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9 Configurations of curves and geodesics on surfaces
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Abstract

We study configurations of immersed curves in surfaces and surfaces

in 3-manifolds. Among other results, we show that primitive curves have

only finitely many configurations which minimize the number of dou-

ble points. We give examples of minimal configurations not realized by

geodesics in any hyperbolic metric.

1 Introduction.

Let f and g be general position immersions of a manifold M into the interior of
a manifold N . We will say that f and g have the same configuration if there is
a regular homotopy from f to g through general position immersions. Equiva-
lently, there is an ambient isotopy of N moving f(M) to g(M). This defines an
equivalence relation on general position immersions, and an equivalence class
will be called a configuration. All the immersions in a configuration “look
the same” in a precise sense. In this paper we will be interested in the cases
when the dimension of M is 1 or 2 and the dimension of N is 2 or 3. Our
aim is to explore the question of how many configurations a given homotopy
class can have. For primitive curves on a surface, we show that the number
is finite if one restricts to immersions with the least possible number of dou-
ble points, but little can be said for curves with excess intersections. We then
consider the possible configurations of closed geodesics on a surface equipped
with a hyperbolic metric. It is well known that geodesics in a hyperbolic metric
minimize the number of double points in their homotopy class. It was shown by
Shephard that any curve configuration which minimizes the number of double
points is realized by a shortest geodesic in some metric. We construct examples
which show that some configurations cannot be realized by closed geodesics in
a hyperbolic metric.

We say that a map of the circle into a surface is primitive if it is not homo-
topic to a proper power of some other map. Our first and most general result
is the following.
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Theorem 1 Let f : S1 → F be a primitive map of the circle into an orientable
surface. Then the general position immersions which are homotopic to f and
have the minimal possible number of double points belong to only finitely many
configurations.

Proof: If f is nullhomotopic in F , then any general position immersion
which is homotopic to f and has the minimal possible number of double points
must be an embedding. Further such an embedding will bound a disc. It follows
that there are two configurations possible for such maps, one for each orientation
of the curve. Thus the theorem holds for the 2-sphere. If f is homotopically
essential in F , and is homotopic to an embedding, there is only one configuration
possible among embeddings homotopic to f . For the torus T , the assumption
that f : S1 → T is primitive implies that f is homotopic to an embedding and
so has a unique configuration.

Assume now that χ(F ) < 0 and pick a hyperbolic metric on F . The pre-
image of f(S1) in the universal cover H

2 consists of a line (in the topological
sense) l and its translates {gl}, g ∈ G. These lines will not be geodesics in
general, but each will lie in a bounded neighborhood of a unique geodesic. As
f represents a primitive element of π1(F ), no two of these lines have the same
endpoints. The minimality of the number of double points of f implies that
any two of these lines meet in at most one point, as is the case with hyperbolic
geodesics. Let pij denote the point of intersection of distinct translates li and
lj, with the convention that pij does not exist if li and lj are disjoint.

Claim 2 If we know the side of l on which pij lies for all i, j, then the config-
uration of f is determined.

Proof: Note that the assumption in the claim implies that for each lk we
know the side of lk on which pij lies for all i, j. We will construct the configura-
tion of lines one at a time, starting with l = l1. Assume that the lines l1, . . . , ln−1

have a unique configuration. We will establish that the configuration of the lines
l1, . . . , ln is also unique. Consider the choices when we add the additional line
ln. Two disjoint lines in H

2 cannot be interchanged by a homotopy of f , unless
they have the same endpoints, as they do not lie within a bounded distance of
one another. But the assumption that the curve f is primitive implies that no
two lines have the same endpoints. Hence if ln is disjoint from li then the side
of li on which it lies is determined. Suppose that ln crosses some lk. The points
pik, i < n, in which the previous lines meet lk, divide lk into several arcs. As we
know on which side of li the point pkn lies, we know in which of these arcs pkn
lies. It follows that up to an isotopy of the lines l1, . . . , ln, there is at most one
possible way in which to add ln. Now induction on n shows that the collection
of all translates of l is determined up to ambient isotopy of H2. Further, if we
have two immersions f and g of S1 in F such that the corresponding families
of lines in H

2 are ambient isotopic, we claim that the isotopy can be chosen
to be equivariant under the action of π1(F ) on H

2, so that f and g must have
the same configuration as claimed. The way to do this is first to ensure that
the isotopy is equivariant when restricted to the intersection points of the two
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families of lines, then to ensure equivariance of the isotopy when restricted to
the union of the lines and finally to ensure that the entire isotopy is equivariant
by defining it equivariantly on each of the regions into which the union of the
lines divides the hyperbolic plane. �

Claim 3 Let γ be a closed geodesic in some hyperbolic metric on F, so that l
and its translates are geodesics in the hyperbolic plane H

2. Fix a line li which
crosses l. Then the number of lines which cross both l and li is finite.

Proof: The entire configuration of lines projects to a closed curve in F ,
which must have only finitely many double points, and it follows that there are
only finitely many values for the angles between any two lines li and lj which
meet. In particular, the angles are bounded uniformly away from zero. This
yields an upper bound to the lengths of the sides of any triangle formed by these
lines. If the number of lj ’s which cross both l and li is not bounded, then since
the set of all lines cannot accumulate, there must be triangles of unbounded
size, a contradiction. �

Now we can complete the proof of Theorem 1. We return to the general
situation where no metric is assumed. As any two of the lines forming the
pre-image of f intersect in at most one point, the intersections of these lines
correspond to the intersections of the corresponding geodesics in H

2. It follows
that the conclusion of the preceding claim applies, so that the number of lj ’s
which cross both l and li is a finite number mi. Now the translates of l which
cross l fall into 2n orbits under the action of the stabiliser of l, where n denotes
the number of double points of f. Let l1, ..., l2n denote one representative from
each orbit. The total number of points pij , 1 ≤ i ≤ 2n, such that lj crosses l
and li is m = m1 +m2 + ... +m2n. For each lj which crosses both of l and li,
there are at most two choices for which side of l the point pij occurs. Hence
the total number of choices for which side of l these m points lie is bounded by
2m. But these choices determine completely on which side of l every pij lies.
Now Claim 1 implies that there are at most 2m possible configurations. This
completes the proof of Theorem 1. �

Remark 4 The condition that the number of double points be minimal is es-
sential for Theorem 1.

Even if one restricts the number of double points to two, there is a curve on
a surface whose homotopy class contains infinitely many distinct configurations.
An example, as shown in Figure 1, can be obtained by beginning with a simple
closed curve C on a surface F , choosing a simple arc λ on F which meets C
only in its endpoints, and isotoping a small arc of C at one end of λ until it
runs back and forth along λ and cuts C twice near the other end of λ. For most
surfaces F , the relative homotopy class of λ can be chosen in infinitely many
different ways, yielding infinitely many distinct configurations with two double
points which are all homotopic to the initial embedding.

We will now consider some examples which show that configurations of
curves on a surface with minimal self-intersection cannot always be realized
by a geodesic in a hyperbolic metric.
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Figure 1: Extra double points on a surface of genus two.

Lemma 5 Let gt be a family of Riemannian metrics on a closed manifold, let
γ be a closed curve in M , and let γt be a shortest closed geodesic homotopic to
γ in the metric gt. If γ0 is the unique geodesic in its homotopy class then γt
varies continuously with t at t = 0. If each γt is unique, then the whole family
is continuous.

Proof: Let Nǫ be an ǫ-neighborhood of γ0 in the metric g0. If there are
γti not entirely contained in Nǫ for a sequence ti → 0, then a subsequence of
these converges by an application of Ascoli’s Theorem, and the limit will be a
geodesic not entirely contained in Nǫ, but homotopic to γ0 and having the same
length. Thus γt lies inside Nǫ for t sufficiently small, and the family of geodesics
varies continuously at t = 0. �

Our first example, for simplicity of construction, considers intersections of
three simple curves. We then describe a similar, but more complicated example
which uses a single singular curve.

Example 6 There are three simple closed curves on a punctured torus F which
have several minimal intersection configurations, of which only one is achieved
by geodesics in any hyperbolic metric on F .

Let a and b be a basis for π1(F ) representing a longitude and meridian, and
let α, β and γ be closed geodesics representing a, b and ab. Each of these curves
is simple and each pair cross in a single point. See Figure 2.

The punctured torus has an involution τ : F → F which fixes three points
and such that τ(a) = a−1, τ(b) = b−1. So α and β are preserved by the involu-
tion. We have

τ(ab) = a−1b−1 = a−1(b−1a−1)a = a−1(ab)−1a

so that ab is taken to a conjugate of its inverse, and the geodesic γ is also
preserved. Hence each curve is invariant, but reversed, and so its image contains
two fixed points of τ . For any pair of the three curves, the unique point at which
they intersect must be fixed by the involution.

If all three of α, β and γ intersect at a common point x then this point is fixed
by τ , as are three additional and distinct points, one on each of α, β and γ. This
would result in more than three fixed points for τ, a contradiction. So α∩β, β∩γ
and α∩γ are three distinct points on F, as in Figure 2. Now suppose that there is
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γ

Figure 2: Only the first configuration can be realized by hyperbolic geodesics.

more than one possible configuration in the homotopy class of the three curves,
realized by two distinct hyperbolic structures T1 and T2. We can connect the
two structures in Teichmuller space by a path of hyperbolic structures Tt. By
Lemma 5, closed geodesics in a given homotopy class vary continuously on the
surface as we follow a path of hyperbolic metrics in Teichmuller space. The above
argument shows that for each metric Tt, the unique geodesics in the homotopy
classes a, b and ab have no triple points. It follows that we cannot change
configurations. However there is a complementary region of these three curves
which is a triangle - in fact two of them are. So topologically it is possible to alter
the configuration by sliding one of the edges of this triangle across the opposite
vertex. The resulting configuration still minimizes the number of intersection
points but cannot be realized in any hyperbolic metric. See Figure 2. The same
example can be put into any surface, by constructing it inside a subsurface
homeomorphic to a torus with a disk removed.

Example 7 A connected closed curve on a punctured torus with several mini-
mal intersection configurations, of which only one is achieved by a geodesic in
a hyperbolic metric.

We start with an all right angled hyperbolic hexagon DEE′D′FG, then
double it along the edges EE′, D′F and GD to obtain a pair of pants X with
a hyperbolic metric, as in Figure 4. Thus X admits a reflection involution σ
which interchanges the two hexagons. It also admits an orientation preserving
involution τ which fixes a single point H of X, where H is the midpoint of the
arc EE′. Now choose a geodesic loop λ on X based at D as shown in Figure 4.
This loop is not a closed geodesic, as there will be a corner at D. It is freely
homotopic to the square of the boundary component which contains F and G,
so it cannot be simple. However, it can be realized with only one double point
and hence has exactly one double point. As each boundary component of X is
preserved by σ but reversed in orientation and as D is fixed by σ, it follows that
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F

G

D

γ

E H

Figure 3: A curve with a unique configuration in any hyperbolic metric.

λ is preserved by σ but with reversed orientation. Hence λ must look as shown
in Figure 4 with its single double point on the arc D′F.

Now form a once punctured torus T from X by gluing together the two
boundary components containing D,E and D′, E′ so that D is glued to D′ and
E is glued to E′. Then τ induces an orientation preserving involution on T
which we will continue to denote by τ , which fixes D = D′, E = E′ and H .
We will be interested in the closed loop γ on T defined by γ = λ ∪ τλ. As τ
is a rotation through π in a neighborhood of D, it follows that γ is a closed
geodesic. See Figure 3 which shows that γ has seven double points. The loop γ
has two innermost triangles, and using one of these triangles we can change the
configuration. However, we claim that no such triangle move can be realized
by the closed geodesics in a family of hyperbolic metrics. For any hyperbolic
metric on X can be obtained from some all right angled hyperbolic hexagon by
doubling, so the preceding argument applies to show that γ will always have
seven distinct double points and no triple points. Thus the configuration of γ
cannot alter as the hyperbolic metric changes continuously.

Next we discuss another example of a loop on a surface F with several
minimal intersection configurations, of which only one is achieved by a geodesic
in a hyperbolic metric.

Example 8 A unique configuration on a thrice-punctured S2.

Let Σ denote a thrice-punctured S2 equipped with a complete hyperbolic
metric of finite area. Let α denote the element of π1(Σ) represented by the first
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Figure 4: An all right hexagon and a geodesic arc in a pair of pants.

loop shown in Figure 5. We will use the fact that Σ admits an action of Z3 by
isometries which cycles the three ends of Σ to show that the configuration of
the closed geodesic representing α must be the first one shown in Figure 5.

v

λ

Figure 5: A forced configuration and an impossible configuration.

The proof is to consider the geodesic loop λ shown in Figure 6, whose corner
is at v, one of the two points fixed by the action of Z3, and show that θ >
π/3. Clearly the union of the translates of λ under the action of Z3 forms a
loop representing α. If θ = π/3, this loop will be a closed geodesic and so
the geodesic representing α will have a triple point. If θ < π/3, the geodesic
representing α would have the second configuration shown in Figure 5. The
proof that θ > π/3 involves some straightforward hyperbolic geometry to show

that θ = 2 tan−1

(√
3

2

)

, which is approximately 81.79 degrees. See Figure 6,
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v

λ

θ
v

√3/2

φ

1/2

ψ

φ

φ

θ/2

01/2 - a

a/cos(θ/2)

P

b

ψ

a

Figure 6: Calculating θ.

which shows an ideal triangle with vertices at 0, 1 and ∞ in the upper half plane
model of the hyperbolic plane. If we regard Σ as the double of this triangle,
there is a natural quotient map from Σ to the triangle and the image of λ is the
piecewise geodesic triangular loop shown. It has the properties that the exterior
angles between λ and the geodesics x = 0 and x = 1 are all equal. Thus the
angles marked φ and ψ must be equal. We let r denote the Euclidean radius of
the circle which forms the hyperbolic geodesic joining v and P and a denote the
width of the projection to the x-axis of the radial segment of length r connecting

the center of this circle to v. Then r =
a

cos θ/2
and the circle is centered at

(1/2 − a, 0). In these coordinates, the rotation of the hyperbolic plane which

sends 0 to 1 to ∞ is the Mobius transformation z → 1

1− z
. Recall that v is fixed

by this map. It follows that v is the point
1

2
+ i

√
3

2
. Hence tan (θ/2) =

√
3

2a
.

Also, if b denotes the Euclidean height of P above the x-axis, then tanφ =
1/2

b

and tanψ =
a− 1/2

b
. As φ and ψ are equal, we have tanφ = tanψ, so that

a = 1. It follows that tan (θ/2) =

√
3

2
, so that θ = 2 tan−1

(√
3

2

)

, as claimed.

Remark 9 Ian Agol has pointed out that the second configuration can also be
eliminated by a direct calcululation in hyperbolic geometry. There is a hexagon in
the complement of the arcs, as well as a triangle. If θ1, θ2, θ3 are the three inte-
rior angles of the triangle, then the hexagon has exterior angles θ1, θ2, θ3, θ1, θ2, θ3.
This is a contradiction since we must have θ1+θ2+θ3 < π and 2θ1+2θ2+2θ3 >
2π. Moreover, Agol’s observation applies more generally in any complete nega-
tively curved metric on the three punctured sphere.
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Now we give an example of non-uniqueness of configurations.

Example 10 Non-unique configurations realized by a hyperbolic geodesic.

Let Ω denote S2 with six points removed equipped with a complete hyper-
bolic metric having three cusp ends and three ends of infinite area and admitting
an action of Z3 which cycles the two types of end among themselves. Let β de-
note the element of π1(Ω) represented by the loop shown in Figure 7. As before
we consider the arc µ shown in Figure 7, and the angle θ. Note that the union
of the three translates of µ by the action of Z3 forms a loop representing β. We
will show that the closed geodesic representing β has at least two configurations
which can be realized by closed geodesics for some hyperbolic structure on Ω.

θ
µ

θ

Figure 7: Two six punctured spheres with a hyperbolic metric.

To see this, start with a metric in which all the ends are cusps and there
is an action of Z6 on Ω which cycles the ends. In this case, it is not as easy
to calculate θ, but it is clear that θ < π/3 . Now alter the metric on Ω, by
enlarging the three infinite area ends. Clearly θ → 2π/3 as the lengths of the
three closed geodesics tends to infinity. Hence by continuity, there is a metric
where θ = π/3, and so the closed geodesic representing β has a triple point.
Distinct configurations will be obtained for metrics near to this one for which
θ < π/3 and θ > π/3.

Theorem 11 Let f : F 2 →M be a π1-injective map. Then the general position
immersions which are homotopic to f , have the 1-line property, whose double
curves are primitive on F and have the least possible number of double points
for their homotopy classes, belong to only finitely many configurations.

Proof: Homotopic maps with the 1-line property have precisely the same
double curves up to homotopy. Our hypothesis that the double curves have the
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least number of double points means that we can use Theorem 1 to deduce that
there are only finitely many configurations for the double curves of the maps
homotopic to f which have the 1-line property and the other properties which
we are assuming. Finally, each configuration of double curves determines only
one configuration for a map F 2 →M, so the result follows. �

For any surface F, double points of the double curves of f are triple points
of f. Thus the hypotheses of Theorem 11 imply that f must have the least
possible number of triple points in its homotopy class. However, the following
example due to Casson shows that f may have the least possible number of
triple points in its homotopy class, while its double curves do not have the
least possible number of double points. In fact, football regions, complementary
regions homeomorphic to balls and bounded by three 2-gons, must occur in
Casson’s example.

C6

C3

C2

C1

C4 C545

45
46

46
56

56

Figure 8: Any disks in a ball which have these curves as boundary must have a
football region between them.

Example 12 (Casson) A collection of surfaces which must contain a football
region in any configuration.

We consider six simple closed curves C1, ..., C6 on the 2-sphere S2 as shown
in Figure 8, so that each pair intersects transversely in two points. Each Ci

bounds a 2-disc Di properly embedded in the 3-ball B3, and we assume that
these discs are chosen in general position. Further, by choosing these discs to be
least area in some metric, we can assume that any pair of these discs intersect
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in a single arc, i.e. there are no circles of intersection. The surprising property
of this picture is that there must be a football regionW in B, i.e. a sub-ball W
of B bounded by the union of three discs each lying in some Di, such that each
pair of discs intersects in an arc. In particular, it is impossible to embed the six
discs Di in B so that the double arcs minimize their number of double points.
Note that we are not claiming that W is a component of the complement of the
six discs. It is quite possible that some of the discs can cut across W.

Before starting on the proof, we remark that if one considers three simple
closed curves on S2 which are in general position and such that each pair inter-
sect in exactly two points, then there are only two possible configurations, as
shown in Figure 9. In the first configuration shown in Figure 9, which we refer
to as the prism case, the discs can be chosen so that each pair intersects in a
single arc and there is no triple point. In this case, the three discs cut B3 into
seven regions, one of which meets S2 in two triangular regions. This region is
referred to as the prism region. In the second configuration shown in Figure 9,
which we refer to as the triple point case, the discs can be chosen so that each
pair intersects in a single arc and there is exactly one triple point. In the triple
point case there must always be at least one triple point however the discs are
embedded. In Figure 8 , the configuration of C1, C2, C3 is of the prism type,
and the configuration of C4, C5, C6 is of the triple point type.

Figure 9: Two configurations of three curves on a sphere.

Now suppose that we have an embedding of the Di’s in B
3 such that any two

double lines of the Di’s intersect in at most one point. Figure 8 shows that the
two ends of the double curve D5∩D6 (labelled 56 in the picture) lie on the same
side of D1, and that this is on the opposite side of D1 from the prism region P
formed by D1, D2 and D3. Similarly the two ends of the double curve D4 ∩D5

(labelled 45 in the picture) lie on the same side of D3, and this is on the opposite
side of D3 from P. Finally the two ends of the double curve D4 ∩D6 (labelled
46 in the picture) lie on the same side of D2, and this is on the opposite side of
D2 from P. This implies that the three arcs in question cannot have a common
point, as the intersection of the sides of D1, D2 and D3 which do not contain
the prism region P is empty. This contradicts the fact that the configuration of
D4, D5, D6 is of the triple point type, so we conclude that for any embedding of
the Di’s in B some pair of double lines l and m must intersect in at least two
points. For notational simplicity, suppose that l = D1 ∩D2 and m = D1 ∩D3.
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Thus there are 2-gon regions in D1 bounded by sub-arcs of l and m. We choose
one X which is innermost in the sense that its interior is disjoint from l and
m, and let λ and µ denote the sub-arcs of l and m respectively which form the
boundary of X. Let n = D2 ∩ D3 and let ν denote the sub-arc of n which has
ends at λ ∩ µ. Then λ∪ ν bounds a 2-gon Y in D2 and µ∪ ν bounds a 2-gon Z
in D3 and X ∪ Y ∪ Z bounds a football region W in B3.
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