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1. ABSTRACT 
We present one approach to teaching basic 
computer science concepts with robotics, using 
an Ada interface to Lego Mindstorms™1. We 
show simple problems put to students with no 
programming experience, discuss the 
solutions, and for each concept explain the 
advantages of using robots to teach it. 
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2. INTRODUCTION 
The potential use of robots to teach computing principles 
has long captured the attention of computer science 
educators.  As far back as twenty years ago, one popular 
computer science text first proposed a robot programming 
model to teach introductory programming [11], under the 
assumption that getting the student to infuse a device with 
behavior of their own design would be a powerful aid to 
learning.   That book remains in print today, and its goal is 
still shared:  to provide a more experiential, “learning by 
doing” approach to computer science [6,12].  

When the book first came out, this goal was difficult to 
attain, because the robot itself  was strictly virtual. The 
technology of programmable robots at the time made real 
devices far too costly for ordinary classroom use. 

                                                           
1 Mindstorms is a registered trademark of Lego Corporation. 

Fortunately, the remarkable cost/performance advances that 
have become routine in the computing industry have 
changed the picture completely. The recent emergence of 
the Lego Mindstorms programmable RCX “brick”  is a case 
in point. Developed as a joint project by Lego and MIT’s 
Media Laboratory [9], it was released two years ago as part 
of a larger kit for building programmable robots.  The kit 
includes hundreds of lego pieces, wheels, input sensors of 
various kinds, and a visual programming environment, all 
of which permit the construction of programmable robots 
with remarkably sophisticated behavior. 

While originally designed for bright children, the kit has 
also attracted considerable interest among adults.  There are 
dozens of unofficial books and internet resources available 
for Lego Mindstorms, maintained by professional engineers 
who have reverse engineered the RCX hardware, 
determined the programming and communication protocols, 
and developed a variety of alternative Mindstorms 
programming environments for a variety of platforms2.  One 
such environment, NQC [1], plays an important role in the 
research described here. 

These alternative environments arose because the visual 
programming environment developed by Lego is better 
suited for small children learning programming for the first 
time as opposed to serious programmers who want to 
program robots using high level languages3.  They all 
suffer, however, from drawbacks that make them poor 
choices for introductory programming courses.  These 
include unsophisticated error handling, confusing naming 
conventions, and a failure to abstract away technical issues 
that could provide unnecessary stumbling blocks to students 
in an introductory computer science course. 

To address this problem, we have developed an interface to 
the Lego Mindstorms RCX based on a subset of Ada, 
known as Ada/Mindstorms 2.0. The authors used 
Ada/Mindstorms in special sections of the USAFA core 

                                                           
2 See for example [1,7,8]. 
3 The programming environment that ships with Mindstorms, for 

example, does not support variables. 
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computing course, as part of an experiment in determining 
the effectiveness of using robots to teach computer science.   
Our hope was to provide an environment that provides the 
rigor and introductory programming experience of a high 
level language with a forgiving and well-behaved 
development environment appropriate for students with no 
programming experience. 

The technical details of Ada/Mindstorms 2.0 have been 
presented elsewhere [4,5]; accordingly we do not focus on 
them here.  Instead, this paper presents our experiences 
with using a high level language and robots to teach some 
basic computer science concepts. We discuss how robots 
might be employed to teach a particular idea, show the 
problems we put to students in the lab, and discuss their 
solutions.  Where robots provide immediate, experiential 
feedback on whether or not a concept has been grasped, we 
discuss that as well.  We conclude with our plans to 
evaluate the effectiveness of robots for teaching, and 
scheduled features for Ada/Mindstorms 2.0. 

3. TEACHING SEQUENTIAL CONTROL 
FLOW, VARIABLES, AND CONSTANTS 
WITH ROBOTICS 
The first introductory programming exercise in our 
computing course introduces very simple programming 
concepts, explained to students more or less as described 
below: 

1) Sequential control flow:  you can give a computer 
a series of instructions in a particular order that 
start somewhere, proceed from top to bottom, and 
then stop. 

2) Variables:  it is very convenient when getting a 
computer to solve a problem to have quantities 
that change while the program is running, and to 
give these quantities a name that suggests their 
purpose. 

3) Constants:  some quantities don’t change at all 
while the program is running, but it’s both 
convenient and good programming practice to 
have names for them as well. 

3.1 Sequential Control Flow 
Sequential control flow is easy to demonstrate with a robot.  
Any series of commands long enough to appear as a 
connected list of instructions drives the point home.  For 
Ada/Mindstorms, this could take the form of getting the 
robot with two motors (connected to RCX outputs A and C) 
to move forward for 2 seconds, play a sound, go forward 
again for 1 second, and stop: 
--sequential control flow example 

Output_On_For(Output => Output_A,  
Hundredths_Of_A_Second => 200); 

Output_On_For(Output => Output_C,  
Hundredths_Of_A_Second => 200); 

Play_Sound(Sound_To_Play => Up); 
Output_On_For(Output => Output_A,  

Hundredths_Of_A_Second => 100); 
Output_On_For(Output => Output_C, 

Hundredths_Of_A_Second => 100); 
Output_Off(Output => Output_A); 
Output_Off(Output => Output_C); 
 

The sequence of robot actions matches the sequential 
progression of code on the page.  This provides an 
experiential encounter with sequential control flow, and 
may seem clearer than more traditional sequential examples 
that, say, accept a number from the user, go through a series 
of calculations with no visible results, and produce a final 
number on the screen. 

3.2 Variables 
Teaching variables with Ada/Mindstorms requires a robot 
to work with a quantity that changes while it is running.  
We believe that the most effective way to demonstrate the 
concept of a variable is for the robot change its behavior in 
a way directly related to the quantity in question.  This can 
be accomplished by having the amount of time that the 
robot travels change by a numeric calculation: 
--an integer variable 

Time_Forward : Integer := 500;  
 
Output_On_For(Output => Output_A, 
 Hundredths_Of_A_Second =>Time_Forward); 
Output_On_For(Output => Output_C, 
 Hundredths_Of_A_Second => Time_Forward); 
Time_Forward := Time_Forward*3/4; 
 
--now the robot goes forward for ¾ as long 
Output_On_For(Output => Output_A, 
 Hundredths_Of_A_Second => Time_Forward); 
Output_On_For(Output => Output_C, 
 Hundredths_Of_A_Second => 
Time_Forward); 

3.3 Constants 
To demonstrate the notion of a constant, the robot requires 
a quantity that does not change while the program is 
running.  We chose  a problem that required the robot to 
make a 90° turn.  This is accomplished by turning one 
motor on, and either leaving the other motor off or rotating 
it in the opposite direction for a specific amount of time.  
The amount of time required for an accurate right turn is 
naturally represented as a constant: 

Turn_Duration : constant integer := 250; 
Output_On(Output => Output_A); 
Output_Off(Output => Output_C); 
Wait(Hundredths_Of_A_Second =>  
 Turn_Duration); 
Output_On(Output => Output_C); 
 
The need for “tweaking” the turn value in the laboratory when 
students see that their robot doesn’t turn at a right angle also 
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provides a nice demonstration of the use of constants.4 

4. TEACHING PROCEDURES WITH 
ROBOTICS 
Procedures and problem decomposition are normally 
considered more complex topics than those of the previous 
section; we believe it is unusual to cover them  in the first 
laboratory assignment of an introductory programming 
course5.  Robotics, however, provide a very natural way to 
teach procedures:  a procedure is something you want your 
robot to do. 

Accordingly, when students are assigned a robot behavior 
that requires a series of smaller tasks, they see very quickly 
that these subtasks should be written as procedures.  For 
example, the previous example can be encapsulated into a 
“Turn_Right” procedure that can be used in later 
assignments as robot behavior becomes more complex: 

 
Turn_Duration : constant integer := 250; 
procedure Turn_Right is 
begin 
 Output_On(Output => Output_A); 
 Output_Off(Output => Output_C); 
 Wait(Hundredths_Of_A_Second =>  
  Turn_Duration); 
 Output_On(Output => Output_C); 
end Turn_Right; 

This promotes code reuse, an obvious advantage of 
problem decomposition that we want students to learn. 
There is also immediate feedback with robotics in learning 
the distinction between writing a procedure and calling it.  
On more than one occasion, we observed student teams 
adding the code for a new procedure to their program, then 
downloading the program to their robot and not seeing any 
change.  Looking through the sequential control flow of 
their program as the robot goes through its paces, they 
immediately see that they didn’t tell the robot to do its new 
behavior. 

4.1 Putting It All Together:  the First 
Robotics Programming Assignment 
We tie in all these concepts in the first programming 
assignment of the course.  The problem statement is as 
follows: 

Make your robot trace a 4-sided spiral path on the floor of 
the lab, with each side ¾ of the length of the previous one.  
It should look like this: 

 

                                                           
4 Another advantage of constants is the ability to only have to 

change one line of code when it is used in multiple places.  This 
is demonstrated in the second programming assignment. 

5 But see [10] for an alternative view; this topic is still debated 
today. 
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The visibly shortening length of each side reinforces the 
concept of a variable, the need for turning right the same 
way each time shows how constants are used, the successive 
nature of the required commands demonstrates sequential 
control flow, and the use of repeated subtasks to go forward 
and turn right illustrate procedures.  The solution is 
available from the authors. 

5. TEACHING SELECTION AND 
BOOLEAN EXPRESSIONS WITH 
ROBOTICS 
Much of the power of a general purpose computer lies in its 
ability to make decisions.  Students are often first exposed 
to this concept by writing simple programs that require the 
computer to take different courses of action based on a 
simple input, usually numeric, from the user.  In the robot 
world, however, selectional control flow manifests itself in 
the much more interesting ability of a student’s robot to 
react to its environment. 

Mindstorms robots can receive input in a variety of forms, 
including light intensity, temperature, and a pulse when an 
input sensor is pressed.  We chose the latter approach for 
simplicity, and provided students with a two-motor robot 
equipped with a bumper that sets an input sensor to 1 when 
pressed.  The robot is then tasked to engage in a specific 
behavior when it bumps into something. Thus selectional 
control flow can be captured in Ada/Mindstorms with: 
if Get_Sensor_Value(Sensor => Sensor_1) = 1   

then 
begin 

--code for desired behavior here 
end; 
A logical choice for the desired behavior is backing up, 
turning, and going forward again. The power of decision 
making in computing is dramatically illustrated by 
downloading one program that causes a robot to blindly 
stumble into a wall, and then another that has it back up and 
scurry off elsewhere. 

Understanding the wide range of possible boolean expressions is 
an important part of selectional control flow, and can be taught by 

START 

STOP 
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equipping the robot with the ability to remember something of its 
previous encounters and changing its behavior based on what it 
has done before.  Our problem statement for the second 
Ada/Mindstorms programming exercise specifies a non-trivial set 
of behaviors for the robot to accomplish. The complete solution is 
available from the authors. 

6. TEACHING ARRAYS WITH ROBOTICS 
Recent modifications to NQC permit the use of arrays, albeit in a 
somewhat restricted fashion.  Only integer arrays are supported, 
and array elements cannot be used as parameters to subroutines.  
Nonetheless, these changes were enough to encourage us to add 
support for arrays to Ada/Mindstorms and to construct a 
laboratory exercise around them. 

We introduce the notion of arrays as structured data by 
challenging students to capture a sequence of numbers input to 
the robot through a combination of touch sensor and bumper 
presses.  Once the sequence is captured, their program then “plays 
back” the sequence by examining each number in order and 
having the robot do a predefined maneuver based on the number 
read.  For example, the sequence 1-2-1-3-4 causes the robot to 
move forward, turn right, move forward, turn left, and stop.    
Sample code from our solution looks like: 

Turns : Integer_Array (1 ..Max_Index);   
--see [5] 

Turn_Value : Integer;   
Num_Points : Integer := 0; 
 
begin 
   Initialize_Robot; 
   for Index in 1..Max_Index loop 
      Get_Touch_Count(Touches =>  

Turn_Value); 
      Turns(Index) := Turn_Value; 
      Num_Points := Num_Points + 1; 

  exit when Turn_Value <= 0; 
   end loop; 
   Play_Sound(Sound_To_Play => Down); 
   Wait(Hundredths_Of_A_Second =>  

200); 
   for Index in 1..Num_Points loop 
      Turn_Value := Turns(Index); 
      Beep_A_Digit(Digit =>  

Turn_Value); 
      Wait(Hundredths_Of_A_Second =>  

50); 
      if Turn_Value = Forward then … 

The effect of an assignment like this is to give a robot 
programability, a task that at first glance might seem 
beyond the scope of an introductory programming course. 

7. CONCLUSIONS AND THE 
CHALLENGE OF ASSESSMENT 
The use of robots can provide a visceral, “hands on” 
learning experience for students who have never 
programmed before.  The design-write-run-redesign 
feedback loop is very fast, and students truly enjoy it.  Our 
anecdotal experience, having taught this course both with 
and without robots, is that the “fun factor” is extraordinarily 
high when robots are used. 

Robots provide a programming experience that resonates 
very strongly with certain basic computer science 
constructs.  Constants, variables, procedures, and different 
types of control flow are all excellent examples of concepts 
that can be taught very effectively with robots. 

As much fun as teaching with robots is, however, our true 
interest is in improving computer science education.  The 
question is not whether or not robots in the classroom are 
more fun, but whether or not they are more effective6.  If 
they are, how much more?  For which concepts? 

The authors and other instructors taught about 180 students 
using Ada/Mindstorms, while about 800 students in the 
same class year learned programming using the course as it 
was originally structured. Both sets of students were tested 
with written exams and individual-effort, timed, non-
robotics programming assignments.  Thus the 2000-2001 
academic year provided us with a large data set and a good 
experimental opportunity to shed some light on these 
questions.  Our results should be available by the summer 
of 2001. 

Future plans for the next release of Ada/Mindstorms 
include support for separate compilation, tasking, and a 
simulator.  We hope to have these features available by 
summer 2001 as well. 
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http://www.usafa.af.mil/dfcs/adamindstorms. htm.  Source 
code is also available on the site. 
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