View metadata, citation and similar papers at core.ac.uk

Ann. Geophysicae 15, 856-869 (1997) © EGS — Springer-Verlag 1997

brought to you by .{ CORE

provided by Crossref

5 Geophysicae

A heuristic model of three-dimensional spectra of temperature
inhomogeneities in the stably stratified atmosphere

A. S. Gurvich

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow 109017, Russia

Received: 25 March 1996 / Revised: 14 November 1996 / Accepted: 3 December 1996

Abstract. Many measurements have shown that the
random temperature fields in the stably stratified atmo-
sphere are not locally isotropic (LI). The local axial
symmetry (LAS) hypothesis looks more appropriate
under these conditions. The object of this paper consists
in the development of a flexible tool for spectral studies
of LAS scalar fields independently of their origin in
stably stratified geophysical flows. A heuristic model of
a 3D spatial spectrum is proposed in order to describe
and study statistical properties of LAS temperature
inhomogeneities from LI structures up to quasi-layered
ones. To simplify the solution of this problem, a main
assumption was accepted: the consideration is restricted
to 3D spectra which may be given on a one-parametric
family of surfaces of rotation. Such 3D spectra may be
represented by a single function of one variable which is
the parameter of the family. This approach allows one
to introduce the generalized energy spectrum which
describes an energy distribution according to inhomo-
geneity sizes. The family of surfaces determines the
shape of inhomogeneities. The family of ellipsoids of
rotation and power-law generalized energy spectrum is
used as the simplest example of the model application in
order to study the general properties of LAS-structure
spectra. The behavior of vertical, horizontal, and
oblique 1D spectra and coherency spectra is studied.
The relationship between the suggested model and some
existing models of temperature spectra is considered.
The application of the model for the analysis of
experimental data is shown for two sets of measure-
ments. It is shown that the suggested model may
quantitatively describe experimental 1D spectra and
coherency spectra from a unique point of view. It is
noted that the model may be used for both the planning
of measurements and data processing. Possible general-
izations of the model are considered for random fields
with more degenerate symmetry and for space-temporal
spectra.

1 Introduction

The Obukhov-Corrsin model is employed most exten-
sively at present in describing the spectra of tempera-
ture fluctuations in the turbulent atmosphere. Obu-
khov’s theory of temperature fluctuations as a passive
admixture is based on Kolmogorov’s ideas of a
statistically locally isotropic (LI) structure of random
velocity field in a developed turbulent flow (Monin and
Yaglom, 1975). Local isotrophy is the result of the
assumption that all the directions in a certain domain
of flow are physically equivalent. Consequently, the 3D
field of temperature fluctuations is also statistically
locally isotropic. However, under stable stratification,
especially in the stratosphere or upper troposphere,
there are no strong grounds for this assumption due to
the effect of buoyancy forces on the evolution of
inhomogeneities.

If the effect of buoyancy forces on motion is taken
into account, the vertical direction becomes preferable.
However, if we ignore the influence of the Earth’s
rotation, all directions in the horizontal plane remain
equivalent. As is known, this is true for motions with
scales less than (&/ ff)l/ 2 where ¢ is the energy dissipa-
tion rate and f. is inertial frequency. Therefore, it is
reasonable to assume that the random structure of the
flow has the local axial symmetry (LAS) if this flow is
stratified by density in the vertical direction and its
boundaries are far away (Monin, 1988).

The results of measurements taken in both the stably
stratified stratosphere and upper troposphere manifest
anisotropy of inhomogeneities with different vertical
scales. Let us mention just some of the results:

i. A dependence of clear-sky radar returns on the
direction of sounding (Dalaudier et al., 1989;
Gurvich and Kon, 1993), with a scale of some
meters.

ii. Observations of extraterrestrial sources through the
atmosphere from the spacecraft board (Gurvich
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et al., 1983; Alexandrov et al., 1990), with a scale of
some tens of meters.

iii. A difference between the slopes of vertical and
horizontal spectra (Hostetler and Gardner, 1994),
with a scale of some hundred meters.

The kinematic theory of axisymmetric turbulence is
considered for velocity field fluctuations (Chandra-
sekhar, 1950; Batchelor, 1953). Some properties of the
LAS turbulence were considered (Sreenivasan and
Narasimha 1978; Kristensen et al., 1983; George and
Hussein, 1991), mainly for the case of small deviations
in the velocity field properties from the LI. The
properties of the spectral tensor were considered for a
more degenerative case of symmetry of the boundary-
layer velocity field when the symmetry exists both with
respect to the horizontal plane and with respect to the
vertical plane parallel to the direction of mean wind
velocity (Kristensen et al., 1987).

The paper by Obukhov (1959) was one of the first
where the effect of buoyancy forces on the structure
function of small-scale temperature fluctuations in the
atmosphere was taken into account. A possible typical
horizontal scale was estimated defining the limit of
applicability of the assumption of isotropy. The vertical
scale of a similar kind was discussed in Lumley (1964)
and Ozmidov (1965). The anisotropy of turbulence on
the altitudes about of 90 km was considered in
Dougherty (1961). Proceeding from the symmetry
properties, some estimates were obtained in Monin
(1965) for the single-point second moment of turbulent
fields in the atmospheric boundary layer.

To take into account the deviations of temperature
field from isotropy, the models are usually considered
where the 3D spectrum of temperature fluctuations is
assumed to be proportional to [k22+n(2)(k§+ky2)]7“/ 6
(Woo et al., 1980; Dalaudier et al., 1989). The coefficient
o = const. may be used as a measure of anisotropy;
o = 1 corresponds to the LI model. Such models are
probably suitable for a consideration of spectra in some
narrow region of the wave space. It is obvious that the
anisotropy coefficient may change in considering a wide
region of wave numbers.

The mentioned approaches used the Reynolds’s idea
of developed turbulence. It means that the main physical
phenomenon is a random cascade breakdown of large
dynamically unstable eddies with the subsequent cre-
ation of lesser unstable eddies continuing up to the
creation of eddies so small that they disappear because
of the influence of molecular viscosity. If the mean
temperature gradient in such a turbulent flow exists,
then random eddies generate the random temperature
field.

However, alongside that already considered, the
different source of temperature fluctuations may exist
in a stably stratified atmosphere. This is a random set of
inner gravity waves. Vertical displacements caused by
wave motions provide temperature fluctuations. Garret
and Munk (1975) considered the space-time energy
distribution for an ensemble of random inner gravity
waves inside the stably stratified ocean. This model was

improved for atmospheric conditions (Van Zandt, 1982;
Sidi et al., 1988). The models (Gardner et al., 1993;
Gardner, 1994) are the slightly improved Garret-Munk
model using the more complicated form of m-spectrum.
This allows one to obtain the different slopes in vertical
and horizontal 1D velocity spectra.

The initial Garret-Munk model corresponds to axi-
symmetric inhomogeneities. However, it and some of
the following models contain the inertial frequency as a
parameter. The latter is connected with the direction of
the angular velocity of the Earth’s rotation. Fritts and
Van Zandt (1993) generalized the Garret-Munk model
to take into account this second, preferable direction.
Their generalization leads to a symmetry more degen-
erate than axial. The properties of this degenerate
symmetry may well be important for large-scale inho-
mogeneities with scales of more than (s/ff)l/2 or
comparable with this horizontal scale.

An alternative approach was used in Dewan (1994).
The author considered only 1D spectra and assumed on
a semi-empirical basis that both vertical and horizontal
1D temperature spectra are the power law but with
different slopes: —3 and —5/3, respectively. A summary
of the power-law dependencies was published in
Hostetler and Gardner (1994) for several models of 1D
spectra of inner gravity waves.

It is obvious that the spatial random temperature
field in the atmosphere is a 3D field and its second
statistical moments (1D spectra for example) are deter-
mined by the properties of the 3D spectrum. The
statistical approach to the description of these fields may
be practically independent of its origin. The methods of
the description have been very well developed for LI
random fields (Monin and Yaglom, 1975). The situation
is different with respect to LAS structure. Of course the
Garret-Munk model and its generalizations are 3D
spatial spectra of velocity fluctuations with strong
anisotropic properties. However, these models are
hardly connected with the linear theory of inner gravity
waves through the polarization and dispersion equa-
tions. (The latter allows one to express the temporal
spectrum using the spatial, but temporal spectra are not
considered in the present paper). At the same time it is
obvious that linear inner gravity waves are not the
unique origin of temperature fluctuations.

The scintillation observations (Alexandrov et al.,
1990) show definitely on the strong anisotropy of
inhomogeneities with vertical scales of some tens of
meters. Radar observations (Dalaudier et al., 1989;
Gurvich and Kon, 1993) show the significant anisotropy
of inhomogeneities with vertical scales of some meters.
It is with only a small probability that such small scale
anisotropic inhomogeneities are directly associated with
linear inner gravity waves. However, there is no conve-
nient model for theoretical studies, parameterization,
and a description of such temperature fields. The object
of this paper consists in the development of a flexible
tool for the study of all spectral properties of non-LI
spatial structures, independently of their origin.

The heuristic model of 3D spatial spectra is suggested
in this paper for LAS inhomogeneities (LASIs) with
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variable anisotropy. This model is based on the funda-
mental symmetry properties. The main assumption is
that the 3D spectra are given on a one-parameter family
of surfaces of rotation in the wave-number space. The
model is developed mainly for stably stratified geophys-
ical flows as a generalization of the spectral theory of LI
random fields. It will be used for the theoretical study of
spectral properties of LASIs, for a parameterization,
and a description of experimental data. This model may
be applied to fluctuations in temperature or arbitrary
scalar quantity; it may also be used for studies of
spectral properties of LAS random fields from LI
structures up to quasi-layered ones and/or up to
structures strongly stretched along the symmetry axis.
Some applications of the model are shown on the
examples of measured vertical and horizontal 1D
spectra and of measured coherency spectra. Some
generalizations of the model are considered also for
the more degenerate symmetry.

2 Reduction of the 3D spectrum of LASIs to a function
of one independent variable

As follows from the routine definition of the LAS
structure of random fields (Batchelor, 1953; Monin,
1988), the 3D spectrum ®(k) of LASIs is a function of
two variables: |k.| and k= (K} + k)2, O(k)
= F(|k.|,kn), where k., k,, k. are the components of
the wave vector k, Oz is the symmetry axis. Therefore,
®(k) has constant value ®© on the surfaces of the
rotation around the k.-axis: ®(k) = ®©)

Note that these surfaces are the family of concentric
spheres for LI inhomogeneities. Each of these spheres is
determined by one parameter: the radius k. In this case,
the 3D spectrum is the function of this one parameter.

The given geometric interpretation prompts a possi-
ble way of separating a certain class of 3D spectra of
LASIs in order to reduce them to a single function of
one variable using the symmetry properties (Gurvich,
1995). This significantly simplifies the further develop-
ment of the model. To take advantage of this we will
assume that the considered 3D spectra take constant
values on some one-parameter family of surfaces of
rotation,

G(‘k2|7kh;q):0 ) (1)

in the 3D wave-number space. Let us assume that only
one single-connected surface corresponds to every value
of the parameter ¢ in Eq. (1) and all the surfaces of this
family fill the wave space without crossing. Under these
conditions, the 3D spectrum may be considered as the
function ¢(g) of only one variable ¢,

F(|kz|7kh) = ¢(q> ’ (2)

instead of the function of two variables as in the general
case. Equations (1) and (2) are the mathematical
expression of the main assumption used in the creation
of this heuristic model.

As is known, the energy spectrum E(k) is often used
together with the 3D spectrum to study LI random

fields, and in this case it is defined as the integral of the
3D spectrum on angular variables in wave-number
space. The relationship between E(k) and ®(k) was
discussed in one of the first papers on the spectral
theory of LI turbulence (Obukhov, 1941). Correspond-
ing calculations give: E(k) = 4nk*®(k). Such a defini-
tion is connected with the symmetry properties as @ is
given on the family of concentric spheres for LI random
fields.

The assumption that ®(k) has a constant value on the
surfaces of a one-parameter family provides a reason-
able way of introducing the concept of the generalized
energy (GE) spectrum E(g). It is natural to define the
GE of LASIs in the following way — in connection with
the accepted assumption —

Elg)dg = [ o)k ()
dvg

where dv, is the volume of wave space bounded by two

surfaces of rotation [Eq. (1)] with the parameters ¢ and

g + dq. Definition (3) coincides with the usual definition

of E for LI random fields.

As follows from Eq. (3), E(gq) is the energy density
with respect to ¢. It is convenient to choose the
dimension of ¢ in Eq. (1) to be the same as the wave
number k = |k| for this reason. The final choice of the
family given by Eq. (1) and its parameter ¢ is dictated by
a priori information about the considered random field
and conditions of simplicity of the model.

3 Choice of family of surfaces for theoretical studies

The preceding considerations of general symmetry
properties show that the suitable choice of a family
satisfying Eq. (1) is the main problem for the creation of
spectral models of LASIs. An ellipsoid of rotation is the
simplest surface which may satisfy the symmetry
conditions. At the same time ellipsoids may reflect one
of the main properties of LASIs: the ratio of vertical and
horizontal typical scales. Thus the family of ellipsoids of
rotation may be a convenient example for the theoretical
study of some general spectral properties of LAS
random fields. Let us therefore assume as a first step
that the 3D spectrum ®(k) has a constant value on the
one-parameter family of ellipsoids of rotation about a
vertical axis k, =k, = 0:

G(|k.|, kn;q) = k2 + P (q)k; —¢* =0, (4)

where ¢ > 1/Ly is the semi-axis along k, and represents
the parameter of the family. The ratio of semi-axes 7(q)
is a function of ¢, n =1 corresponds to LI random
fields. The outer scale Ly may mean a maximum vertical
scale for which an assumption of LAS is true. To make
the introduced ® an unambiguous function of k, it is
sufficient that n(g) should be a continuous unambiguous
differentiable function of ¢ and the condition

g _dnlg)
n(q) dq <! ®)
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should be fulfilled for all gLy > 1. This condition implies
the absence of ellipsoid intersections in the family given
by Eq. (4).

The stable stratification of the atmosphere prevents a
development of inhomogeneities in the vertical direc-
tion. The case # > | corresponds to stretched ellipsoids
in the wave-number space or flattened inhomogeneities
in the observation space. Therefore the family given by
Eq. (4) at # > 1 may be used for the study of spectra at
stable stratification. The large ¢ corresponds to small-
scale inhomogeneities. It is difficult to expect consider-
able deviations from isotropy because of the effect of
molecular viscosity and molecular heat conductivity on
the smallest scales klx > 1, where /g is Kolmogorov’s
scale. Consequently we should pay special attention to
wave numbers k < 1/Ix while modeling and should have
n(g) — 1 at glx > 1. If we suppose that 5 tends to 1 for
large ¢, so all space is filled with ellipsoids of this family.
The plot of Fig. 1 gives an idea of the shape of F(|k;|, k)
surface. It shows schematically the level line projections
of the F(|k.|, k;) surface on the coordinate plane k,Ok;,.

The choice of stretched ellipsoids of rotation in the
wave-number space is determined by the fact that
inhomogeneities in the stably stratified atmosphere are
stretched along the Earth’s surface. The case 1 <1
(flattened ellipsoids of rotation in the wave-number
space) corresponds to inhomogeneities stretched in the
vertical direction. This may be possible, for example, for
convection conditions in the atmosphere. The case
n < 1 may allow us to study inhomogeneities for which

the vertical correlation scale is much more than the
horizontal one. A more detailed analysis of stretched
LASTIs is the subject of a separate investigation.

It is quite evident that the choice of ellipsoids given
by Eq. (4) as a family of surfaces defining the model is
not specific. This is necessitated by the simplicity of
further analysis and the possibility of a simple limiting
transition to the LI model when # tends to 1. At the
same time the family of ellipsoids may represent
quantitatively the inhomogeneity deformation along
the symmetry axis. This is one of the main properties
of non-spherical inhomogeneities. On the other hand,
the possibility of choosing the functions n(g) and E(q)
provides us with great potential for modeling.

The level lines for more complicated surfaces is
shown in Fig. 1 for the family:

_ 2
4+ (@)k = ¢*[1 — (1 —n7%(g)) cos*(29)] ",
k2
. (6)
k2 + k3

This family may be used for example at # > 1 for the
modeling of such a spectrum F, which, as a function of ¥
at fixed &, has deep minimums at ¢ = 0, /2, and =, like
the Garret-Munk spectrum. At the same time Eq. (6)
allows us to study the transfer to locally isotropic fields
at large ¢ when # tends to 1. Note that the temperature
spectrum corresponding to the Garret-Munk model may
be represented exactly using the corresponding
function G.

sin 9 =

Fig. 1A-D. The scheme of the level line
projections of a F(k, k) surface on the
coordinate plane k,Ok,. A LI inhomogene-
ities, B LASIs with a constant anisotropy
1o = 3, C LASIs with variable anisotropy,
n=1+4¢° E(q) =q 3, and D LASIs that
correspond to the family of Eq. (6), n(g) and
E(g) are the same as for C
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4 The physical meaning of the GE spectrum
and anisotropy coefficient of LASIs

The connection between the GE spectrum E(g) and the
3D spectrum may be derived in the following way. The
volume of the ellipsoid of Eq. (4) is equal to
vy = 4nq’ /3n*(q); consequently the volume between
the surface of two ellipsoids of Eq. (4) with the semi-
axes ¢ and g+dg is equal to dv, =4ng’n?
[1 —(2/3)(q/n)(dn/dq))dg. If we now use Eqgs. (2) and

(3) then
¢><q>(1 —2—””—(")) | )

47‘[6]2
Ela) = n*(q) 3n(q) dq

To make clear the meaning of the GE spectra E(q)
and #(q) for LASIs, let us consider an example of the
spectrum @ (k) which is equal to zero everywhere except
the surface of the ellipsoid Eq. (4) with ¢ = const. = ¢;.
Such a spectrum corresponds to a packet of plane waves
Aexp(ikr) with random amplitudes 4 and with wave
vectors k whose ends lie on this surface. Having
designated the total energy of inhomogeneities forming
the packet as:

Ey = / O(k)d*k | (8)

we can write an expression for their 3D spectrum:

o) = 2o (2 + o) + ) =0 ) L

where ¢ is connected with k by Eq. (4), J is the delta
function. The GE spectrum E(gq) is equal to:

E(q) = Eod(q — q1) (10)

for the 3D spectrum of Eq. (9).
Having calculated the correlation function B(r)

B(r) = / (k) exp(ikr)d’k

Sin{[q?(zz+(y2+x2)/n2(q1))}1/2} (11)
(22 + 02 + ) /(@)

for Eq. (9), we can see that this wave packet forms
LASIs with the vertical correlation scale ©/¢q; and with
the scale mn(q1)/q: in the horizontal plane. Consequent-
ly, it is reasonable to consider the ratio of these scales
n(g1) as the anisotropy coeflicient of LASIs with the
typical vertical scale m/g;. It is important that the
anisotropy coefficient defined in such a way is deter-
mined for the 3D spectrum of Egs. (2) and (4) for any
point of wave space where ®(k) exists.

The considered example of the 3D spectrum of
Eq. (9) demonstrates the difference between the GE
spectrum E(g) and the 3D spectrum ®(k). The latter
describes the spectral density of the energy of plane
waves exp(ikr) by which the expansion in spectrum is
carried out, while E is a spectral density of inhomoge-
neity energy. The use of E(g) and #(q) allows us to
consider separately the energy of inhomogeneities and
properties of their shape. It should be noted here that

the meaning of FE(g) remains for more complicated
families than Eq. (4), such as, for example, Eq. (6).
However the exact meaning of #(g) needs some speci-
fication in this case.

The non-dimensional anisotropy coefficient 5 should
be a function of the non-dimensional argument
n =n(qls), where I is some scale. Proceeding from the
assumption that anisotropy is more typical for large-
scale inhomogeneities and disappears for small-scale
ones, we will assume that n(gl;) — 1 at gl/; > 1. We
consider [, < Ly as a typical vertical scale of the
symmetry change. As a prior estimation of /; the scale
Is = (¢/N*)"* may be used (Lumley 1964; Ozmidov,
1965), where N is the Brunt-Viisild frequency. It should
be noted here that /; can be considered in a definite sense
as an outer scale of LI inhomogeneities.

Thus, the main assumptions Egs. (1), (2) and the use
of the family of Eq. (4) allow one to use two functions of
one variable, ie. the GE spectrum E(q) and the
anisotropy coeflicient #5(g), for the representation of
the 3D spectrum of LASIs, which is one functio? 2of the
two independent variables k. and k;, = (k7 + k) "% The
GE spectrum describes the energy distribution while the
anisotropy coefficient describes the family of surfaces on
which the 3D spectrum is given. The use of two
functions provides the necessary flexibility of the model,
which is convenient for the theoretical study of spectral
properties of LASIs.

However, the family of Eq. (4) is an example of
Eq. (1) only, it is not the result of a solution of a
problem of statistical fluid mechanics. Therefore, to
determine the concrete form of E(g) and n(q), it is
necessary to use various hypotheses, qualitative physical
assumptions, dimension analysis, etc. Such approaches
however are generally accepted in the study of turbu-
lence. The application of the conceptions of E and
suitable family G may somewhat simplify the use of
these approaches. To verify the hypotheses nothing
remains but to use the results of measurements.

5 1D spectra of LASIs

Direct atmospheric measurement of ®(k) are available
using a radar return technique (Tatarskii, 1967; Doviac
and Zrnich, 1984). Such studies represent a quite
difficult problem in a wide range of k change. The
problem with the direct measurement of E(g) is ever
more difficult. Usually the experiment provides more
easily measurable 1D spectra V(k;;¢¥) along some
direction n

V (ks ) = /(D(k)é(kn _k)dk,  —oo <k < 400 |
(12)

where n is a unit vector, n={cos¢-sind,
sin -sind, cosd¥}, ¥ is the angle between n and the
axis of symmetry, ¢ is azimuthal angle —n < ¢ < n. We
obtain for any horizontal direction ¢ = 7/2:
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Viki;m)2) = / O(k)dk,dk., k = {k cos @,k sin o, k.} .
(13)

For the vertical direction 9 = 0:
V(k1;0) = /(I)(k)alkxa’ky7 ki=k . (14)

For the vertical spectrum we obtain from Egs. (4)
and (14) after changing the variables k, = s cos ¢ and
k, = s sin @, where ®? = (¢°> — k2)/n*(q), the following

expression:
o 7*—k dn(q)
1 [dq qi(q)d—q
V(k,,0) 5/;E T g (15)
3nlq) dq

‘kzl

It is seen from Eq. (15) that for n = const., the 1D
vertical spectrum of LASIs does not depend on the
anisotropy coefficient.

For the horizontal spectrum of Eq. (13) we obtain
similarly a somewhat more complicated expression:

1 —
Via,n/2) =5 / “i@ta)

(16)
where ¢, is the root of equation k| = g, /n(q.). For
n =1, =const. we obtain from Eq. (16) a simple

expression:
n d
=% [ %) (17)

Viki,m/2) 7

ok

It should be noted that Egs. (15) and (16) may be used in
the general case as the equations whose solution defines
the functions E(q) and n(q) if both 1D spectra are
known from the measurements. The solution should
satisfy the conditions of Eq. (5) for # and E(g) should be
positive. In the converse case we may conclude that the
considered field cannot be represented using 3D spectra
given on the family of Eq. (4).

6 Power-law GE spectrum and anisotropy coefficient

The power-law spectra are a typical topic of study in
turbulence theory. Numerous experimental spectra are
described also using power-law functions. If we assume
that temperature fluctuations are determined by the
following parameters of medium: ¢g/7 (buoyancy pa-
rameter) and N (the Brunt-Viisdld frequency) (Shur,
1962; Lumley, 1964) then we can write for the GE
spectrum the following equation £(g) = const. - (¢/T) >
N*g=3. If we assume that the rate of dissipation of
klnetlc energy of turbulence ¢ and the rate of dissipation
of temperature inhomogeneities ¢r are the determined
parameters (Obukhov, 1949), then we can write for the
GE spectrum the following equation: E(g) = const. - et
¢~1/3¢~313. Therefore we shall take a close look at the
power-law spectrum

E(q) =S;q " . (18)

As a first step we will also consider the case when the
anisotropy coefficient # is the power-law function of g/:

n(q) =1+(ql)"", v>0. (19)

The numerical parameter v characterizes the relative
rate of anisotropy change at small ¢/, <1 as
(g/n)(dn/dq) = —v/(1 + ql;). The choice of Eq. (19) is
caused by the condition of simplicity. Besides this the
combination of Egs. (18) and (19) may give spectral
functions with a power-law asymptote which are often
used in the observation approximations. We may see
that such a choice provides the possibility of studying
the transition from LI inhomogeneities (gl; > 1) up to
layer structures as g/, tends to zero.

It is clear that SZ is an analog of the structure
characteristic of the LI spectrum. At u = 11/3and =1
we could obtain S = [10/(9T°(1/3)]C3 ~ .4C2 where C2
is the structure characteristic of the Obukhov-Corrsin
model and T is the gamma function. However, we
introduce S7 using the spectral representation because it
is more convenient for exponents p > 5.

Figure 2 shows the deformation of the shape of the
3D spectra F when the relative rate of the anisotropy
coefficient change increases. All calculations of F' were
made using Eqs. (4) and (18) at u=35, S2=1. The
anisotropy was calculated using Eq. (19) and v =0.5,
1, 2.5, and 5. The upper plot corresponds to F(|k.|,0)
the lower to F(0,k;). The anisotropy coefficients 5 are
shown as functions of &, and k. The very large values of
n correspond to a transition of quasi-layered random
media for which horizontal correlation scales are many
times more than the vertical. The numbers on the curves
correspond to the values of v. The spectrum of LI
inhomogeneities (y = 1) is shown by dashed lines for
comparison. The data in Fig. 2 are connected with the
special law Eq. (19) of an increase in the anisotropy with
an increase in inhomogeneity scales. It is obvious
however that similar behavior F will be observed for
E(g) from Eq. (18) when 5(g) is a monotone decreasing
function: dn(q)/dg < 0.

We now consider the vertical spectrum Eq. (15) for E
from Eq. (18) and for # from Eq. (19). From it can be
obtained the simple asymptotic expressions for V(k;,0)
at kl; > 1:

S2

V(k:,0) = —7L k™2 pn=1, ki>1. (20

We may assume at [/Ly < k. l; < 1 that n(q)
= (¢qly)”" and then

2 S3
Vlke,0) = LD ST o
u(1+3)2(r-2)

I,/Lo < koly < 1 . 1)

It is obvious that Eq. (20) corresponds to the LI
model: # = 1. However the asymptote Eq. (21) is close
to the LI model too because the factor (p+2v)/
[u(1 4 2v/3)] is roughly of order one at practically all
u and v of interest. To see better the difference between
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Fig. 2A,B. The 3D spectra F(k;,k;) (diamonds) and anisotropy
coefficients # (crosses) for the family of Eq. (4) and for E(q) = ¢~*
and 5(q) =1+ (ql)"". A F(k;,0), B F(0,k;); the numbers in the
plots are the values of v; LI spectra and n = 1 : dashed lines

the vertical spectra V(k;,0) of LASIs and vertical
spectra V(k;) of LI inhomogeneities, the former were
normalized to the latter. Such normalized spectra are
shown in Fig. 3 as functions of k./;. The anisotropy
coefficient n(q =k,) is shown in this plot too. All
calculations of V(k;,0) were made using Egs. (15) and
(18) at u =5, 1/Ly = 0. The anisotropy coefficient was
calculated using Eq. (19) at v=0.5,1,2.5, and 5. This
plot shows that vertical spectra of LASIs are close to
those of LI inhomogeneities and the spectra V(k,0)
slightly depend on the values of anisotropy. Hence the
measurements of V(k;,0) are useful for estimations of
parameters 1 and S which determine the GE spectrum
E(q).

The horizontal spectrum V(ky,7/2) Eq. (16) for
Egs. (18) and (19) has the high-frequency power-law
asymptote

i

Vlh,n/2) = 50

| F k> 1 (22)

which of course coincides with Vj(k;). The low-frequen-
cy asymptote
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Fig. 3. The 1D vertical spectra ¥ (k;,0) of LASIs normalized to the
1D spectrum of LI inhomogeneities V(k;) with the same GE
spectrum  E(q) = g~ (diamonds); anisotropy coefficients 1 = 1
+(ql.)™" (crosses), g = k.; the numbers in the plots are the values
of v.

2 u=2 1 2
(ke nj2) = ST ( v/ ’

_p=2ty

n kil

20+ et 2 2(,u—|—3v))(1)
(23)

may be obtained from Eq. (16) at nk [, < 1 if we take
into account that at finite value of v and nki/; < 1 we
may assume that in Eq. (16) 1(q) = (¢/)"", qm(qmls)’
=~k and (q/n)(dn/dq) = —v. Tt is clear from Eq. (23)
that the low-frequency asymptote of the 1D horizontal
spectrum V (k;,n/2) is also the power-law function but
with the different exponent —(p—2+v)/ (v+1). Tt is
curious to note, in particular, that (u—2+4v)/(v+1)
=5/3ifp=5and v=2.

Figure 4 shows calculated horizontal spectra
V(ki,n/2) as functions of k/; for u =35, 1/Ly =0 and
S2 = 1. The anisotropy coeflicients 5 are also shown in
this plot as functions of the same argument. The values
of v in Eq. (19) at calculations were equal to
v=0.5,1,2.5,5. The dashed line corresponds to the LI
model 7 = 1. The numbers near the curves are the values
of v. The power-law asymptotes Eqs. (22) and (23) are
seen very clearly. The behavior of the horizontal
spectrum ¥V (k;,n/2) in an intermediate domain
lnki| ~ (L)' depends on the rate of the anisotropy
coefficient change.

The plot shows that measurements of the 1D
horizontal spectra are sensitive to anisotropy changes.
It shows in accordance with Eq. (23) that horizontal
spectra have the low-frequency power-law asymptote
with the slope —(1 — 2 4+ v)/(v + 1). The plots of Figs. 3
and 4 demonstrate vividly that the scale /; may be
considered as an outer scale with respect to LI inhomo-
geneities.

It is interesting to consider the behavior of the 1D
oblique spectra at different angles J. They were obtained
using Eqgs. (4), (18), and (19) for the numerical integra-
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Fig. 4. The 1D horizontal spectra V (k,, 7/2) of LASIs (diamonds) and
the 1D spectrum V(k,) of LI inhomogeneities (dashed line) with the
same GE spectrum E(q) =¢ 3, anisotropy coefficients
n=1+(qls)”" (crosses), q 1is the solution of the equation
q = kin(q); the numbers in the plots are the values of v

tion of Eq. (12). Figure 5 shows such spectra for u =5
and v=2. It is seen that at values of ¥ 0 < ¥ < /2
there is an intermediate asymptote that coincides with
the low-frequency asymptote of the horizontal spectrum
and has the slope —5/3 in accordance with Eq. (23). The
anisotropy coefficient Eq. (19) increases infinitely at
small ¢/; and means that the temperature field tends to a
quasi-layered structure. For this reason the 1D oblique
spectrum is determined mainly by a vertical structure at
low frequencies during measurements deviating a little
from the strictly horizontal direction (Barat and Bertin,
1984). Consequently, the spectral slope of oblique
spectra is the same asymptotically at low spatial
frequencies as that of vertical spectra.
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Fig. 5. Oblique 1D spectra at the different values of the angle ) for
1= >5and v =2. The numbers by the spectra are 90° — 19, the thick
lines correspond to vertical (V) and horizontal (H) 1D spectra, the
dotted line is the low-frequency asymptote of the horizontal 1D
spectrum

The examples in Figs. 4 and 5 show that the 3D
spectrum model with varying anisotropy is able to
describe the observed vertical, horizontal, and oblique
1D spectra with different spectral slopes. Therefore the
considered model of LASIs may include, for example,
the vertical and horizontal temperature spectra suggest-
ed in Dewan (1994). Really, as follows from Egs. (21)
and (23), at u = 5 and v = 2 the vertical and horizontal
spectra may have low-frequency parts with slopes —3
and —5/3 accordingly. If we assume in particular that S
in Eq. (18) and [ in Eq. (19) are equal to

2no (T(y—1)\* o\
2 g S — -
ST.198< . and I, =1.77 ” lg, (24)

where o, a;, and o, are constants introduced in Dewan
(1994), y is the ratio of specific heats, and H is
atmospheric scale height, then we obtain from
Eqgs. (21) and (23) the spectra the same as Dewan’s for
small wave numbers |k;|, k, < 1/1;. Moreover, if we take
into account that T/H = Myg/R, where M is the molec-
ular weight of air, g is gravity acceleration, and R is gas
constant, then we see that the vertical temperature
spectra in the model of Dewan (1994) are determined by
molecular properties, gravity acceleration, and non-
dimensional constant o, [see also Table 1 in Dewan
(1994)]. It is a little surprising because there is no explicit
dependence of the vertical temperature spectrum on
atmospheric parameters. However, the detailed discus-
sion of the S2 choice is out the scope of the present
heuristic model.

7 Coherency spectra

It is interesting to consider two-point coherency spectra
of temperature fluctuations. Evidently, these spectra
should be a more sensitive tool in the study of
anisotropy properties as a function of inhomogeneity
dimensions. We consider here one example of coherency
spectra:

V(ky; Az, m)2) = / ®(k) cos(k.Az)dk,dk. (25)

where Az is the vertical distance between observation
points. It is relatively easy to measure Eq. (25) using a
vertically spaced set of sensors moving in the horizontal
direction (Dugan, 1984; Marmorino, 1990). To simplify
Eq. (25) for the 3D spectrum with the constant
anisotropy coefficient n=1n, and Eq. (18), let us
introduce the new variables of integration & and ¢:
kyngAz = secos ¢, k. Az = s sin ¢. We can then calculate
the integral on ¢ using the integral representation of
Bessel functions and the integral on & using expression
6.565.4 from Gradshteyn and Ryzhik (1965). The
calculation of Eq. (25) for Eq. (18) and at 5 = const.
= 15, shows that the relationship

V(ke; Az, 7/2)
V(ky,m/2)

is the universal monotone function of nyk,Az,

Coh(ky; Az, m/2) = (26)
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(1 — 2) (nokeAz)* !
25710 (4)

Coh(ky; Az, m/2) = Ku_(nokAz)

(27)

where Ky is the modified Bessel function. If we take into
account the properties of the function Ky at small and
large arguments we can see that Cok(ky; Az, /2) tends to
1 at k, — 0 and tends to 0 at k&, — oco. The value of 5)Az
is the typical scale of the coherency.

The plots in Fig. 6 show Coh(ky; Az, n/2) as functions
of k,I; and Az/I;. The numerical calculations of Co# for
LASIs were made using Egs. (18), (19), (25), and (26) at
1 =5 and at different v in order to show the dependence
on the rate of change of the anisotropy coefficient. The
values of Az/I; = 0.5, 1, 2, 4, and 8 were used for those
calculations at v=2 and 0.5, 1, 2, 3, and 4 at v = 16.
The numbers by the curves give these values. Equation
(27) was used to calculate Coh(ky;Az,m/2) for LI
(no = 1) inhomogeneities with =5 and the same
Az/l;. The curves for LI inhomogeneities move along
logarithmic frequency scale and do not change their
shape at different values of the parameter Az/I;.
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Fig. 6. The coherency spectra Coh(ky; Az, m/2) for E(q) = ¢~ and
n=1+(ql)": v=2 (top, diamonds), v =16 (bottom, diamonds)
and for LI inhomogeneities (thick solid lines); the numbers in the plots
are the values of Az/I

Figure 6 shows that Coh(k,;Az,n/2) of LASIs
practically coincide at high frequencies k./; > 1 with
Coh(ky; Az,m/2) of LI inhomogeneities. However, the
difference is pronounced at low frequencies k./; < 1,
especially for large v, i.e. for a very sharp change in the
anisotropy coefficient. We can see the non-monotonic
dependence of Coh(ky,; Az, n/2) on k, at v = 16. The last
large value of v corresponds to a very sharp transition
from LI to a quasi-layered medium. These results, as
well as those shown in Fig. 4 demonstrate the sense of /g
as the typical scale of symmetry change.

The coherence spectrum can not be deduced only
from knowledge of vertical and horizontal 1D spectra.
Therefore Eq. (26) together with Egs. (15) and (16) may
be considered in the general case as the three equations
for the two unknown functions E(g) and y(g) defining
the model, if the results of the V(k.,0), V(k:,n/2), and
Coh(ky; Az) measurements are available. This gives the
possibility to prove the reliability of estimations of E
and 7.

8 The comparison of the LASIs model with
the measurements of both vertical and horizontal
temperature spectra

We will consider the 1D spectra measured by Hostetler
and Gardner (1994) as an example of the application of
the heuristic model for experimental data parameteriza-
tion. An analysis of the geophysical meaning of these
measurements is not the aim of the present paper. The
initial data were obtained using lidars installed aboard
an aeroplane. The lidars allowed the measurement of
relative perturbations of air density Ap/p. Seven pairs of
simultaneous measurements of vertical and horizontal
spectra of Ap/p are represented in the plots in this
paper. In a reasonable approximation, Ap/p = —AT/T,
where 7 and AT are mean temperature and its
perturbations. We will use the results of the mesospheric
measurements.

Both horizontal and vertical spectra have approxi-
mately the power-law parts in a rather wide band of
spatial frequencies. The slopes of vertical spectra are
close to —3 for wave numbers of more than 0.1 km™'.
The absolute value of slopes of the horizontal spectra
are less. The slope of —3 is in agreement with the
different models (Shur, 1962; Lumley, 1964; Van Zandt,
1982; Smith er al., 1987; Sidi et al., 1988; Weinstok,
1990). The stable stratification of the mesosphere allows
us to apply the results of Sects. 5 and 6 to the
parameterization of measured spectra, if we assume
that the hypothesis about local axial symmetry is true
for inhomogeneities with vertical sizes less than atmo-
spheric scale height.

It was supposed that the set of experimental data
represents the similar physical phenomena. Therefore all
measured vertical spectra were put in one plot for
analysis by the LASIs model. They occupied a relatively
narrow strip on this plot as shown (hatched strip) in
Fig. 7a. The situation is the same with the horizontal
spectra shown in Fig. 7b. This may be a confirmation of
the mentioned supposition.
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Fig. 7. The comparison of the model (thick, solid lines) with the
measurements (Hostetler and Gardner, 1994) (hatched stripes) of
vertical V(k]) (top) and horizontal V (k]) (bottom) spectra of relative
fluctuations of temperature (7 — (T))/(T) in the mesosphere at
altitudes 80 + 100km., k. = k./2n, k, = k./2n. The numbers on the
right-hand side are the scale for the anisotropy coefficient 7
(dashedlines)

As the experimental 1D spectra have a pronounced
power-law part, the following GE spectra E were
chosen: E(q) = S>¢q**? with u =5 and with the fitting
parameter S”. It was assumed also that anisotropy
coefficient # is defined by Eq. (19) with the fitting
parameters v and /.

It is obvious in accordance with the results of Sects. 4
and 5 that a preliminary estimation of the parameter S?
may be obtained from vertical spectra. It is possible
after this to get a preliminary estimation of the
parameters v and /; from the power-law part of the
horizontal spectrum using Eq. (23). By using the trial
and error method, three parameters wee estimated:
v=185 I,=48m and S=3.8-10"°(rad/m)*>. The
thick solid lines in Fig. 7a, represent the results of
numerical calculation of both vertical and horizontal
spectra using Eqgs. (15) and (16) and with the stated
parameters. The dotted lines in these plots represent the
anisotropy coefficient #.

The plots of Fig. 7 show that the model of LASIs gives
the possibility of describing in a single way both 1D
spectra — horizontal and vertical — with different slopes.
The slope of horizontal spectra is equal to

—(ut—=2+v)/(v+1)=—-1.7 in accordance with
Eq. (23). Note that the 3D temperature spectrum is
defined completely by parameters S, [, and v for
k. > 10"*cyc/m and &, > 10~%cyc/m. A domain of wave
number &/ < 10~ cyc/m and k. < 10~°cyc/m was not
considered because the hypothesis of axial symmetry is
probably wrong for such large inhomogeneity scales.

The parameterization of vertical and horizontal
spectra was carried out in Hostetler and Gardner
(1994) on the basis of models in Gardner et al. (1993)
and Gardner (1994). The model of Gardner et al. (1993)
contains six free parameters. These two models are
hardly connected with the linear theory of inner gravity
waves. They are based on the ad hoc assumption about
the separability of temporal and spatial spectra. These
assumptions are not used in the present heuristic model,
allowing one also to predict the estimation of typical
scale of symmetry change. In order to check this
prediction it is necessary to have measurements with
better spatial resolution.

9 The comparison of the LASIs model with
the measurements of the coherency spectra
of temperature fluctuations

The equation Coh(ky;Az,n/2) = const. corresponds to
the family of isolines on the plane (k,,Az). If the
anisotropy coefficient is 1 = 7, then, as is seen from
Eq. (27), this family is a set of hyperbolae. The
numerical solution gives nyk.Az = 1.078 for Eq. (27),
i =5, and const. = v/.5. The family of the straight lines
with slope —1 corresponds to these hyperbolae on a log-
log plot. Simple derivations show also that a similar
family corresponds to the spectrum by Sidi et al. (1988)
in a region k, > k. and k,Az > 1, where £k, is the scaling
wave number of this spectrum.

The measurements in the stably stratified ocean
(Dugan, 1984) showed however that isolines of the
coherency spectrum are not straight lines on the log-log
plot. It is noted in Dugan’s paper that the low-frequency
part of experimental data may be described using the
Garret-Munk model only. If one smooths his experi-
mental data Az and k, for [Coh(ky;AZ,n/2))* = 0.5
[Fig. 8 in Dugan (1984)] in some reasonable way, it is
seen that the curve obtained has a positive curvature.
This means that the anisotropy of inhomogeneities
changes and that the rate of anisotropy enlargement
decreases when inhomogeneity sizes increase. Figure 8
of the present paper shows the experimental data and
the family of hyperbolae corresponding to constant
anisotropy coefficient.

Therefore, to describe Dugan’s results it is necessary
to use an equation for 7(g) a little different to Eq. (19).
We assume that the anisotropy coefficient # tends to a
large value #,,,, > 1 when ¢/, tends to zero:

1
(@L)" + Minis

The parameters I, 1., and v were used as fitting
parameters to describe the experimental data

n(g) =1+ (28)
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Fig. 8. The comparison of vertical coherence scales AZ: the model
(solid line) and the measurements (Dugan, 1984) (boxes). The model
dependence AZ on k.. = k,/2n was obtained by the numerical solution
of the equation [Coh(k,; AZ, n/2)]2 = 0.5 and Egs. (22), (25), (26)
with anisotropy coefficient Eq. (28), and GE spectrum Eq. (18).
Dashed lines are the hyperbolas nok,AZ =1.078 at different 7,
numbers are the values of 7,

[Coh(kx,AZ)]2 = 0.5 using Egs. (4), (18), (25), (26), and
(28). The parameter p was chosen as yu = 5 as measure-
ments were made under conditions of stable stratifica-
tion. By using the trial and error method three
parameters were estimated: /;, =0.02m, v=2, and
Nmax = 25. The numerical analysis showed that the
results of the model calculation depend very weakly on
values of v and u. Figure 8 shows the comparison of the
experimental data and the model with a variable
anisotropy coefficient. The dashed lines correspond to

hyperbolae  ynyk,AZ =1.078 at different 15, =
1,4/10,...,100.

Paremeter S is not important in calculations of Coh.
However, it was later estimated by the comparison of
the model and experimental horizontal spectra of the
temperature (Fig. 5 of Dugan’s gaper). The consequent
value of S2 was S2 = 6.3 - 1072K?(cyc/m)*. The result of
numerical calculation using Egs. (16), (18), and (28) is
shown in Fig. 9. It is possible to see the agreement
between the model and experimental spectra. The
change of the spectral slope is connected with the
saturation of the anisotropy coefficient. Let us not that
obtained parameters define completely the 3D temper-
ature spectrum. However, as already stated, the discus-
sion of the geophysical meaning of this spectrum is out
the scope of the present paper, in accordance with its
initial objectives.

10 Possible generalization of the developed model

If we assume that the random field is formed by random
propagated monochromatic plane waves with frequen-
cies w, and that the dispersion equation w = f(k) is
known for these waves, then the simplest applicability
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Fig. 9. The comparison of the model horizontal spectrum (thick, solid
line) with the measurements by Dugan (1984) (hatched stripe). Dotted
lines are the power-law functions with slopes —2 and —3. The dashed
line is the dependence of anisotropy coefficient 1 on £,

expansion of the present model consists in the transition
to spatial-temporal spectra @y (k, w) = ®(k)o(w —f(k)).
The dispersion equation w = k(v) corresponds to the
“frozen” turbulence hypothesis. A more complicated
case consists in the use of the dispersion equation
corresponding to inner gravity waves o’ = (N2k}
+ PR K =K+ kN> o> f.

The following generalization consists in developing
the models for the description of such statistical local
uniform inhomogeneities of scalar quantity which have
the symmetry with respect to three coordinate planes
only. This case may correspond, for example to the
stratified geophysical flows with shear mean velocity (v).
The second preferable direction is defined by rot(v). Let
us choose the Oy-axis parallel to rot{v). The Oz-axis
coincides to the vertical. The spectrum of temperature
inside such flows is strictly speaking a function of the
three independent variables: k., k,, and k.. Turbulence
in similar flows was studied by Kristensen ez al. (1987).

To simplify the description of temperature fluctua-
tions with such a degenerate symmetry, let us introduce
the GE spectrum E(q) by assuming that the spectrum
®(k) has a constant value on a one-parameter family of
surfaces. As an example, assume that this is the family of
ellipsoids:

I+ kniq) +km(g) =4 (29)

whose main axes coincide with the coordinate axes and
where ¢ is the parameter of the family as before; #,(g)
and 7,(¢) are the continuous unambigous functions of g.
The conditions:

g dn(q) g dny(q)
n:(q) dq n,(q) dq

should be fulfilled for all ¢ > 1/Ly. The conditions of
Eq. (30) imply the absence of ellipsoid intersections in
Eq. (29). If we assume n — 1 for large g then all wave-

(30)
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number space may be filled by ellipsoids of this family
under these conditions. Under these assumptions the 3D
spectrum ® = ¢(q) is a function of one variable g. We
may now define E(q) as previously:

UNCUNC)) 3\n.(q)dg ~ n,(q)dq
(31)
To describe the spectrum completely by such ap-
proximations, it is necessary to know E(g) and the two
functions 7,(¢) and 5,(q). Thus there exists a possibility
to use the three functions of one variable ¢ instead of
one function ®(k) of three variables for such degener-
ated symmetry. This is probably a more reliable way of

approximating experimental data for some cases.

E(q) =

11 Summary and conclusions

As is well known, the 3D spectrum determines all second
statistical moments of random fields. Currently, the
spectral theory of LI random field is used everywhere.
However, the random temperature fields in the stably
stratified atmosphere are locally axisymmetric in a wide
range of scales. The spectral theory of scalar LAS
random fields is a rather complicated. The object of this
paper consists in the creation of simple approximate
methods of spectral description of such fields indepen-
dently of their origin. The solution to this problem is
based on the generalization of the spectral theory of LI
random fields and on the use of symmetry properties.

3D spectrum F of LASIs is a function of two
independent variables in a general case. The heuristic
spectral model is suggested to simplify the study of
LASIs. It is based on the main assumption that the
considered 3D spectra are given on the one-parametric
family of surfaces of rotation around the axis of
symmetry. Such 3D spectra are reduced to a function
of one variable, the parameter of the family, ¢g. Such an
approach allows one to introduce the consideration of
the concept of the GE spectrum E(g) which describes a
distribution of energy of inhomogeneities, whereas the
family of surfaces allows one to describe their shape.
The choice of family and GE spectrum provides a
flexible and simple tool for the construction of a 3D
spectra model of LASIs.

The family of stretched ellipsoids of rotation is
considered in detail as an example of an application of
the suggested model. This family is probably the
simplest after the family of concentric spheres on which
spectra of LI fields are given. The semi-axis of ellipsoids
was chosen as the parameter of the family. The ratio of
semi-axes 7 is a function of ¢ and #5 characterizes the
anisotropy of inhomogeneities quantitatively at each
point of wave-number space. The explicit formulae were
obtained for 1D vertical and horizontal spectra.

If the GE spectrum E(q) is the traditional power law
then 1D vertical spectrum depends on anisotropy very
weakly and it is very close to a 1D spectrum of LI
inhomogeneities with the same GE spectrum. The 1D

horizontal spectrum, on the other hand, is sensitive to
the anisotropy change. It has two power-law asymptotes
with different slopes. The oblique spectra show three
asymptotes. Their behavior at low frequencies is a
reflection of the vertical structure.

The suggested model of 3D spectra allows one to
calculate two-point coherency spectra. The numerical
study showed that they are sensitive to the rate of
anisotropy coeflicient changes.

The examples of experimental data parameterization
show the efficiency of the suggested model in an analysis
of different measurement results from a unique point of
view. The analysis of atmospheric measurements by
Hostetler and Gardner (1994) is the first example. It
shows that the simplest chosen family of surfaces, the
power-law GE spectrum, and the power-law anisotropy
coefficient describe the property of vertical and hori-
zontal measured spectra. The theoretical predictions,
obtained in the present paper, show that it would be
interesting to continue to process the data and to
calculate the coherency spectra. They are defined com-
pletely by estimated parameters and can be calculated
from the existing set of measurements. Consequently the
results of the such actions allow one to check additively
the estimations of the spectral parameters.

The second example of the application is the analysis
of spectral measurements by Dugan (1984) in the stably
stratified ocean. The suggested model allows one to
explain qualitatively the dependence of the coherency
scale on the sizes of the inhomogeneities. This depen-
dence is the consequence of the anisotropy changes. The
use of the measured horizontal spectra allows one to
estimate all parameters of 3D spectrum. It also allows
the calculation of the vertical spectra which would be
interesting to compare with measured vertical spectra,
which, in fact, these measurements allow one to
estimate. Unfortunately they are not published in
Dugan (1984).

Thus these examples show that the suggested heuris-
tic model allows one both to describe quantitatively the
different experimental data and to parameterize these in
a simple way. The use of this model allows one to plan
the effective processing of experimental data. The
successful parameterization of the different experimental
data suggests that the details of 3D spectra shape are
probably not important for the calculation of such
integral characteristics as 1D spectra and maybe coher-
ency spectra. This is some justification of the choice of
the simplest surface family for the assignment of 3D
spectra. The chosen family of ellipsoids may reflect the
main property of axisymmetric inhomogeneities, i.e. the
ratio of their vertical and horizontal sizes.

The idea of 3D spectra representation as functions
given on a one-parametric family of surfaces suggests a
way of generalizing the model for the analysis of
random fields with a more degenerate symmetry than
LAS. For example, such a situation arises in the
consideration of stratified flows with mean velocity
shear. The temperature spectrum in this case may be
represented by three functions of one variable instead of
one function of three variables.
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The suggested model gives a 3D spectrum, and for
this reason it is useful for analysis of radio-wave, light,
and sound propagation through the atmosphere. For
example, this model may be applied to the study of
vertical and horizontal temperature spectra, aspect
sensitivity of radar return, and scintillation from a
unique point of view (Tatarskii, 1967; Gurvich, 1994).

However, it is necessary to note that this heuristic
model is not a consequence of the rigorous theory of
fluid mechanics. Consequently, in order to define the GE
spectrum and family of surfaces on which a 3D spectrum
is given, it is necessary to use some arguments on the
basis of similarity theory, energy balance, and so on,
which is usual for most models of temperature spectra.
In spite of noted peculiarities, the developed model may
be useful in parameterizing and acquiring experimental
results, in the planning of measurements and processing
of data, and in the discussion of different observed
phenomena on the basis of a unique point of view.
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