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Abstract
This work is motivated by the growing interest in injecting
carbon dioxide into deep geological formations as a means
of avoiding atmospheric emissions of carbon dioxide and
consequent global warming. One of the key questions re-
garding the feasibility of this technology is the potential
rate of leakage out of the primary storage formation.

We seek exact solutions in a model of gas flow driven by
a combination of buoyancy, viscous and capillary forces.
Different combinations of these forces and characteristic
length scales of the processes lead to different time scal-
ing and different types of solutions. In the case of a thin
tight seal, where the impact of gravity is negligible rela-
tive to capillary and viscous forces, a Ryzhik-type solution
implies square-root of time scaling of plume propagation
velocity. In the general case, a gas plume has two stable
zones, which can be described by travelling-wave solutions.
The theoretical maximum of the velocity of plume migra-
tion provides a conservative estimate for the time of ver-
tical migration. Although the top of the plume has low
gas saturation, it propagates with a velocity close to the
theoretical maximum. The bottom of the plume flows sig-
nificantly more slowly at a higher gas saturation. Due to
local heterogeneities, the plume can break into parts. In-
dividual plumes also can coalesce and from larger plumes.

The analytical results are applied to studying carbon
dioxide flow caused by leaks from deep geological forma-
tions used for CO2 storage. The results are also applicable
for modeling flow of natural gas leaking from seasonal gas
storage, or for modeling of secondary hydrocarbon migra-
tion.

Introduction
This work is motivated by the growing interest in injecting
carbon dioxide into deep geological formations as a means
of avoiding atmospheric emissions of carbon dioxide and
consequent global warming.1 One of the key questions re-
garding the feasibility of this technology is the potential
rate of leakage out of the primary storage formation. To
date, studies of leakage have either focused on the role of
leaking wells2,3 or used numerical simulation to investi-
gate leakage through poor-quality reservoir seals.4,5 Here
we are interested in the fate of CO2 driven upwards by
buoyancy forces, using analytical methods to help provide
insight into the physics of countercurrent flow of CO2 and
water and to bound potential migration rates.

In steady-state flow, two immiscible fluids saturating a
porous medium approach an equilibrium distribution char-
acterized by a local energy minimum. In this study, we
focus on a case where a less dense fluid, e.g., gas, mi-
grates upward in an initially dense-liquid-saturated reser-
voir. The driving forces in this flow are the buoyancy re-
sulting from the contrast between the fluid densities, and
the capillary forces acting at the interfaces between the
fluids and solid. The character of rock wettability impacts
the capillary pressure and relative permeability curves. Al-
though capillary forces act locally at a microscopic scale,
they constrain the macroscopic flow by arranging the dis-
tribution of the fluids. Examples of such flows are oil and
gas migration,6,7 or the flow of gas leaking from an un-
derground storage into an overlying aquifer. Shvidler and
Levi8 obtained an analytical solution to a static gravity
segregation problem and numerically investigated dynamic
gravity-driven flow in 1D. Hydrocarbon migration prob-
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Fig. 1 - The top part of the plume is relatively “lean” with
respect to the gas saturation, but propagates much faster than
the bottom part saturated with gas.

lems have been studied recently in the context of geologic
formation of oil and gas reservoirs.9,10 An analytical so-
lution for a model of gas plume propagation in a saline
aquifer caused by gas injection has been obtained by Nord-
botten et al..3 Their solution is based on the Buckley-
Leverett model that neglects the capillarity. Doughty has
investigated numerically the impact of capillary hysteresis
effects on CO2 migration.11

In this study, we analyze the buoyancy-driven verti-
cal gas plume migration using analytical tools. Our main
finding is that a moving plume has two stable zones: at the
top and at the bottom. We obtain an estimate of the the-
oretical maximum of the plume migration velocity, which
strongly depends on the relative permeability curves. Each
one of the stable parts of the plume is characterized by a
travelling-wave solution. It turns out, that the top part of
the plume propagates with the maximal velocity, whereas
the bottom one moves more slowly, Fig. 1.

We assume that the overlying formation is homoge-
neous. This assumption is an idealization. Fluid migra-

tion is significantly affected by the rock heterogeneity. For
instance, if the formation into which the gas leaks has a
system of vertical or inclined conductive fractures or faults,
the gas, most likely, will flow through this system.

In our model, gas is the nonwetting fluid, whereas the
rock is wetted by the liquid brine, which initially saturates
the pore space. At first, the high-pressure gas will drain
the liquid from the pore space at the bottom part of the
aquifer. With time, this gas is buoyed by the denser brine
and flows upward. Since the capillary entry pressure for
the small pores and the corners between the rock grains
can be extremely high, appearance of absolutely dry zones
without evaporation is unlikely. We thus neglect processes
like liquid circulation due to the evaporation and conden-
sation. Therefore, it is assumed that the pore space is
partially saturated with both fluids and they flow in their
respective flow paths determined by the equilibrium of the
interfacial forces and gravity. The non-wetting gas will flow
through the central parts of the pores, whereas the water
will flow through the small pores, corners and roughness of
the solid skeleton. While flowing upward into the portions
of the less compressed reservoir layers, the gas expands.

In every elementary representative volume, or, at each
point in our model, the fluids have different pressures due
to capillarity. The difference between the gas and liquid
pressures, the capillary pressure, determines the mean radii
of curvature of the gas-liquid interfaces in the pore space.
In this study, we neglect the dependence of the surface
tension coefficient on the temperature and interfacial im-
purities. Thermal effects, as well as the impact of water
transport by evaporation will be considered elsewhere.

Countercurrent two-phase flow in porous media has
been intensely studied, both experimentally and theoret-
ically, in the context of enhanced oil recovery.12,13 The
combination of natural time and length scales in such stud-
ies suggest that the compressibility of the fluids can be ne-
glected. In case of gas migration, such an assumption is
questionable, especially when dealing with shallow depths.
In this study, we assume that the domain under considera-
tion is deep enough so that the gas is supercritical and the
variation of density over the interval of depths of interest
is negligibly small. In other words, this study focuses on
the model of gas plume migration resulting from the inter-
action between gravity, capillary, and viscous forces only.
The paper is organized as follows. First, we briefly re-
view the gravity-segregation model and formulate the main
equations of countercurrent flow of gas and brine. Pene-
tration by a gas plume of a low-permeability seal is stud-
ied using a Ryzhik-type model, neglecting gravity forces.
A more general approach is applied to plume vertical mi-
gration in an aquifer, where two travelling-wave solutions
describe two stable zones at the top and at the bottom of
the plume. Conclusions and the nomenclature are given at
the end. The parameters used in the case studies presented
in this paper are gathered in Appendix.
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The model
Consider buoyancy-driven flow of gas in a vertical fracture
or a thick horizontal aquifer. The medium is filled with
brine, which is the wetting fluid. We neglect the lateral
flow components, so the flow is essentially vertical. This
assumption is valid if the gas flow is horizontally confined
by the fracture walls or if we consider migration of gas in an
aquifer far away from the lateral boundaries of the plume.
Therefore, the flow is two-phase and countercurrent: the
gas flowing upward is replaced with an equal volume of
the brine flowing downward. In this section, we review the
principle equations of the mathematical model.

Denote by pg and pw the gas and brine pressures, re-
spectively. At each point, the capillary pressure, pc =
pg − pw, is related to the distribution of the fluids in the
the pore space, whose microscopic-scale geometry is usu-
ally extremely complex. At the macroscopic scale, this dis-
tribution is quantified by the relative volume of the pore
space filled with the liquid, S. Thus, the capillary pressure
is a function of S:

pg − pw = pc(S) (1)

This dependence on S is not a one-to-one correspondence,7

but is strongly affected by the history of fluid migra-
tion. Numerous studies emphasize the difference between
drainage and imbibition capillary pressure curves, see14,15

and the references therein. The capillary pressure – water
saturation relationship behind the rising gas plume, where
the displaced gas is again replaced by the wetting liquid
(secondary imbibition), is different from that at the top of
the plume.

Since each fluid fills only a part of the pore space,
the permeability to a fluid is determined by the geome-
try of the fluid distribution in the pores. Inasmuch as the
fluid distribution is not uniquely determined by water sat-
uration, the permeability to each fluid is a function of a
combination of the liquid saturation and the history of the
fluid migration. Hence, the remarks regarding the history-
dependence of the capillary pressure curve equally apply to
the relative permeability curves. Again, since we study gas
invasion into an aquifer, we use the drainage relative per-
meability factors krg = krg(S) and krw = krw(S). Thus,
if the absolute permeability of the formation is k, then the
permeability to the gas is krg(S)k, whereas that to the
liquid is krw(S)k.

Darcy’s law with an account for gravity,16 applied to
each fluid phase separately, yields:

ug =
krg(S)k

μg
(−∇pg + �gg) (2)

uw =
krw(S)k

μw
(−∇pw + �wg) (3)

Here ug and uw are, respectively, Darcy velocities, or vol-
umetric fluxes, of the gas and liquid, μg and μw are the
dynamic viscosities of the fluids, �g and �w are their den-
sities. The gravity acceleration is denoted by g. The fluid

does not flow, u = 0, if the pressure gradient is equili-
brated by the gravity term: ∇pi = �ig, i = g, w. Thus,
if z is the vertical axis with the positive direction upward,
then the equilibrium conditions read

pw(z) = pw(z0) − �wg(z − z0)

pg(z) = pg(z0) − �gg(z − z0)
(4)

Here g is the scalar magnitude of the gravity acceleration.
The mass balance of the gas and liquid can be ex-

pressed as

∂ (�g(1− S)φ)

∂t
+∇ · (�gug) = 0 (5)

∂(�wφS)

∂t
+∇ · (�wuw) = 0 (6)

Equations (1)–(6) constitute a system of equations with
seven unknown functions: ui, pi, �i (i = g, w), and S.
In fact, Darcy velocities are vector quantities. Therefore,
each of the equations (2)– (3) is a system of three scalar
equations, and the number of unknown functions is equal
to eleven. A unique solution to the system (1)–(6) can
be determined if it is complemented with the equations of
state for both fluids, and with a consistent set of boundary
and initial conditions.

If the compressibility of the gas, the brine and the rock
can be neglected, summation of Equations (5)–(6) yields

∇ · (ug + uw) = 0 (7)

In general, Equation (7) does not imply yet that the total
Darcy velocity of both fluids is constant. The latter holds
true if, in addition to (7),

∇× (ug + uw) = 0 (8)

which is not necessarily true. However, if the flow is one-
dimensional, for example after averaging in the two hori-
zontal coordinates, (7) reduces to a single scalar equation

ug + uw = Const (9)

If the constant in the last equation is equal to zero, the flow
is countercurrent.17–19 In this work, we consider vertical
migration of a gas plume with no fluid flow at a large
distance from the plume. Hence, in this case,

ug + uw = 0 (10)

Using capillary pressure equation (1), the liquid pres-
sure pw can be eliminated from the system of equa-
tions (1)–(6). Thus, from Equation (1), and Darcy’s law
for the brine (3) can be written down in the following way:

uw =
krw(S)k

μw
(−∇pg +∇pc(S) + �wg) (11)
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Countercurrent flow
In this section, the vertical transient migration of a gas
plume is studied. We assume that the flow is countercur-
rent, i.e., Equation (10) holds true. The countercurrent
flow equation obtained in this Section is similar to the one
obtained by Luan.20 The governing equations are non-
dimensionalized to a form similar to the Rappoport-Leas
water-oil displacement equation.21 This analogy suggests
two asymptotic forms. In the first case, the gas propa-
gates through a relatively thin low-permeability seal. Here,
capillary forces dominate over gravity and the process is
characterized by a self-similar solution similar to Ryzhik’s
model of spontaneous imbibition.18 In the second case,
the flow is considered in a relatively thick aquifer, so that
gravity forces cannot be neglected. In this case, two sta-
ble zones at the top and at the bottom of the plume are
described through two different travelling-wave solutions.

In the case of countercurrent flow of gas migrating
upwards and brine flowing downwards, the total Darcy ve-
locity of the mixture is equal to zero, equation (10). There-
fore, Equations (2) and (11) imply

∂

∂z
pg =

1

krw(S)

μw
+

krg(S)

μg

×
(

krw(S)

μw

∂

∂z
pc(S)− krg(S)

μg
�gg − krw(S)

μw
�wg

) (12)

For the water pressure gradient, Equation (1) implies

∂

∂z
pw = − 1

krw(S)

μw
+

krg(S)

μg

×
(

krg(S)

μg

∂

∂z
pc(S) +

krg(S)

μg
�gg +

krw(S)

μw
�wg

) (13)

Equivalently, equations (12)–(13) can be written down as

∂

∂z
pg =

krw(S)

μw

krw(S)

μw
+

krg(S)

μg

[
∂

∂z
pc(S)− (�w − �g)g

]
− �gg

(14)
and

∂

∂z
pw = −

krg(S)

μg

krw(S)

μw
+

krg(S)

μg

[
∂

∂z
pc(S)− (�w − �g)g

]
−�wg

(15)
By virtue of equation (15), the Darcy velocity of water is

uw =
k

μw
f(S)

[
∂

∂z
pc(S)− (�w − �g)g

]
(16)

where

f(S) =

krw(S)
krg(S)

μg

krw(S)

μw
+

krg(S)

μg

=
krw(S)

krw(S)

krg(S)

μg

μw
+ 1

(17)

In equation (16), we have left μw outside the function f(S)
to make the latter dimensionless. There is no flow if

∂S

∂z
=

(�w − �g)g

p′c(S)
(18)

Since p′c(S) < 0, this is possible only if
∂S

∂z
< 0. Equa-

tion (18) can be integrated:

(z − z0)(�w − �g)g = pc(S(z))− pc(S(z0)) (19)

Thus, equilibrium water saturation distribution is provided
by the capillary pressure curve.

In most cases of interest, the viscosity of gas is much
smaller than that of water. For intermediate saturations,
where the relative permeability to gas is appreciably dif-
ferent from zero, the contrast between gas and brine vis-
cosities makes possible to put

f(S) ≈ krw(S) (20)

By virtue of Equation (16) with this approximation, the
dimensional Darcy velocity of water is equal to

uw =
kkrw(S)

μw

[
∂

∂z
pc(S)− (�w − �g)g

]
(21)

If the relative permeability to gas is so small that
krw(S)

μw
� krg(S)

μg
, then

f(S) ≈ μw

μg
krg(S) (22)

In this case,

uw =
kkrg(S)

μg

[
∂

∂z
pc(S)− (�w − �g)g

]
(23)

In other words, normally, the two-phase flow is determined
by the flow of water, whereas at extremely low gas satura-
tion, the flow is controlled by gas.

Substitution of Equation (16) into Equation (6) yields

∂(φS)

∂t
= − ∂

∂z

(
k

μw
f(S)

(
∂

∂z
pc(S)− (�w − �g)g

))
(24)

Let H denote the thickness of the aquifer. Then, a
dimensionless time τ and coordinate ζ can be introduced
in the following way:

ζ =
z

H
and τ =

k(�w − �∗g)g

μwH
t (25)

Here �∗g is the mean value of the gas density. The dimen-
sionless Darcy velocity of water Ww has the following form:

Ww =
μw

k(�w − �∗g)g
uw

= f(S)

[
1

(�w − �∗g)g

∂

∂z
pc(S)− �w − �g

�w − �∗g

] (26)
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At a sufficiently large depth, the gas density variation
is significantly smaller than the density contrast between
gas and water:

�∗g − �g

�w − �∗g
� 1 (27)

Thus,

�w − �g

�w − �∗g
= 1 +

�∗g − �g

�w − �∗g
≈ 1 (28)

The capillary pressure function can be expressed
through the dimensionless Leverett’s J -function:22

pc(S) = σ

√
φ

k
J (S) (29)

where σ is the surface tension coefficient at the water-gas
interface. Thus, Equations (24) and (26) take on the form

φ
∂S

∂τ
= − ∂

∂ζ
Ww (30)

and

Ww = f(S)

(
γJ ′(S)

∂S

∂ζ
− 1

)
(31)

where

γ =
σ

(�w − �∗g)gH

√
φ

k
(32)

The dimensionless factor γ evaluates the ratio between
capillary and buoyancy forces. Its value is of the order of 1
for carbon dioxide flowing in a 20 meters thick layer of per-
meability of the order of 100 millidarcy and porosity about
20 percent at a depth of several kilometers. However, the
magnitude of γ is much larger in a thin low-permeability
seal. For instance, if the permeability is of the order of
0.01 millidarcy, the porosity is around 1 % and the thick-
ness is of the order of 1 meter, then γ ∼ 103, which is three
orders of magnitude larger than in an aquifer.

With such parameters of the fluids and porous
medium, a unit interval for the dimensionless time τ in
an aquifer roughly corresponds to 6 weeks, whereas for a
tight seal the respective time scale is of the order of hun-
dreds of thousands of years.

Equations (30)–(31) can be summarized in the form
of a nonlinear diffusion-advection equation

φ
∂S

∂τ
=

∂

∂ζ

[
f(S)

(
−γJ ′(S)

∂S

∂ζ
+ 1

)]
(33)

If the vertical dimension of the gas plume is large,
then, away from its top and bottom, where the saturation
variation is not large, the first term on the right-hand side
of Equation (33) is much smaller than one:∣∣∣∣γJ ′(S)

∂S

∂ζ

∣∣∣∣ � 1 (34)

Since inside the plume the relative permeability to gas is
appreciably positive, the approximate expression (20) is
valid. In this case, Equation (33) reduces to

φ
∂S

∂τ
− ∂krw(S)

∂ζ
= 0 (35)

By integration in ζ, Equation (35) transforms into a
Hamilton-Jacobi equation

∂U

∂t
= krw

(
∂U

∂ζ

)
(36)

where the new unknown function is

U(ζ, t) =

∫ ζ

0

S(η, t) dη (37)

A loss of smoothness of the generalized solution23 to Equa-
tion (36) determines the possibility of shock waves. Nor-
mally, the relative permeability coefficient is a convex func-
tion of saturation. Using set-valued analysis methods, see
e.g., Refs.,24,25 one can demonstrate that shocks cannot
develop if U is a concave function of ζ. The function U(ζ)
is concave if water saturation increases with depth. In
other words, shocks do not develop if the gas saturation is
higher in the more elevated parts of the plume. In those
parts of the plume, where water saturation increases with
depth, developing shocks may break the plume into parts.

These general observations can be inspected more
closely using method of characteristics. Clearly, the char-
acteristics of Equation (35) are straight lines and the satu-
ration is constant along the characteristics. Therefore, the
higher water saturation is, the steeper is the slope of the re-
spective characteristic. In the top part of the plume, where
water saturation decreases with depth, the characteristics
of Equation (35) diverge and shocks cannot develop. If the
saturation is constant over some interval inside the plume,
the respective characteristics are parallel to each other.
In other words, a part of the plume resembling a contigu-
ous column of constant saturation migrates upward almost
like a rigid body. However, such flow is unsteady and very
likely this part of the plume will break. The plume insta-
bility is illustrated in Fig. 2. In computations, the relative
water permeability is taken in the form (A.5). At τ = 0, a
small deviation from constant water saturation is modelled
by a sinusoid with a small amplitude. The sinusoidal form
of the initial perturbation has been selected for the sake
of simplicity. With time, the sinusoid is first deformed
(τ = 1.5) and then a shock appears (τ = 3.5). As the
shock develops, assumption (34) becomes invalid and one
must use the full equation (33) or its nonlinear parabolic
approximation (see Equation (41)) employing a different
time scaling.

Another extreme situation takes place if∣∣∣∣γJ ′(S)
∂S

∂ζ

∣∣∣∣ � 1 (38)
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Fig. 2 - Development of shocks on vertical water (left) and
gas (right) saturation profiles.

Such a condition is likely to be satisfied at the gas-water
interface near the leading front of the plume, where in a rel-
atively narrow zone the saturation variation is large. The
specific size of such a zone depends on the character of the
dependence of the capillary pressure on water saturation
near the capillary entry pressure. In any case, such a zone
would be larger inside a low-permeability seal than in per-
meable aquifer sand, due to the presence of permeability
coefficient in the denominator of γ, Equation (32). Esti-
mate (38) leads to Ryzhik’s equations of countercurrent
imbibition18

φ
∂S

∂τ
= − ∂

∂ζ

(
γf(S)J ′(S)

∂S

∂ζ

)
(39)

For the latter equation, it is convenient to modify the time
scale by defining a new dimensionless time

ϑ =
γ

φ
τ =

σ

μwH2

√
k

φ
t (40)

The scaling coefficient of t on the right-hand side measures
the ratio between capillary and viscous forces. In terms of
dimensionless time ϑ, Equation (39) takes on the form

∂S

∂ϑ
=

∂2

∂ζ2
Φ(S) (41)

where

Φ(S) = −
∫ S

S∗

f(η)J ′(η) dη (42)

Here S∗ is residual water saturation. Ryzhik,18 see also,21

has demonstrated that this equation admits a self-similar
solution, which is discussed below. Note, that in this as-
ymptotic case, gravity does not enter the differential equa-
tion, so the latter is governed by capillarity and viscous
flow only.

In a low-permeability (k � 1 Darcy) thin layer, the
conversion coefficient between τ and ϑ is greater than
one. In a highly-permeable thick aquifer (hundred me-
ters), the opposite picture is true. Near the developing
shocks, Fig. 2, the gradient of saturation increases signifi-
cantly, making the capillary pressure the prevailing force.
Consequently, the velocity of propagation at the develop-

ing shocks decays approximately as
1√
ϑ

, and because of

the difference of velocities in different parts, the plume is
likely to break into parts. The size of each “sub-plume”
is determined by the relative permeability and capillary
pressure curves and the density contrast between gas and
water. Again, due to the different velocities of propaga-
tion, which may be the case even in a homogeneous reser-
voir, plumes can coalesce with one another. Once such
a conglomerate plume exceeds a certain critical vertical
dimension, the reservoir seal can be penetrated through
most permeable parts, e.g., a system of cracks. Such a
penetration through a sequence of low-permeability seals
with defects has been considered in some numerical simu-
lations.26 In the next section, we analyze the propagation
of a plume in a low-permeability seal.

Countercurrent flow in a low-permeability seal
In vertical migration resulting from a gas storage leak, the
gas flows through alternating formation layers of high and
low permeability, and of different thicknesses. The force
driving this flow is buoyancy. The process is similar to
secondary hydrocarbon migration and trapping.9 If a con-
nected gas plume extends between depths zbottom and ztop,
then, at hydrostatic conditions, the buoyancy force is equi-
librated by the capillarity:

(�w − �g) (zbottom − ztop) gdz = pc(ztop)− pc(zbottom)
(43)

cf Equation (19). At the top, the capillary pressure is
bounded by the capillary entry pressure. Inside the plume,
and at the bottom, the capillary pressure is controlled by
the water saturation in combination with hysteretic effects,
see e.g., Ref.14 The same factors regulate the largest fea-
sible magnitude of the difference on the right-hand side of
Equation (43). The maximun value of this difference de-
termines the maximal feasible vertical extent of the plume,
ztop − zbottom. Consider a situation where the top of the
plume contacts a low-permeability formation layer, where
the drainage entry pressure is high, Fig. 3. If continued
gas leakage from a deeper storage aquifers increases the
vertical size of the plume. As the buoyancy force becomes
larger than the capillary-pressure constraint on the right-
hand side of Equation (43), the gas can penetrate into the
seal, Fig. 3.

The seal rock is tight relative to the underlying layer.
In the latter, the vertical extent of the connected plume is
much larger than the thickness of the seal. In addition, the
porosity in the seal is much smaller than that of the un-
derlying formation. Therefore, the volume of gas that has
already entered the seal is much smaller than the amount
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z

0

migrating gas plume

tight seal

Fig. 3 - Gas propagation through a seal. The seal cannot be
penetrated until the gas-liquid menisci become small enough
by increasing capillary pressure.

of gas in the plume. Relative to the volume of the gas that
has entered the seal, the rest of the plume can be consid-
ered as an infinite source of gas. Thus, for the following
analysis, the gas pressure and water saturation at the seal
bottom boundary, pgsb and Sgsb, are assumed constant.

Detailed resolution of the saturation profile at the very
tip of the plume requires information about the behavior of
the gas relative permeability and capillary pressure curves
near full water saturation, S = 1, see Ref.19 Such in-
formation cannot be easily obtained experimentally. To
get around this difficulty, we define an entry saturation,
Se < 1, the largest saturation of water, at which the
relative permeability to gas is appreciably non-zero. We
associate the dimensionless vertical coordinate of the top
boundary of the gas plume, ζtop(ϑ), with the location near
the tip of the plume where the saturation equals Se. There
is a certain arbitrariness in the definition of exact value of
Se. However, this arbitrariness affects the fluid saturation
of a small region near the tip of the plume only.

Thus, one obtains the following pair of boundary con-
ditions:

S(ζsb, ϑ) = Sgsb, S(ζtop(ϑ), ϑ) = Se (44)

One more boundary condition at the top boundary of
a plume migrating upward is implied by mass conservation.
Above the plume, the liquid saturation is identically equal
to unity and there is no gas flow through the moving top
boundary of the plume. Between times ϑ and ϑ+δϑ, where
δϑ is a small time increment, the boundary will move by
the distance

ζtop(ϑ + δϑ)− ζtop(ϑ) =

∫ ϑ+δϑ

ϑ

d

dϑ
ζtop(ϑ

′) dϑ′

≈ d

dϑ
ζtop(ϑ)δϑ

(45)

The gas saturation integral between ζtop(ϑ) and ζtop(ϑ +
δϑ) is equal to∫ ζtop(ϑ+δϑ)

ζtop(ϑ)

(1− S(ϑ + δϑ, ζ ′)) dζ ′

≈ (1− Se)
d

dϑ
ζtop(ϑ)δϑ

(46)

Equations (45) and (46) are accurate up to higher order
terms with respect to δϑ.

Because of the countercurrent flow, gas saturation in-
crease is equally compensated by the flow of the brine
downwards through the boundary at ζ = ζtop(ϑ), which,
according to Equation (41) is measured by the integral

−
∫ ϑ+δϑ

ϑ

∂

∂ζ
Φ(S(ϑ′, ζtop(ϑ))) dϑ′

≈ − ∂

∂ζ
Φ′(S)

∣∣∣∣
S=Se

δϑ

(47)

Thus, equating (46) and (47) and passing to the limit as
δϑ → 0, one obtains:

(1− Se)
d

dϑ
ζtop(ϑ) = − f(S)J ′(S)|S=Se

∂S

∂ζ
(48)

The last equation expresses the mass balance at the top
boundary of the plume in differential form.

Equation (41) admits a self-similar solution satisfying
the boundary conditions (44) and (48). Indeed, define a
similarity variable by

ξ =
ζ − ζsb√

ϑ
(49)

Then, for

ζtop(ϑ) = ζsb + a
√

ϑ (50)

one arrives at the following boundary-value problem for an
ordinary differential equation for S(ζ, ϑ) = S (ξ):

−ξ

2

dS

dξ
=

d2

dξ2
Φ(S) (51)

S(0) = Sgsb, S(a) = Se (52)

1

2
(1− Se)a = Φ′(S)|S=Se

dS

dξ

∣∣∣∣
ξ=a

(53)

The boundary-value problem (51)–(53) involves a second-
order differential equation with three boundary conditions
and an unknown scalar parameter a. Such a problem of-
ten is called a nonlinear eigenvalue problem. It can be
solved, for example, using a modification of the shooting
method.27

Equation (51) is of second order. To solve it, we trans-
form it into a system of first-order equations by introducing
a new variable

W =
d

dξ
Φ(S) (54)
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Fig. 4 - Ryzhik’s self-similar solution: water saturation profiles
for several different times. Water saturation at the boundary
is assumed equal to 65 %. Saturation profile near the very tip
of the plume is not resolved and is presented approximately
with a dashed line.

Thus, we need to solve the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
d

dξ
S =

1

Φ′(S)
W

d

dξ
W = − ξ

2Φ′(S)
W

(55)

with boundary conditions

S(0) = Sgsb, S(a) = Se, and W (a) =
1

2
(1− Se)a

(56)
The similarity saturation distribution has been com-

puted based on formulae (A.1), with λPc
= 0.3, and (A.5),

with λkrw
= 0.457. The water saturation at the boundary

of the seal is supposed to be 65%.
In the original dimensional variables, z and t, the sat-

uration profiles can be easily obtained from Ryzhik’s so-
lution. The result is shown in Fig. 4. The relative per-
meability and capillary pressure functions, as well as the
other parameters used in this calculation are presented in
Appendix at the end of this paper.

Countercurrent flow in a permeable aquifer
Under buoyancy, a plume of gas, created by a leaking gas
storage reservoir, migrates upwards. In this section, we
analyze a model of such migration. It turns out that there
are at least two stable zones, at the top and at the bottom
of the plume. The migration of each of these parts is char-
acterized by a travelling-wave solution. In other words, the
water and gas saturation distributions inside these stable
zones do not change as they migrate upwards.

Local heterogeneities of the formation impact the
structure of the stable zones. A leak from gas storage

z

Sw

1

Fig. 5 - Leak of gas through a seal: continuous stream

z

Sw

?

Fig. 6 - Leak of gas through a seal: flow in separate plumes

can be intense enough to support a continuous stream-
like flow, Fig. 5. However, if the gas plume enters a
high-permeability zone, the top of the plume may run
away and break a plume into separate parts, Fig. 6. In
this study, we focus on characterizing the structure of the
above-mentioned stable zones of individual plumes.

We seek a travelling-wave solution to Equation (33).
Let v be the velocity of propagation, so that we seek a
solution, which can be presented as a function of a single
composite variable z − tv. From Equation (24),

vφS′ =
k

μw

(
f(S)

(
dpc(S)

dS
S′ − (�w − �g)g

))
′

(57)

Here the prime denotes the derivative with respect to the
composite variable. Define dimensionless plume propaga-
tion velocity V as

V =
μw

k(�w − �g)g
v (58)

Then, in dimensionless variables, we seek a solution in the
form

S(ζ, τ) = Ψ(ξ) (59)

where
ξ = ζ − τV (60)

A dimensionless travelling wave solution satisfies the equa-
tion

φV
dΨ

dξ
− d

dξ

(
f(Ψ)

(
γJ ′(Ψ)

dΨ

dξ
− 1

))
= 0 (61)
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The plume migration velocity, v, can be found from
the following considerations. Let us associate ξ = 0 with
the location in the plume corresponding to the minimum
water saturation. The argument in the previous section
suggests that due to the local heterogeneities there might
me several local minima of saturation alternating with lo-
cal maxima, Fig. 2. Let us focus on the top and the bottom
ones. The structure of the plume between these two wa-
ter saturation minima can be complex, so that a realistic
detailed picture may require high-accuracy numerical sim-
ulations.

At ξ = 0, water saturation attains its minimum, there-
fore,

Ψ′(0) = 0 (62)

Thus, for dimensionless water Darcy velocity, Equa-
tion (31) implies

Wv = −f(Ψ(0)) (63)

The top part of the plume, between the minimum wa-
ter saturation and the tip of the plume, flows upward with
velocity v. Therefore, the volume of gas crossing a unit
area in a horizontal cross-section over a small time interval
	τ is approximately equal to v(1−Ψ)φδτ . This incremen-
tal amount of gas is the result of Darcy flow. Therefore,
it is equal to −uwδτ . Thus, in dimensional velocities, on
obtains

v(1−Ψ(0))φ = −uw (64)

For the dimensionless velocity, using Equations (63), one
obtains

V (S) =
f(S)

φ(1− S)

∣∣∣∣
S=Ψ(0)

(65)

Equation (65) defines the velocity of plume migration
as a function of minimal brine saturation. The plot of
this function is shown in Fig. 7. The function V (S) has
a maximum, which defines the theoretical upper limit for
the velocity of plume migration. The sharp shape of the
plot is the consequence of the significant viscosity contrast
between water and gas. In case of hydrocarbon migration,
this contrast may be significantly lower. Therefore, the
respective curve will be smoother and the maximum will
shift towards a lower water saturation. Fig. 8 shows three
plots of v(S) evaluated in physical units for different vis-
cosity ratios. In all three plots all parameters are the same
except for the viscosity of the less dense non-wetting fluid.
In particular, the absolute permeability is 100 millidarcy
and the porosity is 20 %.

Plume stability requirement imposes certain con-
straints on the diustribution of saturation inside the plume.
These requirements can be formulated by analyzing the
shape of the curve V (S). Clearly, if different parts of the
plume propagate with different velocities, the saturation
distribution inside the plume cannot be constant. For ex-
ample, if the upper part of the plume moves faster than the
lower part, such a plume will eventually break into parts,
Fig. 6. In contrast, if the lower part of the plume moves
faster, then the resulting accumulation of the gas inside
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Minimal water saturation

Water saturation 
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Theoretical maximum 
of plume migration velocity

V=Const

Fig. 7 - The top of the V (S) curve defines the theoretical
maximum of the plume propagation velocity.
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Fig. 8 - Plume migration velocity in m/year for three different
viscosity ratios.

the plume will result in a saturation discontinuity, like a
shock wave as shown in Fig. 2. Such a periodic plume
with shocks can be viable only if the velocity (65) evalu-
ated at local maxima and minima of saturation are equal.
In Fig. 7, such a pair of saturations must correspond to two
intersections of the plot with a horizontal straight line. In
particular, this means that such a periodic plume propa-
gates with a velocity, which is smaller than the maximum
value of V (S).

Analysis of the dependence V (S) suggests possibility
of two stable zones: at the top and at the tail of a plume.
Between these zones, simulation of the transient saturation
redistribution may require numerical simulations. In the
next subsections we focus on these two stable zones.
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Propagation of the top of the plume. Consider first
only the upper part of the plume, where water saturation
monotonically decreases with depth. At the very tip of the
plume, the capillary pressure is equal to the entry capillary
pressure. As in Equation (44), denote by Se the respective
water saturation and let v be the velocity of propagation
at the top part of the plume. The volumetric flux of water
and gas near the tip of the plume can be expressed through
Darcy velocity and the speed of plume propagation. Hence,
by virtue of Equation (16), one obtains

v(1− Se)φ =
k

μw
f(Se)

[
− ∂

∂z
Pc(Ψ) + (�w − �g)g

]
(66)

where the right-hand side of this equation is evaluated at
the tip of the plume. In dimensionless form,

φV (1−Ψ) = −f(Ψ)

(
γJ ′(Ψ)

d

dξ
Ψ− 1

)
(67)

The last equation can be also obtained by integration of
Equation (61).

The dimensionless velocity V on the left-hand side of
Equation (67) is the velocity of propagation of the top part
of the plume. It can be denoted by Vtop to distinguish

from V (S) formally calculated from Equation (65). Using
the latter, one obtains

γJ ′(Ψ)
dΨ

dξ
= 1−

Vtop

V (Ψ)
(68)

The derivative of Leverett’s function is negative. The wa-
ter saturation is at maximum near the tip of the plume and
decreases downward. Therefore, the left-hand side of the
last equation is nonpositive. Consequently, V (S) evaluated
anywhere in this part of plume is lesser or equal to the ve-
locity of propagation Vtop. Note that in this case, V (S)

is a dimensionless velocity evaluated using formula (65)
and is not related to the physical velocity of the plume
propagation.

The relationship

dΨ

dξ

∣∣∣∣
top

=

1−
Vtop

V (Se)

γJ ′(Se)
(69)

characterizes the slope of the saturation profile at the tip of
the plume. According to Fig. 7, the numerator of the frac-
tion on the right-hand side grows rapidly as Se approaches
the end-point water saturation. In other words, the water
saturation drops abruptly at the leading edge of the plume.
Fig. 9 shows the water saturation profile in the top part of
the plume at different times. The plots have common ver-
tical asymptotes. Indeed, as the value of V (Ψ) approaches
Vtop, the right-hand side of equation (68) vanishes and the

saturation becomes almost constant with respect to depth.
We must assume that the saturation Se corresponding to
the capillary entry pressure is to the right from the sat-
uration corresponding to the theoretical maximum of the
plume propagation velocity, Fig. 7.
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Fig. 9 - Distribution of the saturation near the top of the
plume

The Cauchy problem for Equation (68) can be solved
with the end-point condition Ψ = Se at the top. It is
convenient to flip the independent and unknown variables
and to write this equation down in the form

dξ

dΨ
=

γJ ′(Ψ)

1−
Vtop

V (Ψ)

(70)

The latter can be solved by integration

ξ = ξtop −
∫ Se

Ψ

γJ ′(S)

1−
Vtop

V (S)

dS (71)

Fig. 9 shows an example of calculations. Once the satu-
ration profile is available, the gradient of water saturation
can be evaluated re-using Equation (68). Then, Darcy
velocity is readily obtained by substitution of the results
into Equation (31). Finally, the water pressure is obtain-
able by converting the dimensionless Darcy velocity back
into physical units and integrating Equation (15). The gas
pressure is evaluated using capillary pressure, see Equa-
tion (1). Figs. 10 and 11 show results of such calculations.
Note that the flows are very slow and the water pressure
profile only slightly deviate from the hydrostatic one. The
capillary pressure is constant at constant water saturation,
so in the part of the plume where the saturation does not
significantly vary the gas pressure gradient is close to that
of water.

The remaining unresolved parameter is Vtop. Substi-

tution of any value between V (Se) and the maximal the-
oretical velocity in the above-presented calculations pro-
duces a mathematically feasible solution. It seems, how-
ever, that not any one of such solutions is viable for a long
period of time. Note, that the water saturation in the top
part of the plume is higher upwards. On the opposite, the
respective value of velocity V (S) increases from the very
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Fig. 11 - The profile of Darcy velocity of water at the top of
the plume almost mimics that of saturation.

top downwards. Local heterogeneities may create satura-
tion fluctuations. Such fluctuations, in turn, may create
parts of the plume with a reduced, relative to the ideal
profile, saturation. If the resulting velocity, V (S), exceeds
the velocity of propagation, Vtop, then a part of plume

can break out and leave the remaining part behind, Fig. 6.
The likelihood of such a scenario apparently is greater over
a longer period of time. However, such separation of the
plume is prohibited, if Vtop is equal to the theoretical max-

imum, Fig. 7. In this case, no part of the plume can run
away from the rest. Moreover, the parts migrating with
the maximal theoretical velocity push the slower ones, and
maintain the integrity of the top part of the plume.

Saturation distribution in the tail of the plume. At
the plume tail, water saturation is a decreasing function of
ξ. With depth, its value approaches the maximal satura-
tion, at which gas cannot flow. Let us associate ξ = 0 with
the deepest location in the plume where water saturation
attains its minimum.

The fluid displacement at the bottom part of the
plume is imbibition, where the wetting fluid displaces the
nonwetting one. The relative permeability and capillary
pressure functions in imbibition are different from those
in drainage. In addition, non-equilibrium effects can af-
fect the dynamic of imbibition as well.17,19 In this study,
we assume that the the time of redistribution of the flu-
ids is small and nonequilibrium effects can be neglected.
In our case, this assumption is justified by the slowness
of the buoyancy-driven migration and the relatively low
viscosity of the nonwetting fluid. Since we use generic rel-
ative permeability and capillary pressure curves anyway,
see Appendix, we do not account for hysteresis effect as
well.

Similarly to Equation (70), flipping Ψ and ξ in Equa-
tion (67), one obtains

dξ

dΨ
=

γJ ′(Ψ)

1− V (Ψ(0))

V (Ψ)

(72)

The sign of the derivative
dΨ

dξ
is the same as the sign of

dξ

dΨ
.

The derivative of the Leverett’s function is always negative.
Hence, the saturation increases with ξ if V (Ψ(0)) > V (Ψ),
and decreases with ξ if V (Ψ(0)) < V (Ψ). According to
our assumptions, Ψ(0) is the minimal water saturation
in the plume and, therefore, inequality V (Ψ(0)) > V (Ψ)
must hold true. In particular, Ψ(0) must be smaller than
the value of saturation corresponding to the maximum of
V (S). In such a case, the saturation is a decreasing func-
tion of ξ, which corresponds to the saturation distribution
in the tail of the plume. The plot of the saturation dis-
tribution in the tail of the plume can be calculated by
integration of Equation (72) in Ψ:

ξ(Ψ) = γ

∫ Ψ

(1+ε)Ψ(0)

J ′(S)

1− V (Ψ(0))

V (Ψ)

dS (73)
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Fig. 12 - Distribution of water saturation in the tail of the
plume. Note the difference in the time scale relative to the
top of the plume, Fig. 9.

The denominator of the expression inside the integral on
the right-hand side vanishes at Ψ → Ψ(0). This means
that the value of Ψ(0) is not attainable on a finite interval.
However, in reality, there are always some fluctuations of
the saturation. In addition, the travelling-wave solution
is an asymptotic idealization. Therefore, we apply Equa-
tion (72) in an intermediate region, where the saturation
is less than the saturation behind the plume, but larger
than Ψ(0), the minimal saturation inside the plume. A
tolerance factor, ε, has been introduced to avoid division
by zero. Fig. 12 shows an example of such calculation.

These calculations along with the plot of the plume
migration velocity lead to certain conclusions. If the min-
imal brine saturation in the plume corresponds to a point
on the rising part of the curve V (S) in Fig. 7, then the
saturation at the tail of the plume is determined by the
second intersection of the horizontal line corresponding to
the plume propagation velocity. The low gas saturation
zone behind the plume cannot be included in the stable
travelling-wave part. This conclusion is implied by com-
parison of the signs of the expressions one both sides of
Equation (72).

As in the previous section, once the saturation profile
has been calculated, the Darcy velocity, and gas and water
pressures can be obtained from equations (31) and (15).
Figs. 13 and 14 show results of such calculations. Again,
since the flows are very slow, the pressure profiles for both
gas and water only slightly deviate from the hydrostatic
ones.

The closer the velocity of propagation of the plume
to the theoretical maximum, the lesser is the difference
between the minimal water saturation and the saturation
behind the plume. Therefore, the tail of the plume propa-
gates faster as both saturations approach the value corre-
sponding to the maximum of V (S). If the minimal water
saturation is on the descending part of the curve in Fig. 7,
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Fig. 13 - Gas and water pressures in the tail of a plume.
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Fig. 14 - Darcy velocity in the tail of the plume.
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then such a plume most probably will break into a number
of smaller plumes. Indeed, small fluctuations may create
portions of the plume, where the variation of the satura-
tion is small, so that the mass balance will lead to a local
velocity of propagation, which is smaller than the velocity
of the part of the plume above. As the leading part moves
faster than the trailing one, the plume will likely break
apart.

To conclude this subsection, we remark that the
travelling-wave character of the bottom part of a gas plume
can been observed in the numerical simulations reported
in the book.8

Conclusions
The flow of gas leaking from a deep underground storage
can take a form of migration of separate plumes. In this
study, this flow is expressed as the result of the interactions
of buoyant, capillary, and viscous forces. We consider only
vertical flow, assuming either flow in a vertical fracture or
flow in the middle part of a large plume. The two-phase
flow is countercurrent, where an amount of gas flowing up-
ward is replaced with an equal amount of water moving
downward. The consequences of non-equilibrium and hys-
teresis effects will be studied elsewhere.

In a low-permeability medium, the gravity forces can
be neglected and a self-similar solution similar to that ob-
tained by Ryzhik18 can be applied. As the result, propaga-
tion of the leading portion of gas plume is scaled as square
root of time.

In a general case of plume propagation in an aquifer,
two stable zones of a gas plume have been identified: the
top and the tail. In either one, the flow can be described as
a travelling-wave propagation of the fluid saturation pro-
file. The theoretical maximum of velocity of plume propa-
gation can be determined from the dependence of this ve-
locity on the minimal water saturation in the plume. This
calculation leads to a simple rough estimate of time needed
for the plume to reach the surface. The input parameters
needed for this estimate are the vertical permeability log
and the relative permeability curves. Simple calculations
presented in this study suggest that the velocity of propa-
gation of a plume of supercritical gas may reach values of
the order of tens of meters per year in an aquifer whose
permeability is of the order of 100 millidarcy.

The plume can be accelerated by local heterogeneities
and slowed down by the dissolution of gas into water and
large gas saturation left behind the plume. The velocity
also accelerates closer to the surface due to the enhanced
density and viscosity contrasts. Accurate prediction of the
plume propagation velocity requires knowledge of the rel-
ative permeability and capillary pressure curves.

Analysis of two stable zones at the top and at the
bottom of the plume suggests that the lower one has much
higher gas saturation, but propagates with a much slower
velocity, Fig. 1. Gas saturation in the top part of the
plume is relatively small, which averages about 15% in the
calculations presented in this study, but the velocity may
be higher than that at the bottom of the plume by orders

Absolute permeability in aquifer, k 100 millidarcy
Absolute permeability in seal, k 0.01 millidarcy
Porosity in aquifer, φ 20 %
Porosity in seal, φ 1 %
Water viscosity, μw 1.e−3 Pa-s
Gas viscosity, μg 4.38e−5 Pa-s
Water density, �w 1.e+3 kg/m3

Gas density, �g 0.561e+3 kg/m3

Surface tension coefficient, σ 70.0e−3 N/m

Table 1 - Formation and fluid parameters used in calculations.

of magnitude. The bottom part of the plume feeds the top
part, as the latter rushes upward, like smoke from an open
fire. The chances that the fast part of the plume will reach
the surface before breaking apart due to insufficient gas
supply from the bottom depend on the size of the leak and
transport properties of the formation. Further studies will
produce a more accurate picture of the processes involved
and will lead to more accurate estimates of the time of
migration and the likelihood of surface breakthrough.
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Appendix
Here we collect the formulae used for relative permeability
and capillary pressure in the calculations.

The parameters characterizing the fluid and rock prop-
erties are collected in Table 1. The gas properties roughly
correspond to the properties of supercritical CO2 at the
temperature of 60◦C and the pressure of 150 bars.

For the Leverett’s function, Equation (29), a modifi-
cation of van Genuchten’s formula28 has been used:

J (S) =
(
1− S∗

5

λ

)λ

S∗−2λ (A.1)

where

S∗ =
S − Siw

1− Siw
(A.2)

The plot of such a curve for Siw = 0.3, λ = 0.3 is presented
in Fig. 15. Relative to a capillary pressure curve generated
with van Genuchten’s formula, the curve defined by Equa-
tion (A.1) corresponds to a relatively higher capillary-entry
pressure in drainage.

The behavior of the capillary pressure and relative
permeability curves near the endpoint saturations, where
a two-phase flow gradually transforms into a single phase
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Fig. 15 - Capillary pressure curve: Leverett’s J function, Equa-
tion (29), is scaled using aquifer parameters.

flow, is subject to a great degree of uncertainty. A better
understanding of this behavior will significantly benefit the
predictive capabilities of the simulations. The curve in
Fig. 15 qualitatively represents the point of view that the
derivative of the capillary pressure curve goes to minus
infinity as the gas saturation approaches Sig.

For the gas relative permeability, a Corey type for-
mula29 has been used:

krg(S) = (1− S̃)2(1− S̃2) (A.3)

where

S̃ =
S − Siw

1− Sig − Siw
(A.4)

In the calculations, the value of Sig = 0.05 has been used.
With this choice of parameters, the product J ′(S)krg(S)
tends to −∞ as S → 1−Sig. If the latter condition is not
satisfied, the solution becomes non-physical.

For computations, a van Genuchten water relative per-
meability function has been used

krw(S) =
√

S∗

[
1−

(
1− S∗1/λ

)λ
]2

(A.5)

where S∗ = S∗(S) is defined in Equation (A.2). The rela-
tive permeability to water drops at a relatively high satura-
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Fig. 16 - Gas relative permeability, (A.3) and water relative
permeability (A.5) for λ = 0.457, curves

.

tion, Fig. 16. This reflects the fact that water is the wetting
fluid in our model and, therefore, it flows in the corners and
the roughness of the pore walls. In other words, the wet-
ting fluid has to flow in the part of the pore space, which
provides the strongest resistivity to the flow.

Nomenclature
Roman letters

f fractional flow function
g gravity acceleration
k absolute permeability
krg gas relative permeability
krw water relative permeability
J Leverett’s J-function
pc capillary pressure
pg gas pressure
pw water pressure
S water saturation
Se drainage entry saturation
Ssb water saturation at the seal bottom boundary
t time
ug gas Darcy velocity
uw water Darcy velocity
v dimensional plume migration velocity
V dimensionless plume migration velocity
Ww dimensionless water Darcy velocity
z dimensional vertical coordinate

Greek letters

γ dimensionless factor
�g gas density
�w water density
ζ, ξ dimensionless vertical coordinate
σ surface tension coefficient
τ, θ dimensionless time
μg gas viascosity
μw water viscosity
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φ formation porosity
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