
pression of queries that manipulate bounded multi-
sets. Further, specialized syntax for commonly used
operations can help the database system choose effi-
cient query processing algorithms to execute the query
[2, 11].
When creating a table, one may declare k columns

of the same type to be a named multiset. This dec-
laration serves two purposes. It provides a name for
the group of attributes that can be used in writing
queries. It also gives a hint to the database system
to create an index on the union of all columns in the
group. The multiset may optionally be declared to be
symmetric, in which case the database system is free
to permute the columns (e.g., to store the kernel) to
make integrity constraint checking and query process-
ing more efficient.

Example 5.1 In Example 1.4, a multiset Persons
would be declared for the columns containing the (inte-
ger) identifiers of persons participating in the meeting,
and Persons would be declared symmetric.

Create Table M (
Meeting-id integer,
Symmetric Multiset Persons

{ P1, ..., Pk } integer,
... )

In Example 1.5, a multiset Slots would be declared
for the columns C1 through C24. Slots would not be
declared symmetric.

Create Table V (
ID integer,
ViewDate date,
Multiset Slots

{ C1, ..., C24 } integer,
... )

In these examples, users may query the attributes Pi
and Ci directly as regular attributes, using standard
SQL syntax. 2

We introduce new “column variables” that are al-
lowed to take values from any one of a set of columns.
The original columns of a table are not permuted. This
choice allows us to access a symmetric base table T
directly in the conventional way, without forcing the
query “Select * from T” to have k! copies of each tu-
ple representing a k-element multiset. The scope of a
column variable is defined using the Among keyword in
the Where clause.6

6The occurrences of column variables must be safe in the
sense of [10].



Example 5.2 Consider Example 1.5 together with the
sample query “Find all individuals who, on the given
date, have watched channels 2 and 4, but not channel
5.” We would write this query as

Select ID, ViewDate
From V
Where {X1,X2} Among Slots and X1=2 and X2=4
and not ({5} Among Slots)

There is one row per ID and ViewDate in the output,
even though there may be many possible combinations
of slots satisfying the conditions in the Where clause.
2

When we write {X1,X2} Among Slots it is implicit
that X1 and X2 correspond to different columns within
Slots. If X is a column variable, we use the syn-
tax X.name to denote the column name of the col-
umn actually bound to X in the query. One can use
the Among keyword for groups not explicitly defined
as multisets by explicitly listing the columns, as in
“{X1,X2} Among {Jan,Feb,Mar,Apr}”.

Example 5.3 Continuing Example 5.2, suppose that
we include a column variable in the Select clause.

Select ID, ViewDate, X1.name, X1
From V
Where {X1,X2} Among Slots and X1=2 and X2=4
and not ({5} Among Slots)

Unlike before, there are multiple rows per ID/ViewDate
in the output, one for each binding of X1 to a column
whose value (together with some X2 value) satisfies the
conditions of the Where clause. The column-variables
in the select clause implicitly control duplicate elimina-
tion. Since only X1 is mentioned in the select clause,
there is one value output for each X1 column binding,
irrespective of how many valid X2 values are present.
2

Example 5.3 shows how to “unpivot” a k-element
multiset from a column-based representation into a
more traditional row-based representation. One could
use variants of Example 5.3 to define views over which
traditional SQL methods of set manipulation can be
expressed. As a result, none of SQL’s expressive power
for set manipulation has been lost by using a column-
wise representation. We emphasize that since the un-
pivoted table is just a view, queries over the unpivoted
table could be translated into queries over the original
(pivoted) table, which may be more efficient because
joins are not required.

Example 5.4 Consider Example 1.4 in which we
have a meeting table M with k attributes P1, . . . , Pk

grouped into a multiset called Persons. We wish to
find all pairs of people X and Y at three degrees of
separation. In other words, we need three meetings

M1,M2,M3 such that X attendedM1, Y attendedM3,
M1 andM2 have overlapping membership, andM2 and
M3 have overlapping membership. We can write this
query as

Select X, Y
From M M1, M M2, M M3
Where {X} Among M1.Persons
and {W} Among M1.Persons
and {W} Among M2.Persons
and {Z} Among M2.Persons
and {Z} Among M3.Persons
and {Y} Among M3.Persons

{W} Among M2.Persons and {Z} Among M2.Persons
are written separately, meaning that W and Z
may bind to the same column. Had we written
{W,Z} Among M2.Persons, they would have to be dif-
ferent columns. One could also formulate the query
succinctly using an “overlap” method, as discussed in
Section 3.1:

Select X, Y
From M M1, M M2, M M3
Where {X} Among M1.Persons
and Overlap(M1.Persons,M2.Persons) >= 1
and Overlap(M2.Persons,M3.Persons) >= 1
and {Y} Among M3.Persons

2

Without the Among syntax, there would be no way
to output values from multiple columns in a single se-
lect statement. One would need to form the union of
k2 select statements to express Example 5.4.
A conventional set representation would require a

six-way join to express Example 5.4.
When a symmetric multiset has fewer elements

than the cardinality bound, the remaining columns
are padded with NULLs. Column-variables cannot be
bound to NULL values.
We also advocate additional syntactic elements for

directly expressing multisets formed as the intersec-
tion or difference of other multisets. (Note that union
of two k-bounded multisets is not necessarily a k-
bounded multiset.)
The translation of the extended SQL into the ex-

tended algebra is relatively straightforward. When
symmetric attributes are referenced using the Among
keyword, the underlying relation has its symmetric
columns copied into new columns. Some of these new
columns correspond to the column variables. The sym-
metric closure operator is applied to the new columns
to find combinations of values satisfying the conditions
on column variables in the Where clause. An algebraic
duplicate-elimination step is also needed, as is special
handling for NULL values. After the query has been
translated, it can be optimized and executed as out-
lined in Sections 2.2 and 3.



6 Experimental Evaluation

In this section we describe an experimental evalua-
tion of various representations of multisets on a state-
of-the-art commercial database system. We wish to
demonstrate the qualitative performance characteris-
tics of various representations. A comprehensive per-
formance evaluation is beyond the scope of this paper.
We consider a database of randomly generated 3-

element multisets, where each element is a string cho-
sen uniformly from a set of about 8,000 English words.
The schema of the kernel table K is (X1, X2, X3, Y )
where X1, X2, X3 are the set elements. We construct
K so that X1 ≤ X2 ≤ X3, and create an index on X1,
an index on X2, and an index on X3. We store 500,000
such sets in the database.
We define a view V over K as the union of all six

permutations (each expressed using a select statement)
of X1, X2, X3 from K.
We also store a conventional set-based representa-

tion of the same data in which a new set-identifier at-
tribute ID is defined. We create one table S(ID, Y ),
and another M(ID,X) containing the unpivoted sets.
An index on X in M is created.
We consider four variants of a query that finds sets

with all three members specified by constants. In the
first variant Q1, we query K for some combination of
attributes.7

Select X1,X2,X3,Y
From K
Where (X1=’foo’ and X2=’bar’ and X3=’baz’)

or (X1=’foo’ and X3=’bar’ and X2=’baz’)
or (X2=’foo’ and X1=’bar’ and X3=’baz’)
or (X2=’foo’ and X3=’bar’ and X1=’baz’)
or (X3=’foo’ and X1=’bar’ and X2=’baz’)
or (X3=’foo’ and X2=’bar’ and X1=’baz’)

In the second variant Q2 of the query, we write the
query in terms of V .

Select X1,X2,X3,Y
From V
Where (X1=’foo’ and X2=’bar’ and X3=’baz’)

In the third variant Q3, we query the conventional
set-based representation.

Select M1.X, M2.X, M3.X, S.Y
From S, M M1, M M2, M M3
Where (M1.X=’foo’ and M2.X=’bar’

and M3.X=’baz’) and
M1.ID=S.ID and M2.ID=S.ID and M3.ID=S.ID

Our extended syntax for the query would be

7In general we cannot take advantage of the order of con-
stants mentioned in the query since the constants we’re looking
for may be bound at query time, and since we may be querying
on just a subset of the available columns.

Select X1,X2,X3,Y
From K
Where {’foo’,’bar’,’baz’} Among {X1,X2,X3}

Our proposed access plan (use a combined index on all
set columns) is not directly supported by the database
system. Thus, the best we can do is to construct a
queryQ4 whose performance is likely to be comparable
to our intended query plan. (We need to verify that
the chosen plan for Q4 is similar to our intended plan.)
Q4 is

Select X1,X2,X3,Y
From K
Where (X1=’bar’ and X2=’baz’ and X3=’foo’)

in which the constants are selected in alphabetical or-
der.
We ran each of these queries using a commercial

database system on a 1.4GHz Intel Centrino machine
under Windows XP. We record the optimization time
and execution time as reported by the database sys-
tem. These are elapsed-time measurements. Each
query was run on a cold database that had just been
started. The numbers below reflect the average of five
runs for each query. In each run a different combi-
nation of constants was used, and the combinations
were chosen so that there was always a match in the
database. The database system also reported the plan
chosen to execute each query.
The plan chosen for Q4 uses the indexes on X1, X2

and X3 to find matching row identifiers, intersects the
set of identifiers, and finds rows from K for the match-
ing identifiers. Our intended plan would do the same
operations, but using a single common index for X1,
X2 and X3. While the number of row identifiers being
intersected may be higher with our proposed method,
the performance of Q4 should roughly approximate the
performance of our proposed method.
The plans chosen for Q1 and Q2 are similar to each

other, consisting of the union of 6 subplans of the form
mentioned for Q4, one subplan per permutation of the
attributes.
The plan chosen for Q3 was a tree of three index-

nested-loops joins. The innermost (i.e., leftmost) table
is M accessed using an index lookup based on the X
column. The other three index lookups are on the ID
attributes of M (twice) and S.
Figure 1 shows the actual execution time for each

of the four queries as reported by the database system.
Figure 1 does not include the query optimization time,
which is shown separately in Figure 2.
Figure 1 shows that the execution cost of Q4 is

smallest, with Q1 and Q2 having comparable execu-
tion cost. The cost of Q3 is about 35 times higher
than Q4.
Figure 2 shows that the optimization cost of all

three queries is comparable, although Q2 has a notice-
ably lower optimization cost. This lower optimization
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Figure 1: Execution time of the four queries.
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Figure 2: Optimization time of the four queries.

cost is probably just an artifact of a smaller search
space of plans within the query optimizer, and not
something intrinsic to the query itself. (Note the im-
portance of separating the optimization time from the
execution time in interpreting these results. Had we
just reported the total elapsed time, Q2 would have
been the winner.)
Of the four solutions (Q1, Q2, Q3, and our proposed

method), only our method scales with the number of
attributes. Q3 does not scale because it requires a k-
way join for multisets containing k elements. As one
can see in Figure 1, even for k = 3 the performance
of Q3 is more than an order of magnitude worse than
competing approaches.
Suppose that writing a basic condition (of the form

table.attribute=value) takes 10 bytes of memory.
If we try to generalize Q1 and Q2 to k-element multi-
sets, then they require either a query or view definition
whose size is approximately 10k(k!) bytes. The impact
of this rate of growth is shown in Figure 3; note the
logarithmic vertical scale. Q1 and Q2 quickly become
impractical: with k = 11 the space for the query/view
definition alone is four gigabytes.
In contrast, our query specification has size linear

in k, and it can be evaluated without joins.
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Figure 3: Growth of Q1 and Q2 with the multiset car-
dinality k.

7 Conclusions

We provide techniques that enable a database engine
to support a symmetric table type. The techniques
include

• A nonredundant data structure with update
methods and specialized indexes.

• Methods for normalization in the presence of sym-
metric tables.

• An algebraic symmetric closure operator, together
with algebraic equivalences useful for query opti-
mization.

• Inference methods to determine when a
query/view is guaranteed to be symmetric.

• A syntactic SQL extension to enable compact
query expression.

A symmetric table type allows database schema de-
signers to model symmetric relationships without hav-
ing to worry about integrity, redundancy, consistency
of updates, query efficiency, or suboptimal physical de-
sign.
One could go even further and implement different

kinds of symmetric table. For example, the class of
antireflexive symmetric relations (i.e., k-element sets
rather than multisets) satisfies simpler algebraic rules,
and some duplicate elimination steps can be omitted
in the implementation of the γ operator (see Exam-
ple 2.2).
We have argued that our approach is applicable

when there is a natural cardinality bound in the appli-
cation. One could extend our approach to general mul-
tisets by using a combined structure, i.e., a bounded
cardinality multiset for an initial subset of elements,
and a conventional set representation for additional
elements.8 An appropriate syntax could hide this di-

8This idea was suggested to us by Wisam Dakka.



vision from the user, presenting a single multiset ab-
straction. When small sets are typical, such an ap-
proach would have performance benefits, even in the
absence of a strict cardinality bound.
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