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Abstract

Flavour SU(3) symmetry of strong interactions and certain dynamical as-

sumptions have been used in a series of recent publications to extract weak CKM

phases from B-decays into {ππ, πK,KK̄} final states. We point out that irre-

spectively of SU(3)-breaking effects the presence of QCD-penguin contributions

with internal u- and c-quarks precludes a clean determination of the angle β in

the unitarity triangle by using the branching ratios only. This difficulty can be

overcome by measuring in addition the ratio xd/xs of B
0
d−B̄0

d to B
0
s−B̄0

s mixings.

The measurement of the angle γ is unaffected by these new contributions. Some

specific uncertainties related to SU(3)-breaking effects and electroweak penguin

contributions are briefly discussed.
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Recently in a series of interesting publications [1]-[5], SU(3) flavour symmetry

of strong interactions [6]-[10] has been combined with certain dynamical assump-

tions (neglect of annihilation diagrams, etc.) to derive simple relations among

B-decay amplitudes into ππ, πK and KK̄ final states. These SU(3) relations

should allow to determine in a clean manner both weak phases of the Cabibbo-

Kobayashi-Maskawa-matrix (CKM-matrix) [11] and strong final state interaction

phases by measuring only branching ratios of the relevant B-decays. Neither

tagging nor time-dependent measurements are needed!

In this note we would like to point out certain limitations of this approach.

Irrespectively of the uncertainties related to SU(3)-breaking effects, which have

been partially addressed in [1]-[5], the success of this approach depends on

whether the penguin amplitudes are fully dominated by the diagrams with in-

ternal top-quark exchanges. As we will show below, sizable contributions may

also arise from QCD-penguins with internal up- and charm-quarks. The main

purpose of our letter is to analyze the impact of these new contributions on the

analyses of refs. [1]-[5].

Interestingly enough the determination of the angle γ in the unitarity triangle

as outlined in [1, 4, 5] is not affected by the presence of QCD-penguins with

internal u- and c-quarks. Unfortunately these new contributions preclude a clean

determination of the angle β by using the branching ratios only. We show however

that the additional knowledge of the ratio xd/xs of B
0
d − B̄0

d to B0
s − B̄0

s mixings

would allow a clean determination of β except for SU(3)-breaking uncertainties.

In order to discuss these effects, let us denote, as in [1]-[5], the amplitudes

corresponding to b→ d and b→ s QCD-penguins by P̄ and P̄ ′, respectively, and

those representing the CP-conjugate processes by P and P ′ (these amplitudes

can be obtained easily from P̄ and P̄ ′ by changing the signs of the weak CKM-

phases). Then, taking into account QCD-penguin diagrams with internal u-, c-

and t-quarks, we get

P̄ =
∑

q=u,c,t
V ∗

qdVqbPq = v(d)c (Pc − Pu) + v
(d)
t (Pt − Pu)

P̄ ′ =
∑

q=u,c,t
V ∗

qsVqbPq = v(s)c (P ′

c − P ′

u) + v
(s)
t (P ′

t − P ′

u),
(1)

where we have employed unitarity of the CKM-Matrix and have defined the

CKM-factors as
v(q)c = V ∗

cqVcb

v
(q)
t = V ∗

tqVtb.
(2)
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Applying the Wolfenstein parametrization [12] gives

v(d)c = −λ|Vcb| (1 +O(λ4))

v
(d)
t = |Vtd| exp (iβ)

(3)

and
v(s)c = |Vcb| (1 +O(λ2))

v
(s)
t = −|Vcb| (1 +O(λ2)) ,

(4)

where the estimate of non-leading terms follows ref. [13]. In order to simplify the

presentation we will omitt these non-leading terms in λ in our analysis.

Introducing the notation

Pq1q2 ≡ |Pq1q2 | exp (iδq1q2) ≡ Pq1 − Pq2 (5)

with q1, q2 ∈ {u, c, t} and combining eqs. (3) and (4) with (1) yields

P̄ =

[

− 1

Rt

|Pcu|eiδcu
|Ptu|eiδtu

+ eiβ
]

|Vtd||Ptu|eiδtu (6)

P̄ ′ =

[

−|P ′

cu|eiδ
′

cu

|P ′
tu|eiδ

′

tu

+ 1

]

eiπ|Vcb||P ′

tu|eiδ
′

tu . (7)

Rt is given by the CKM-combination

Rt ≡
1

λ

|Vtd|
|Vcb|

(8)

and represents the side of the so-called unitarity triangle that is related to B0
d–B̄

0
d

mixing. From present experimental data, we expect Rt being of O(1) [13].

Assuming SU(3) flavour symmetry of strong interactions, the “primed” am-

plitudes |P ′

q1q2
| and strong phase shifts δ′q1q2 are equal to the “unprimed” ones

[3]-[5]. Consequently, the penguin-amplitudes (6) and (7) can be expressed in the

form

P̄ =
[

− 1

Rt

∆P + eiβ
]

|Vtd||Ptu|eiδtu (9)

P̄ ′ = [−∆P + 1] eiπ|Vcb||Ptu|eiδtu , (10)

where ∆P is defined by

∆P ≡ |∆P |eiδ∆P ≡ |Pcu|eiδcu
|Ptu|eiδtu

(11)

and describes the contributions of the QCD-penguins with internal u- and c-

quarks. Notice that ∆P suffers from large hadronic uncertainties, in particular
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from strong final state interaction phases parametrized by δcu and δtu. In the

limit of degenerate u- and c-quark masses, ∆P would vanish due to the GIM

mechanism. However, since mu ≈ 4.5 MeV, whereas mc ≈ 1.3 GeV, this GIM

cancellation is incomplete and in principle sizable effects arising from ∆P could

be expected.

In order to investigate this issue quantitatively, let us estimate ∆P by using

the perturbative approach of Bander, Silverman and Soni [14]. To simplify the fol-

lowing discussion, we neglect the influence of the renormalization group evolution

from µ = O(MW ) down to µ = O(mb) and take into account QCD renormaliza-

tion effects only approximately through the replacement αs → αs(µ). Then, the

low-energy effective penguin Hamiltonian is given by (see, e.g., refs. [15]-[18])

Hpen
eff (∆B = −1) = −GF√

2

αs(µ)

8π

∑

q=d,s

[

v(q)c {G(mc, k, µ)−G(mu, k, µ)} (12)

+v
(q)
t

{

E(xt) +
2

3
ln

(

µ2

M2
W

)

−G(mu, k, µ)

}

]

P (q),

where

P (q) = −1

3
Q

(q)
3 +Q

(q)
4 − 1

3
Q

(q)
5 +Q

(q)
6 (13)

is a linear combination of the usual QCD-penguin operators

Q
(q)
3 = (q̄b)V–A

∑

q′(q̄
′q′)V–A

Q
(q)
4 = (q̄αbβ)V–A

∑

q′(q̄
′

βq
′

α)V–A

Q
(q)
5 = (q̄b)V–A

∑

q′(q̄
′q′)V+A

Q
(q)
6 = (q̄αbβ)V–A

∑

q′(q̄
′

βq
′

α)V+A

(14)

and the function G(m, k,M) is defined by [18]

G(m, k,M) ≡ −4

1
∫

0

dxx(1− x) ln

[

m2 − k2x(1 − x)

M2

]

. (15)

The four-vector k denotes the momentum of the virtual gluon appearing in the

QCD-penguin diagrams, xt = m2
t/M

2
W and

E(x) = −2

3
ln x+

x2(15− 16x+ 4x2)

6(1− x)4
ln x+

(18− 11x− x2)x

12(1− x)3
(16)

is one of the so-called Inami-Lim functions [19]. In eq. (14), q′ runs over the

quark flavours being active at the scale µ = O(mb) (q
′ ∈ {u, d, c, s, b}) and α, β

are SU(3)C colour indices.
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Evaluating hadronic matrix elements of Hpen
eff (∆B = −1) and comparing them

with eq. (1), we find

∆P ≈ G(mc, k, µ)−G(mu, k, µ)

E(xt) +
2
3
ln
(

µ2

M2

W

)

−G(mu, k, µ)
. (17)

In this perturbative approximation, the strong phase shift of ∆P is generated

exclusively through absorptive parts of the penguin amplitudes with internal

u- and c-quarks (“Bander–Silverman–Soni mechanism” [14]). Whereas the µ-

dependence cancels exactly in (17), ∆P depends strongly on the value of k2,

as can be seen from Figs. 1 and 2. Simple kinematical considerations at the

quark-level imply that k2 should lie within the “physical” range [17, 18]

1

4
<
∼

k2

m2
b

<
∼

1

2
. (18)

For such values of k2, we read off from Figs. 1 and 2 that

0.2 <
∼ |∆P | <

∼ 0.5 and 70◦ <
∼ δ∆P

<
∼ 130◦, (19)

respectively. Consequently, ∆P may lead to sizable effects in the SU(3) triangle

relations discussed below. We are aware of the fact that the estimate of ∆P given

here is very rough. It illustrates however a potential hadronic uncertainty which

cannot be ignored.

In refs. [1]-[5], only QCD-penguins with internal top-quarks have been taken

into account. This approximation corresponds to ∆P = 0 and gives

P̄∆P=0 = aP e
iβeiδP (20)

P̄ ′

∆P=0 = aP ′eiπeiδP , (21)

where

aP = |Vtd||Ptu|, aP ′ = aP/(λRt) and δP = δtu. (22)

Notice that the weak- and strong phase structure of (21) is similar to (10) which

can be re-written in the form

P̄ ′ = ρP ′aP ′eiπei(δP−ψ′) (23)

with

ρP ′ =
√

1− 2|∆P | cos δ∆P + |∆P |2 (24)
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and

tanψ′ =
|∆P | sin δ∆P

1− |∆P | cos δ∆P
. (25)

In eq. (23), π represents the CP-violating weak phase, while δP − ψ′ denotes the

CP-conserving strong phase shift.

Therefore, the determination of the weak CKM-angle γ through SU(3) trian-

gle relations involving the charged B-meson decays B+ → {π0K+, π+K0, π+π0}
(and the corresponding CP-conjugate modes) as outlined in refs. [1, 4, 5] is not

affected by ∆P at all, since no non-trivial weak phases appear in P ′ (P̄ ′) even

in the presence of QCD penguins with internal u- and c-quarks. However, the

strong phase differences δP − δT,C are shifted by the angle ψ′. Here δT and δC
denote the strong phases of the “tree” and “colour-suppressed” amplitudes

T = aT e
iγeiδT and C = aCe

iγeiδC (26)

contributing to B± → π±π0, respectively.

On the other hand, the QCD-penguin contributions with internal u- and c-

quarks affect the extraction of the phase β by using the triangle relations [3]-[5]

A(B0
d → π+π−) +

√
2A(B0

d → π0π0) =
√
2A(B+ → π+π0)

(T + P ) + (C − P ) = (T + C)
(27)

and

A(B0
d → π−K+)/ru +

√
2A(B0

d → π0K0)/ru =
√
2A(B+ → π+π0)

(T + P ′/ru) + (C − P ′/ru) = (T + C),
(28)

where ru = Vus/Vud.

Following the approach outlined in ref. [5], the complex amplitudes P ′ and

P can be determined up to a common strong phase shift (and some discrete

ambiguities) through a two-triangle construction involving the rates of the five

modes appearing in (27) and (28) and two additional rates that determine |P |
and |P ′| (e.g., B+ → K+K̄0 and B+ → π+K0, respectively). Therefore, the

relative angle ϑ between P and P ′ can be measured. Expressing P in the form

P = ρPaP e
−iβei(δP−ψ) (29)

with

ρP =
1

Rt

√

R2
t − 2Rt|∆P | cos(β + δ∆P ) + |∆P |2 (30)

and

tanψ =
|∆P | sin(β + δ∆P )

Rt − |∆P | cos(β + δ∆P )
, (31)
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we find using (22), (23) and (29)

1

rt

P ′

P
=
ρP ′

ρP
ei(ψ−ψ

′) ≡ ρP ′

ρP
ei(ϑ−β), (32)

where rt ≡ Vts/Vtd. Note that the deviation of the rhs. of eq. (32) from one

represents corrections to the relation between P ′ and P presented in refs. [2]-[5].

Consequently, ϑ is given by

ϑ = β + ψ − ψ′. (33)

In contrast to ψ′, which is a pure strong phase, ψ is a combination of both

CP-conserving strong phases (δ∆P ) and the CP-violating weak phase β.

If we neglect the QCD-penguins with internal u- and c-quarks, as the authors

of refs. [3]-[5], we have ∆P = 0 and, thus, ϑ is equal to the CKM-angle β in this

approximation. However, as can be seen from Figs. 1 and 2, the perturbative

estimates of ∆P indicate that sizable contributions may arise from this amplitude

which show up in eq. (33) as the phase difference ψ − ψ′. Since both ψ and ψ′

contain strong phases, ϑ is not a theoretical clean quantity in general (even if the

SU(3) triangle relations were valid exactly!) and this determination of the angle

β suffers from hadronic uncertainties in contrast to the assertions made in [3]-[5].

In order to illustrate this point quantitatively, we have plotted the dependence

of ψ−ψ′ on k2/m2
b arising from (17) for Rt = 1 and various angles β in Fig. 3. The

corresponding curves for ρP ′/ρP (see eq. (32)) are shown in Fig. 4. In drawing

these figures, we have taken into account that the angle β is smaller than 45◦ for

the present range of |Vub/Vcb| [13]. Notice that the hadronic uncertainties in (32)

and (33) cancel each other, i.e., P ′ = rtP and ψ′ = ψ, if we choose Rt = 1 and

β = 0. This cancellation is, however, incomplete in the general case.

As an illustration consider a measurement of ϑ = 15◦. Setting ∆P = 0 one

would conclude that β = 15◦ and sin 2β = 0.50. With ∆P 6= 0, as calculated

here, the true β could be as high as 20◦ (ψ − ψ′ = −5◦) giving sin 2β = 0.64.

We observe that this uncertainty (in addition to possible SU(3)-breaking effects)

could spoil the comparison of β, measured this way, with the clean determination

of sin 2β in Bd → ψKS.

We now want to demonstrate that the hadronic uncertainties affecting the

determination of β through (33) can be eliminated provided Rt is known. To this

end, we consider the “normalized” penguin amplitudes

1

λ|Vcb|
P =

[

−∆P +Rte
−iβ
]

|Ptu|eiδtu (34)

1

|Vcb|
P ′ = [∆P − 1] |Ptu|eiδtu (35)
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and those of the corresponding CP-conjugate processes (see (9) and (10)) which

are related to (34) and (35) through the substitution β → −β. Combining these

complex amplitudes in the form

z ≡ P + λP ′

P̄ + λP̄ ′
=

1− Rte
−iβ

1− Rteiβ
= ei2γ , (36)

we observe that both ∆P and |Ptu| exp(iδtu), which are unknown, non-

perturbative quantities, cancel in the ratio z. The appearance of γ in this ratio

can be understood by noting that

P̄ + λP̄ ′ = −v(d)u Ptu = −|Vub|e−iγ(1 +O(λ2))|Ptu|eiδtu . (37)

Consequently, in the limit of exact SU(3) triangle relations (27) and (28), the

angle 2γ, which is related to β through

tan 2γ =
2Rt(1−Rt cos β) sinβ

1− 2Rt cos β +R2
t cos 2β

, (38)

can be also here extracted without theoretical uncertainties. If, in addition,

Rt is also known, the CKM-phase β can be determined as well. In Fig. 5, we

have illustrated the dependence of 2γ on β for various values of Rt. Note that

2γ = π − β, if Rt = 1.

The theoretically cleanest way of measuring Rt without using CP-violating

quantities is obtained through

Rt =
1√
Rds

√

xd
xs

1

|Vus|
, (39)

where xd and xs give the sizes of B
0
d − B̄0

d and B
0
s − B̄0

s mixings, respectively, and

Rds =
τBd

τBs

· mBd

mBs





FBd

√

BBd

FBs

√
BBs





2

(40)

summarizes the SU(3) flavour-breaking effects. In the strict SU(3) limit, we

have Rds = 1. The main theoretical uncertainty resides in the values of the B-

meson decay constants FBd,s
and in the non-perturbative parameters BBd,s

which

parametrize the hadronic matrix elements of the relevant operators. We believe

however that Rds can be more reliably estimated than ∆P .

At this point, it should be stressed that the elimination of the hadronic uncer-

tainties arising from ∆P , i.e., the QCD-penguins with internal u- and c-quarks,

requires to consider also the CP-conjugate modes to extract “clean” values of
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β. Furthermore, Rt has to be known. These complications are very different

from the situation in refs. [3]-[5], where it has been emphasized that it was not

necessary to measure the charge-conjugate rates in order to determine β.

Assuming factorization, SU(3)-breaking corrections can be taken into account

approximately through the substitutions ru → rufK/fπ [1]-[5] and rt → rtfK/fπ
in eqs. (28) and (32), respectively, where P ′ and P in eq. (32) are the same as in

the triangle relations (27) and (28). Moreover, we have to replace λ in our result

(36) by λfπ/fK . SU(3)-breaking effects must also be taken into account in the

determination of |P | and |P ′| from the decay amplitudes |A(B+ → K+K̄0)| and
|A(B+ → π+K0)|, respectively. Within the framework of factorization we find

|P | =
fπ
fK

FBπ(0; 0
+)

FBK(0; 0+)
|A(B+ → K+K̄0)| (41)

|P ′| = |A(B+ → π+K0)|, (42)

where FBπ(0; 0
+) and FBK(0; 0

+) are form factors parametrizing the hadronic

quark-current matrix elements 〈π+|(b̄d)V–A|B+〉 and 〈K+|(b̄s)V–A|B+〉, respec-

tively [20]. Unfortunately, hadronic form factors appear in eq. (41) which are

model dependent. Using, for example, the model of Bauer, Stech and Wirbel

[21], we estimate that the SU(3)-breaking factor in (41) should be of O(0.7).

At present, there is no reliable theoretical technique available to evaluate non-

factorizable SU(3)-breaking corrections to the relevant B-decays. Since already

the factorizable corrections are quite large ((20 − 30)%), we expect that non-

factorizable SU(3)-breaking may also lead to sizable effects. In particular, such

corrections could spoil the elimination of the QCD-penguins with internal u- and

c-quarks through eq. (36). Furthermore, in the presence of a heavy top-quark,

electroweak-penguin contributions may also lead to sizable corrections ((10−30)%

at the amplitude level) to the penguin sectors of B-decays into final states that

contain mesons with a CP-self-conjugate quark content [22]-[24]. Possible impact

of electroweak penguins on the approach of refs. [1]-[5] has been recently also

emphasized in ref. [25].

In summary, we have shown that QCD-penguins with internal u- and c-quarks

may lead to sizable systematic errors in the extraction of the CKM-phase β by

using the approach presented in refs. [3]-[5]. However, β can still be determined

in a theoretical clean way (up to corrections arising from non-factorizable SU(3)-

breaking and certain neglected contributions which are expected to be small on

dynamical grounds [1]-[5]), if Rt and the rates of the CP-conjugate processes

appearing in the corresponding triangle relations are measured. On the other
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hand, the determination of γ along the lines suggested in [1]-[5] and in (36) in

the present paper is not affected by these new QCD-penguin contributions. Its

fate depends then only on the ability of estimating SU(3)-breaking effects and

on the precision with which the relevant branching ratios can be measured one

day.
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Figure Captions

Fig. 1: The dependence of |∆P | on k2/m2
b .

Fig. 2: The dependence of δ∆P on k2/m2
b .

Fig. 3: The dependence of ψ − ψ′ on k2/m2
b for Rt = 1 and various values of

the CKM-angle β.

Fig. 4: The dependence of ρP ′/ρP on k2/m2
b for Rt = 1 and various values of

the CKM-angle β.

Fig. 5: The dependence of angle 2γ on the CKM-angle β for various values

of Rt.
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