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Ground states of three-dimensional EA Ising spin glasses
are calculated for sizes up to 143 using a combination of a
genetic algorithm and cluster-exact approximation. For each
realization several independent ground states are obtained.
Then, by applying ballistic search and T = 0 Monte-Carlo
simulations, it is ensured that each ground state appears with
the same probability. Consequently, the results represent the
true T = 0 thermodynamic behavior. The distribution P (|q|)
of overlaps is evaluated. For increasing size the width of P (|q|)
and the fraction of the distribution below q0 ≡ 0.5 converge
to zero. This indicates that for the infinite system P (|q|) is
a delta function, in contrast to previous results. Thus, the
ground-state behavior is dominated by few large clusters of
similar ground states.

Keywords (PACS-codes): Spin glasses and other
random models (75.10.Nr), Numerical simulation studies
(75.40.Mg), General mathematical systems (02.10.Jf).

I. INTRODUCTION

Recently, a new algorithm for studying the ground-
state landscape of finite-dimensional spin glasses [1] was
introduced [2]. It could be shown that this method is
indeed able to calculate true ground states [3]. The ±J
spin glass (see below) exhibits a ground-state degener-
acy, i.e. many different ground states exist for each re-
alization. Results [4] describing the distribution of the
ground states depend on the statistical weights of the
states which are determined by the algorithm which is
used. Usually, different ground states exhibit different
weights [5], which is thermodynamically incorrect. Here,
a new technique is applied which avoids this problem.
In this work, three-dimensional Edwards-Anderson

(EA) ±J spin glasses are investigated. They consist of
N spins σi = ±1, described by the Hamiltonian

H ≡ −
∑
〈i,j〉

Jijσiσj . (1)

The sum runs over all pairs of nearest neighbors. The
spins are placed on a three-dimensional (d=3) cubic lat-
tice of linear size L with periodic boundary conditions in

all directions. Systems with quenched disorder of the in-
teractions (bonds) are considered. Their possible values
are Jij = ±1 with equal probability. To reduce the fluc-
tuations, a constraint is imposed, so that

∑
〈i,j〉 Jij = 0.

One of the most important questions is whether many
pure states exist for realistic spin glasses. For the in-
finitely ranged Sherrington-Kirkpatrik (SK) Ising spin
glass this question was answered positively by the contin-
uous replica-symmetry-breaking mean-field (MF) scheme
by Parisi [6]. But also a complete different model is pro-
posed: the Droplet Scaling (DS) theory [7–11] suggests
that only two pure states (related by a global flip) ex-
ist and that the most relevant excitations are obtained
by reversing large domains of spins (the droplets). From
the ground state point of view the existence of many pure
states means that two ground states may differ by an ar-
bitrary number of spins. Otherwise two ground states
would only differ by the spin orientations in some finite
domains, which is always possible in the ±J model be-
cause of the discrete structure of the interaction distri-
bution. A detailed discussion can be found in [12], where
the metastate approach [13] is used to thoroughly analyze
MF,DS and other intermediate scenarios.
While earlier Monte-Carlo (MC) simulations [14] suffer

from small system sizes or equilibration problems [15], re-
cent results of simulations [16] at temperatures just below
Tc seem to find evidence for the MF picture. In [17], by
applying a Migdal-Kadanoff approximation, MF behav-
ior was found for small systems at temperatures slightly
below Tc, where the correlation length exceeds the system
size. But by going to lower temperatures or larger sys-
tems the DS picture turned out to be more appropriate.
Consequently, the analysis of true ground states should
clarify the issue. In [18] ground states were calculated
using multicanonical MC sampling, but no discrimina-
tion between MF and DS could be made because of too
small system sizes. Using cluster-exact approximation
true ground states [3] were studied and MF behavior was
found [4]. But, as mentioned at the beginning, these re-
sults suffer from the fact that not all ground states are
generated with the same probability [5]. This would in-
deed be the correct sampling method, since all ground-
state configurations have exactly the same energy.
In this work ground states of sizes up to L = 14 are cal-

culated and a technique is applied, which guarantees that
all ground states enter the result with the same weight,
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i.e. the correct T = 0 thermodynamical behavior is ob-
tained. It will be shown that the main result changes dra-
matically: with increasing system size the ground-state
behavior is not explained by the MF scenario.
The method presented here is not only useful when

the ground state calculation is performed using cluster-
exact approximation. Also other methods like simulated
annealing or multicanonical simulation do not guarantee
a priori that each ground state is calculated with the
same probability because always a finite number of steps
is used. Thus, the technique presented here has a wide
range of applications.
The paper is organized as follows: next a short descrip-

tion of the algorithms is presented. Then the definitions
of the observables evaluated here are shown. In the main
section the results are presented and finally a summary
is given.

II. ALGORITHMS

The calculation of ground states for three-dimensional
spin glasses belongs to the class of the NP-hard problems
[19], i.e. only algorithms with exponentially increasing
running time are available. Thus, only small systems can
be treated. The basic method used here is the cluster-
exact approximation (CEA) technique [2], which is a dis-
crete optimization method designed especially for spin
glasses. In combination with a genetic algorithm [20,21]
this method is able to calculate true ground states [3]
up to L = 14. Using this technique one does not en-
counter ergodicity problems or critical slowing down like
when using algorithms which are based on Monte-Carlo
methods.
But, as mentioned before, by applying pure genetic

CEA, one does not obtain the true thermodynamic dis-
tribution of the ground states [5], i.e. not all ground
states contribute to physical quantities with the same
weight. For small system sizes up to L = 4 it is possible
to avoid the problem by generating all T = 0 states, i.e.
averages can be performed simply by considering each
ground-state once. Since the ground state degeneracy
increases exponentially with the number N of spins, this
is not possible for larger system sizes. Instead one has to
choose a subset of all configurations. The following pro-
cedure is applied to ensure that all ground states appear
with the same probability in this selection:
By performing the ballistic-search (BS) algorithm [22]

the ground states are grouped into clusters. All states
which are accessible via flipping of free spins, i.e. with-
out changing the energy, are considered to be in the same
cluster. It has been shown [22] that the number of clus-
ters defined in this way diverges exponentially for the
three-dimensional ±J spin glass. The sizes of these clus-
ters can be estimated quite accurately using a variant of
the BS method [22] even if only few ground states per
cluster are available. Then a certain number of ground

states is selected from each cluster. This number is pro-
portional to the size of the cluster. It means that each
cluster contributes with its proper weight. The selection
is done in a manner that many small clusters may con-
tribute as a collection as well; e.g. assume that 100 states
are used to represent a cluster consisting of 1010 ground
states, then for a set of 500 clusters of size 107 each a
total number of 50 states is selected. This is achieved by
sorting the clusters in ascending order. The generation
of states starts with the smallest cluster. For each cluster
the number of states generated is proportional to its size
multiplied by a factor f . If the number of states grows
too large, only a certain fraction f2 of the states which
have already been selected is kept, the factor is recalcu-
lated (f ← f ∗ f2) and the process continues with the
next cluster.
The states representing the clusters are generated by

T = 0 Monte-Carlo simulation, i.e. iteratively spins
are selected randomly and flipped if they are free. The
ground states which have been obtained before are used
as initial configurations for the MC simulation. MC is
able to reproduce the correct thermodynamic distribu-
tion, if the simulation time is long enough. Then, all
ground-states within a cluster are visited with the same
frequency. Later it will be shown that for the largest size
L = 14 and the largest clusters 100 MC steps per spin
are sufficient.
Since each cluster appears with a weight proportional

to its size and each ground state within a cluster appears
with the same probability, on total each ground state has
the same likelihood of being generated. Thus, the correct
thermodynamic distribution is obtained.

III. OBSERVABLES

For a fixed realization J = {Jij} of the exchange in-

teractions and two replicas {σα
i }, {σ

β
i }, the overlap [6] is

defined as

qαβ ≡
1

N

∑
i

σα
i σ

β
i . (2)

The ground state of a given realization is characterized
by the probability density PJ (q). Averaging over the
realizations J , denoted by [ · ]av, results in (Z = number
of realizations)

P (q) ≡ [PJ (q)]av =
1

Z

∑
J

PJ (q) . (3)

Because no external field is present the densities are sym-
metric: PJ (q) = PJ (−q) and P (q) = P (−q). Therefore,
only P (|q|) is relevant.
The Droplet model predicts that only two pure states

exist, implying that P (|q|) converges to a delta function
P (q) = δ(q − qEA) for L → ∞ (we don’t indicate the L
dependence by an index), while in the MF picture the
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density remains nonzero for a range 0 ≤ q ≤ q1 with a
peak at qmax (0 < qmax ≤ q1). Consequently the variance

σ2(|q|) ≡

∫
1

−1

(|q| − |q|)2P (q)dq = |q|2 − |q|
2

(4)

stays finite for L→∞ in the MF pictures while σ2(|q|) ∼
L−y → 0 according the DS approach. The combined
average of a quantity X over all ground states and over
the disorder is denoted with X. Here, y is the zero-
temperature scaling exponent [7] denoted Θ in [9,10].
To characterize the contribution from small overlap

values separately, which are due to a complex structure of
the energy landscape, the weight Xq0 of the distribution
below a given threshold q0 is calculated:

Xq0 ≡

∫ q0

0

P (|q|) dq . (5)

The overlap defined in (2) can be applied to measure
the distance dαβ between two states:

dαβ ≡ 0.5(1− qαβ) (6)

with 0 ≤ dαβ ≤ 1. For three replicas α, β, γ the usual
triangular inequality reads dαβ ≤ dαγ + dγβ . Written in
terms of q it reads

qαβ ≥ qαγ + qγβ − 1 . (7)

Another characteristic attributed to the MF scheme is
that the state space exhibits ultrametricity. In an ultra-
metric space [23] the triangular inequality is replaced by
a stronger one dαβ ≤ max(dαγ , dγβ) or equivalently

qαβ ≥ min(qαγ , qγβ) . (8)

An example of an ultrametric space is given by the set
of leaves of a binary tree: the distance between two leaves
is defined by the number of edges on a path between the
leaves.
Let q1 ≤ q2 ≤ q3 be the overlaps qαβ, qαγ , qγβ ordered

according their sizes. By writing the smallest overlap on
the left side in equation (8), one realizes that two of the
overlaps must be equal and the third may be larger or
the same: q1 = q2 ≤ q3. Therefore, for the the difference

δq ≡ q2 − q1 (9)

δq = 0 holds. For a finite system ultrametricity may be
violated, i.e. δq > 0. If a system becomes more and more
ultrametric with growing system size, δq should decrease
while L → ∞. When evaluating δq, the influence of the
absolute size of the overlaps should be excluded. Thus,
the third overlap is fixed: q3 = qfix. In practice overlap
triples are used where q3 ∈ [qfix, qfix2] holds. This allows
to obtain sufficient statistics. In the next section the dis-
tribution P (δq) is evaluated. For an ultrametric system
this quantity should converge to a Dirac delta function
with increasing size L [24].

IV. RESULTS

Ground states were generated using genetic CEA for
sizes L ∈ [3, . . . , 14]. The number of realizations of the
bonds per lattice size ranged from 100 realizations for
L = 14 up to 1000 realizations for L = 3. One L = 14
run needs typically 540 CPU-min on an 80MHz PPC601
processor (70 CPU-min for L = 12, . . ., 0.2 CPU-sec
for L = 3), more details can be found in [3]. Each run
resulted in one configuration which was stored, if it ex-
hibited the ground state energy. For the smallest sizes
L = 3, 4 all ground states were calculated for each real-
ization by performing up to 104 runs. For larger sizes it
is not possible to obtain all ground states, because of the
exponentially rising degeneracy. For L = 5, 6, 8 practi-
cally all clusters are obtained using at most 104 runs [22],
only for about 25% of the L = 8 realization some small
clusters may have been missed.
For L > 8 not only the number of states but also the

number of clusters is too large, consequently 40 indepen-
dent runs were made for each realization. For L = 14
this resulted in an average of 13.8 states per realization
having the lowest energy while for L = 10 on average
35.3 states were stored. This seems a rather small num-
ber. However, the probability that genetic CEA returns a
specific ground state increases (sublinearly) with the size
of the cluster the state belongs to [25]. Thus, ground
states from small clusters do appear with a small proba-
bility. Because the behavior is dominated by the largest
clusters, the results shown later on are the same (within
error bars) as if all ground states were available. This
was tested explicitly for 100 realizations of L = 10 by
doubling the number of runs, i.e. increasing the number
of clusters found.
Using this initial set of states for each realization

(L > 4) a second set was produced using the techniques
explained before, which ensures that each ground state
enters the results with the same weight. The number of
states was chosen in a way, that nmax = 100 states were
available for the largest clusters of each realization, i.e. a
single cluster smaller than one hundredth of the largest
cluster does not contribute to physical quantities, but,
as explained before, a collection of many small clusters
contributes to the results as well. Finally, it was verified
that the results did not change by increasing nmax.
The number of MC steps used for generating the states

was determined in the following way: a ground state was
selected randomly from the largest clusters found for the
L = 14 realizations. 100 independent T = 0 MC runs
of length nMC MC steps were performed starting always
from this initial state. For the set of 100 final states the
distribution of overlaps was calculated. The whole pro-
cess was averaged over different realizations. In Fig. 1
the average distribution Pc(q) of overlaps is shown for dif-
ferent run lengths nMC . It can be seen that by increasing
the number of MC steps the ground-state cluster is ex-
plored better. By going beyond nMC = 100 steps Pc(q)
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does not change, indicating that this number of MC steps
is sufficient to generate ground states equally distributed
within a cluster for L = 14.
The order parameter selected here for the description

of the complex ground state behavior of spin glasses is
the total distribution P (|q|) of overlaps. The result for
the case where all ground states have the same weight
is shown in Fig. 2 for L = 6, 10. The distributions are
dominated by a large peak for q > 0.8. Additionally there
is a long tail down to q = 0, which means that arbitrarily
different ground states are possible. So far this is the
same result as obtained earlier [4] for the case where the
weights of the states are determined by the genetic CEA
algorithm. But there is a difference: for the old results
the weight of the long tail remains the same for all system
sizes. Here for L = 10 small overlaps are about 3/4 times
less likely than for L = 6.
To study the finite size dependence of this effect, the

variance σ2(|q|) of P (|q|) was evaluated as a function of
the system size L. The result is displayed in Fig. 3. Ad-
ditionally the datapoints from [4] are given. Obviously,
by guaranteeing that every ground state has the same
weight, the result changes dramatically. To extrapolate
to L → ∞, a fit of the data to σ2

L = σ2
∞ + a0L

−a1 was
performed. A value of σ2

∞ = −0.01(1) (a1 = −0.61(15))
was obtained, indicating that the width of P (|q|) is zero
for the infinite system. Consequently, the MF picture
with a continuous breaking of replica symmetry cannot
be true for three-dimensional ±J spin glasses.
In Fig. 4 the behavior of the long tail is studied in

more detail. The integrated weightX0.5(L) of all overlaps
q < q0 ≡ 0.5 is shown as a function of the system size.
Again a fit is used to extrapolate the behavior of the
infinite system. A value of X∞ = −0.01(2) is obtained,
confirming the result obtained above.
One might suspect that the results can be explained

by the fact that with increasing system size the behavior
is dominated more and more by one ground-state cluster.
To examine this issue the quantity Y = 1− [

∑
c w

2

c ]av is
calculated, where wc is the relative size of cluster c. If
really one cluster dominates, Y must vanish with increas-
ing system size L. In Fig. 5 Y is shown as a function of L
for small system sizes L ≤ 8, where all ground-state clus-
ters have been obtained. Obviously, Y does not decrease.
One reason is that the probability P (nc = 1) that a re-
alization exhibits just one ground-state cluster (and its
inverse) decreases with growing system size (cf. inset).
Consequently, there is no single reason explaining the be-
havior of P (|q|). Additionally, for the interpretation of
Fig.5, one has to take into account that the definition of a
cluster, although it is very useful for the evaluation of the
ground-state landscape, may have no physical meaning.
By collecting all results one obtains the following de-

scription for the distribution of overlaps of the infinite
system: It consists of a large delta-peak and a tail down
to q = 0, but the weight of that tail goes to zero. This
expression is used to point out that by going to larger
sizes small overlaps still occur: the number of arbitrarily

different ground states diverges [22]. But the size of the
largest clusters, which determine the self overlap leading
to the large peak, diverges even faster. The delta-peak is
centered around a finite value qEA. From further evalu-
ation of the results qEA = 0.90(1) was obtained.
Finally, it was tested whether the ground states are ul-

trametrically organized. In Fig. 6 the distribution P (δq)
is shown for system sizes L = 4, 8, 12. Each realization
enters the distribution with the same weight. With in-
creasing system size the distributions get closer to q = 0,
indicating that the systems become more and more ul-
trametric. The same conclusion can be driven from the
evaluation of the average value of δq as a function of L
(cf. inset). This result is similar to the former calcula-
tions [4], where the correct T = 0 distribution was not
obtained. But it should be stressed that ultrametricity
is only found within a restricted subset of states (here
q3 ≈ 0.5). By performing the thermodynamic limit the
weight of all regions of state space restricted in this way
disappears, i.e. ultrametricity disappears as well.

V. CONCLUSION

Using genetic cluster-exact approximation the ground-
state landscape of three-dimensional ±J spin glasses is
investigated. By applying ballistic search and T = 0
Monte-Carlo simulation it is guaranteed that each ground
state enters the result with the same probability, thus
a correct thermodynamic distribution is achieved. This
technique also can be successfully combined with other
methods which are used to generate several configura-
tions from a degenerate ground-state landscape, e.g. with
simulated annealing or multicanonical simulation.
The distribution of overlaps is evaluated. For the in-

finite system it consists solely of two symmetric delta-
peaks. This does not imply that there are only two
ground-state clusters remaining. On the contrary, the
number of ground state clusters grows exponentially with
increasing system size but the ground-state behavior is
dominated by a few large similar clusters (and their in-
verse). Therefore, a distinct impression emerges: a huge
number of arbitrarily different ground-state clusters ex-
ist, but by going to larger and larger sizes most of them
become unimportant. This rules out any (nonstandard)
MF picture with continuous breaking of symmetry to be
valid in total. Interestingly, the result is compatible with
the one step replica-symmetry-breaking scheme which
was observed for the p-spin glass [26]. It exhibits a simple
distribution of overlaps while many different ground-state
clusters are possible. However, further work is needed to
determine which of the remaining scenarios really holds
for finite-dimensional spin glasses.
Please note that the cluster-interpretation depends on

the definition of a cluster. By choosing a dynamic which
allows flips of more than one spin at a time, a different
definition of energy-barriers is implied and thus another
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kind of clusters. But it should be stressed that the results
presented in this work do not depend on the way a cluster
is defined. Any method of sorting the ground states into
groups will work that takes the number of ground states
selected proportional to the size of the group, and ensures
that each state of a group has the same probability of
being used for the calculation.
Finally, it should be pointed out that not all results

previously obtained using genetic CEA are biased by the
disbalance of the ground-state distribution. The main
outcomes in [3,27] are not affected. Additionally, al-
though the old data bases on a wrong distribution, the
results in [4] prove that there are arbitrary different clus-
ters present. The reason for P (|q|)→ δ(q − qEA) is that
most of them become less important.
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FIG. 1. Distribution Pc(q) of overlaps restricted to a
ground-state cluster for different number nMC of MC steps.
100 independent T = 0 MC runs were performed for the
largest clusters found for L = 14 starting always from the
same ground state. By going beyond nMC = 100 the dis-
tribution does not change any more, indicating that 100 MC
steps are sufficient to obtain independent ground states within
a cluster for L ≤ 14. The inset shows the mean overlap value
as a function of nMC .
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ground state enters the result with the same probability. The
fraction of small overlaps decreases about a factor 3/4 by
going from L = 6 to L = 10 (please note the logarithmic
scale).
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determined by the genetic CEA algorithm. For the lower
points each ground state has the same probability of be-
ing included in the calculation. The line represents a fit to
σ2
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−a1 . The extrapolation to the infinite sys-
tem results in σ2
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= −0.01(1). Consequently, the width of

distribution of overlaps appears to be zero, i.e. P (|q|) is a
delta-function.
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results for the correct thermodynamic average is shown. The
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x1 . The extrapo-
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almost all ground-state clusters have been obtained. The fig-
ure proves that with increasing system size the ground-state
landscape is not dominated more and more by one cluster.
The inset shows the probability P (nc = 1) that a realization
exhibits only one ground-state cluster as a function of L.
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FIG. 6. Distribution P (δq) for different system sizes
L = 4, 8, 12 where δq = q2 − q1 and q1 ≤ q2 ≤ q3 are triplets
of absolute values of overlaps from independent triplets of
ground states. Only triplets with q3 ∈ [0.5, 0.6] are used. For
an infinite ultrametric system δq = 0 holds. For L = 12 a
running average was used to smooth the data to make the
figure more readable. With increasing system size the distri-
butions get closer to q = 0 indicating the increasing ultra-
metricity of the ground states. The lines are guides for the
eyes only. The inset shows the average value of δq as function
of system size L. The straight line represents the function
〈δq〉(L) = 0.229 × L−0.24.
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