
73

Teaching Computer Science With Robotics Using
Ada/Mindstorms 2.0

Barry S. Fagin
Department of Computer Science

US Air Force Academy
Colorado Springs, CO 80840

719-333-3340

barry.fagin@usafa.af.mil

Laurence D. Merkle
Department of Computer Science

US Air Force Academy
Colorado Springs, CO 80840

719-333-7671

larry.merkle@usafa.af.mil

Thomas W. Eggers
Department of Computer Science

US Air Force Academy
Colorado Springs, CO 80840

719-333-3590

tom.eggers@usafa.af.mil

1. ABSTRACT
We present one approach to teaching basic
computer science concepts with robotics, using
an Ada interface to Lego Mindstorms™1. We
show simple problems put to students with no
programming experience, discuss the
solutions, and for each concept explain the
advantages of using robots to teach it.

1.1 Keywords
Computer science education, Lego Mindstorms, Robotics

2. INTRODUCTION
The potential use of robots to teach computing principles
has long captured the attention of computer science
educators. As far back as twenty years ago, one popular
computer science text first proposed a robot programming
model to teach introductory programming [11], under the
assumption that getting the student to infuse a device with
behavior of their own design would be a powerful aid to
learning. That book remains in print today, and its goal is
still shared: to provide a more experiential, “learning by
doing” approach to computer science [6,12].

When the book first came out, this goal was difficult to
attain, because the robot itself was strictly virtual. The
technology of programmable robots at the time made real
devices far too costly for ordinary classroom use.

1 Mindstorms is a registered trademark of Lego Corporation.

Fortunately, the remarkable cost/performance advances that
have become routine in the computing industry have
changed the picture completely. The recent emergence of
the Lego Mindstorms programmable RCX “brick” is a case
in point. Developed as a joint project by Lego and MIT’s
Media Laboratory [9], it was released two years ago as part
of a larger kit for building programmable robots. The kit
includes hundreds of lego pieces, wheels, input sensors of
various kinds, and a visual programming environment, all
of which permit the construction of programmable robots
with remarkably sophisticated behavior.

While originally designed for bright children, the kit has
also attracted considerable interest among adults. There are
dozens of unofficial books and internet resources available
for Lego Mindstorms, maintained by professional engineers
who have reverse engineered the RCX hardware,
determined the programming and communication protocols,
and developed a variety of alternative Mindstorms
programming environments for a variety of platforms2. One
such environment, NQC [1], plays an important role in the
research described here.

These alternative environments arose because the visual
programming environment developed by Lego is better
suited for small children learning programming for the first
time as opposed to serious programmers who want to
program robots using high level languages3. They all
suffer, however, from drawbacks that make them poor
choices for introductory programming courses. These
include unsophisticated error handling, confusing naming
conventions, and a failure to abstract away technical issues
that could provide unnecessary stumbling blocks to students
in an introductory computer science course.

To address this problem, we have developed an interface to
the Lego Mindstorms RCX based on a subset of Ada,
known as Ada/Mindstorms 2.0. The authors used
Ada/Mindstorms in special sections of the USAFA core

2 See for example [1,7,8].
3 The programming environment that ships with Mindstorms, for

example, does not support variables.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGAda 2001 09/01 Bloomington, MN, USA
© 2001 ACM 1-58113-392-8/01/0009...$5.00

74

computing course, as part of an experiment in determining
the effectiveness of using robots to teach computer science.
Our hope was to provide an environment that provides the
rigor and introductory programming experience of a high
level language with a forgiving and well-behaved
development environment appropriate for students with no
programming experience.

The technical details of Ada/Mindstorms 2.0 have been
presented elsewhere [4,5]; accordingly we do not focus on
them here. Instead, this paper presents our experiences
with using a high level language and robots to teach some
basic computer science concepts. We discuss how robots
might be employed to teach a particular idea, show the
problems we put to students in the lab, and discuss their
solutions. Where robots provide immediate, experiential
feedback on whether or not a concept has been grasped, we
discuss that as well. We conclude with our plans to
evaluate the effectiveness of robots for teaching, and
scheduled features for Ada/Mindstorms 2.0.

3. TEACHING SEQUENTIAL CONTROL
FLOW, VARIABLES, AND CONSTANTS
WITH ROBOTICS
The first introductory programming exercise in our
computing course introduces very simple programming
concepts, explained to students more or less as described
below:

1) Sequential control flow: you can give a computer
a series of instructions in a particular order that
start somewhere, proceed from top to bottom, and
then stop.

2) Variables: it is very convenient when getting a
computer to solve a problem to have quantities
that change while the program is running, and to
give these quantities a name that suggests their
purpose.

3) Constants: some quantities don’t change at all
while the program is running, but it’s both
convenient and good programming practice to
have names for them as well.

3.1 Sequential Control Flow
Sequential control flow is easy to demonstrate with a robot.
Any series of commands long enough to appear as a
connected list of instructions drives the point home. For
Ada/Mindstorms, this could take the form of getting the
robot with two motors (connected to RCX outputs A and C)
to move forward for 2 seconds, play a sound, go forward
again for 1 second, and stop:
--sequential control flow example

Output_On_For(Output => Output_A,
Hundredths_Of_A_Second => 200);

Output_On_For(Output => Output_C,
Hundredths_Of_A_Second => 200);

Play_Sound(Sound_To_Play => Up);
Output_On_For(Output => Output_A,

Hundredths_Of_A_Second => 100);
Output_On_For(Output => Output_C,

Hundredths_Of_A_Second => 100);
Output_Off(Output => Output_A);
Output_Off(Output => Output_C);

The sequence of robot actions matches the sequential
progression of code on the page. This provides an
experiential encounter with sequential control flow, and
may seem clearer than more traditional sequential examples
that, say, accept a number from the user, go through a series
of calculations with no visible results, and produce a final
number on the screen.

3.2 Variables
Teaching variables with Ada/Mindstorms requires a robot
to work with a quantity that changes while it is running.
We believe that the most effective way to demonstrate the
concept of a variable is for the robot change its behavior in
a way directly related to the quantity in question. This can
be accomplished by having the amount of time that the
robot travels change by a numeric calculation:
--an integer variable

Time_Forward : Integer := 500;

Output_On_For(Output => Output_A,
 Hundredths_Of_A_Second =>Time_Forward);
Output_On_For(Output => Output_C,
 Hundredths_Of_A_Second => Time_Forward);
Time_Forward := Time_Forward*3/4;

--now the robot goes forward for ¾ as long
Output_On_For(Output => Output_A,
 Hundredths_Of_A_Second => Time_Forward);
Output_On_For(Output => Output_C,
 Hundredths_Of_A_Second =>
Time_Forward);

3.3 Constants
To demonstrate the notion of a constant, the robot requires
a quantity that does not change while the program is
running. We chose a problem that required the robot to
make a 90° turn. This is accomplished by turning one
motor on, and either leaving the other motor off or rotating
it in the opposite direction for a specific amount of time.
The amount of time required for an accurate right turn is
naturally represented as a constant:

Turn_Duration : constant integer := 250;
Output_On(Output => Output_A);
Output_Off(Output => Output_C);
Wait(Hundredths_Of_A_Second =>
 Turn_Duration);
Output_On(Output => Output_C);

The need for “tweaking” the turn value in the laboratory when
students see that their robot doesn’t turn at a right angle also

75

provides a nice demonstration of the use of constants.4

4. TEACHING PROCEDURES WITH
ROBOTICS
Procedures and problem decomposition are normally
considered more complex topics than those of the previous
section; we believe it is unusual to cover them in the first
laboratory assignment of an introductory programming
course5. Robotics, however, provide a very natural way to
teach procedures: a procedure is something you want your
robot to do.

Accordingly, when students are assigned a robot behavior
that requires a series of smaller tasks, they see very quickly
that these subtasks should be written as procedures. For
example, the previous example can be encapsulated into a
“Turn_Right” procedure that can be used in later
assignments as robot behavior becomes more complex:

Turn_Duration : constant integer := 250;
procedure Turn_Right is
begin
 Output_On(Output => Output_A);
 Output_Off(Output => Output_C);
 Wait(Hundredths_Of_A_Second =>
 Turn_Duration);
 Output_On(Output => Output_C);
end Turn_Right;

This promotes code reuse, an obvious advantage of
problem decomposition that we want students to learn.
There is also immediate feedback with robotics in learning
the distinction between writing a procedure and calling it.
On more than one occasion, we observed student teams
adding the code for a new procedure to their program, then
downloading the program to their robot and not seeing any
change. Looking through the sequential control flow of
their program as the robot goes through its paces, they
immediately see that they didn’t tell the robot to do its new
behavior.

4.1 Putting It All Together: the First
Robotics Programming Assignment
We tie in all these concepts in the first programming
assignment of the course. The problem statement is as
follows:

Make your robot trace a 4-sided spiral path on the floor of
the lab, with each side ¾ of the length of the previous one.
It should look like this:

4 Another advantage of constants is the ability to only have to

change one line of code when it is used in multiple places. This
is demonstrated in the second programming assignment.

5 But see [10] for an alternative view; this topic is still debated
today.

1 meter

The visibly shortening length of each side reinforces the
concept of a variable, the need for turning right the same
way each time shows how constants are used, the successive
nature of the required commands demonstrates sequential
control flow, and the use of repeated subtasks to go forward
and turn right illustrate procedures. The solution is
available from the authors.

5. TEACHING SELECTION AND
BOOLEAN EXPRESSIONS WITH
ROBOTICS
Much of the power of a general purpose computer lies in its
ability to make decisions. Students are often first exposed
to this concept by writing simple programs that require the
computer to take different courses of action based on a
simple input, usually numeric, from the user. In the robot
world, however, selectional control flow manifests itself in
the much more interesting ability of a student’s robot to
react to its environment.

Mindstorms robots can receive input in a variety of forms,
including light intensity, temperature, and a pulse when an
input sensor is pressed. We chose the latter approach for
simplicity, and provided students with a two-motor robot
equipped with a bumper that sets an input sensor to 1 when
pressed. The robot is then tasked to engage in a specific
behavior when it bumps into something. Thus selectional
control flow can be captured in Ada/Mindstorms with:
if Get_Sensor_Value(Sensor => Sensor_1) = 1

then
begin

--code for desired behavior here
end;
A logical choice for the desired behavior is backing up,
turning, and going forward again. The power of decision
making in computing is dramatically illustrated by
downloading one program that causes a robot to blindly
stumble into a wall, and then another that has it back up and
scurry off elsewhere.

Understanding the wide range of possible boolean expressions is
an important part of selectional control flow, and can be taught by

START

STOP

76

equipping the robot with the ability to remember something of its
previous encounters and changing its behavior based on what it
has done before. Our problem statement for the second
Ada/Mindstorms programming exercise specifies a non-trivial set
of behaviors for the robot to accomplish. The complete solution is
available from the authors.

6. TEACHING ARRAYS WITH ROBOTICS
Recent modifications to NQC permit the use of arrays, albeit in a
somewhat restricted fashion. Only integer arrays are supported,
and array elements cannot be used as parameters to subroutines.
Nonetheless, these changes were enough to encourage us to add
support for arrays to Ada/Mindstorms and to construct a
laboratory exercise around them.

We introduce the notion of arrays as structured data by
challenging students to capture a sequence of numbers input to
the robot through a combination of touch sensor and bumper
presses. Once the sequence is captured, their program then “plays
back” the sequence by examining each number in order and
having the robot do a predefined maneuver based on the number
read. For example, the sequence 1-2-1-3-4 causes the robot to
move forward, turn right, move forward, turn left, and stop.
Sample code from our solution looks like:

Turns : Integer_Array (1 ..Max_Index);
--see [5]

Turn_Value : Integer;
Num_Points : Integer := 0;

begin
 Initialize_Robot;
 for Index in 1..Max_Index loop
 Get_Touch_Count(Touches =>

Turn_Value);
 Turns(Index) := Turn_Value;
 Num_Points := Num_Points + 1;

 exit when Turn_Value <= 0;
 end loop;
 Play_Sound(Sound_To_Play => Down);
 Wait(Hundredths_Of_A_Second =>

200);
 for Index in 1..Num_Points loop
 Turn_Value := Turns(Index);
 Beep_A_Digit(Digit =>

Turn_Value);
 Wait(Hundredths_Of_A_Second =>

50);
 if Turn_Value = Forward then …

The effect of an assignment like this is to give a robot
programability, a task that at first glance might seem
beyond the scope of an introductory programming course.

7. CONCLUSIONS AND THE
CHALLENGE OF ASSESSMENT
The use of robots can provide a visceral, “hands on”
learning experience for students who have never
programmed before. The design-write-run-redesign
feedback loop is very fast, and students truly enjoy it. Our
anecdotal experience, having taught this course both with
and without robots, is that the “fun factor” is extraordinarily
high when robots are used.

Robots provide a programming experience that resonates
very strongly with certain basic computer science
constructs. Constants, variables, procedures, and different
types of control flow are all excellent examples of concepts
that can be taught very effectively with robots.

As much fun as teaching with robots is, however, our true
interest is in improving computer science education. The
question is not whether or not robots in the classroom are
more fun, but whether or not they are more effective6. If
they are, how much more? For which concepts?

The authors and other instructors taught about 180 students
using Ada/Mindstorms, while about 800 students in the
same class year learned programming using the course as it
was originally structured. Both sets of students were tested
with written exams and individual-effort, timed, non-
robotics programming assignments. Thus the 2000-2001
academic year provided us with a large data set and a good
experimental opportunity to shed some light on these
questions. Our results should be available by the summer
of 2001.

Future plans for the next release of Ada/Mindstorms
include support for separate compilation, tasking, and a
simulator. We hope to have these features available by
summer 2001 as well.

8. RESOURCES AND
ACKNOWLEDGEMENTS
Funding for this project is provided by the Institute for
Information Technology and Applications, whose support is
gratefully acknowledged.

Ada/Mindstorms 2.0 for Windows is available online at
http://www.usafa.af.mil/dfcs/adamindstorms. htm. Source
code is also available on the site.

9. REFERENCES
[1] Baum, D. The NQC Web site. Available WWW:

http:// www.enteract.com/~dbaum/nqc/

[2] Burks, A.W., Goldstine, H.H. and von Neumann, J.
Preliminary discussion of the logical design of an
electronic computing instrument, Papers of John von
Neumann, W. Aspray and A.Burks eds, MIT Press,
Cambridge MA, pp 97-146.

[3] Carlisle, M., Graphics for free, ACM SIGCSE Bulletin,
vol. 31, no. 2 (June 1999), pp 65-68. Available
WWW:
http://www.usafa.af.mil/dfcs/papers/mcc/sigcsebull99.h
tml

[4] Fagin, B. Using ada-based robotics to teach computer
science, Proceedings of the 5th ITICSE Conference,

6 Of course, if they are more fun, then they will probably more

effective, but the ultimate goal remains effectiveness.

77

July 2000, Helsinki Finland. Available WWW:
http://home.rmi.net/~fagin/Papers/ITICSEWeb/
using_ada. htm

[5] Fagin, B. An ada interface for lego mindstorms, Ada
Letters, vol. 21, no. 2, September 2000. Available
WWW: http://home.rmi.net/~fagin/Papers/AdaLetters.
htm

[6] Herrman, N. and Popyack, J. Creating an authentic
learning experience in introductory programming
courses, ACM SIGCSE Bulletin, Vol 27, No 1, pp 199-
203.

[7] Knudsen, The unofficial guide to lego mindstorms
robots , O’Reilly & Associates, ISBN: 1565926927.

[8] Noga, The LegOS Operating System web site.
Available WWW: http://www.noga.de/legOS/

[9] Oakes, C. Lego My Ego, Wired News Network, Sep.
23rd, 1998. Available WWW:
http://www.wired.com/news/culture/0,1284,15171,00.h
tml.

[10] Pattis, R.E., The “procedures early” approach in CS 1:
a heresy, ACM SIGCSE Bulletin, vol. 25, no. 1, pp
122-126.

[11] Pattis, R.E., Karel the robot: a gentle introduction to
the art of programming, 2nd ed., Wiley 1995.

[12] Urban-Lurain, M. and Weinshank, D. I do and I
understand: mastery model learning for a large ,non-
major course”, ACM SIGCSE Bulletin, vol. 31, no. 1
(March 1999), pp 150-154.

78

