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Abstract
We consider a simple single period economy in which agents invest so as to
maximize expected utility of terminal wealth. We assume the existence of
three asset classes, namely a riskless asset (the bond), a single risky asset (the
stock), and European options of all strikes (derivatives). In this setting, the
inability to trade continuously potentially induces investment in all three asset
classes. We consider both a partial equilibrium where all asset prices are
initially given, and a more general equilibrium where all asset prices are
endogenously determined. By restricting investor beliefs and preferences in
each case, we solve for the optimal position for each investor in the three
asset classes. We find that in partial or general equilibrium, heterogeneity in
preferences or beliefs induces investors to hold derivatives individually, even
though derivatives are not held in aggregate.

1. Introduction
The portfolio selection problem pioneered by Markowitz [36]
and Merton [37] generally does not formally consider deriva-
tive securities as potential investment vehicles. Similarly, the
asset allocation approach favoured by practitioners does not3

consider derivatives as a distinct asset class. If derivatives (for-
wards, futures, swaps, options and exotics) are considered at
all, they are only viewed as tactical4 vehicles for efficiently
re-allocating funds across broad asset classes, such as cash,
fixed-income, equity and alternative investments. While the
question of optimal derivatives positioning has been addressed
in the literature, few papers5 have focused directly on the de-
mand for derivatives, especially in a general equilibrium.

3 For example, three recent comprehensive texts on asset allocation are Gibson
[25], Vince [50], or Leibowitz et al [34], none of which cover derivatives.
4 See Evnine and Henriksson [21] and Tilley and Latainer [49] for discussions
on the use of options in an asset allocation framework.
5 Some guidance may be gleaned from the standard literature in which
dynamic trading in the underlying assets completes markets. For example,
the Cox and Huang [14] solution to the Merton [37] problem can be used to
obtain the payoff that is actually being replicated through dynamic trading in
the underlying assets.

The absence of a direct focus on optimal derivatives
positioning is partly due to the complexity of the problem
and partly due to the overwhelming success of the arbitrage-
based models for pricing derivatives. Since these models are
dynamically complete in the underlying assets, these models
are subject to the Hakansson [27, 28] ‘catch 22’: although
derivatives can be perfectly priced in these economies, there is
no justification for their existence. In these models, the optimal
position in derivatives is usually either indeterminate or
infinite, depending on whether an investor agrees or disagrees
with the derivative’s market price. Since these models were
developed for the purpose of pricing, they are ill-suited for
the development of a normative theory, capable of guiding
investors, regulators and other market participants about the
efficacy of derivatives markets.

The purpose of this paper is to delineate the optimal
derivatives positions for investors when they cannot trade
continuously. In contrast to most of the literature on optimal
allocation across derivatives, we pay particular attention to
positioning in a general equilibrium setting. We show that
under reasonable market conditions, derivatives comprise an
important, interesting and separate asset class, imperfectly
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correlated with other broad asset classes. Our paper extends a
line of investigation initiated by Ross [43] in which derivatives
complete the market. Working in a single period setting, we
show how investors can determine their optimal investment in
the riskless asset, a risky asset, and in options written on this
risky asset. The optimal positions in these three asset classes
are determined by the investors’ preferences for risk, their
probabilities of underlying returns, and by market prices of
the three asset types. As in Pliska [40] and Cox [13], we solve
for these optimal positions by dividing the optimal investment
problem into two subproblems. The first subproblem is to
determine the optimal wealth profile as a function of the market
price of the single risky asset (called the stock). The second
subproblem is to determine the positions needed in available
instruments so as to achieve this optimal payoff function.

Under certain conditions such as continuously open
markets, continuous price processes, zero transactions
costs, no leverage or short-selling constraints, symmetric
information, and simple volatility structures, the introduction
of derivatives does not enhance the investment possibility
frontier. Thus, under some fairly stringent conditions,
investors will be indifferent to the introduction of derivatives
markets. As a result, the optimal investment decision can be
analysed in a setting in which derivatives are absent. This is
the viewpoint taken in the continuous-time analyses by Merton
[37], Brennan et al [8], Pliska [41] and Cox and Huang [14].
Merton [37] derives the optimal consumption and portfolio
policies by solving a nonlinear partial differential equation
(pde) governing the utility of optimized wealth. Brennan et al
[8] numerically solve the Merton pde in a three-state variable
Markov context assuming that investors have proportional risk
tolerance. Pliska [41] showed that martingale methods can
be used to fruitfully decompose the investment problem as
described above. Cox and Huang [14] also use this approach
to reduce Merton’s problem to one of solving a linear pde,
simplifying the analysis significantly.

A violation of any of the perfect market conditions
described above can introduce a demand by investors for
derivatives. The literature on this demand can be dichotomized
into at least three streams. An early stream focused on
the welfare gains achieved by introducing options into an
economy. This literature was initiated by Ross [43], and
received important contributions from Hakansson [27, 28],
Breeden and Litzenberger [6], Friesen [24], Kreps [33] and
Arditti and John [1]. We contribute to this literature stream by
demonstrating sufficient conditions under which positions in
derivatives improve the welfare of individuals.

A more recent stream discusses the optimal design of
derivatives contracts. In particular, Johnston and McConnell
[32] and Duffie and Jackson [17] study the optimal design of
futures contracts. Brennan and Solanki [9] and Shimko [47]
study the optimal design of nonlinear payoffs in a one period
model for a single investor. Draper and Shimko [16] discuss
how a discrete-time dynamic strategy in a portfolio of options
can be used to help hedge a nonlinear liability. While the papers
on optimal security design represent important contributions to
the literature, most of these analyses are conducted in a partial
equilibrium context. In contrast, this paper considers optimal

positioning and security design when the risk-neutral density
is endogeneously determined by market clearing conditions.
We also contribute to this stream by presenting sufficient
conditions under which each investor’s portfolio optimally
separates into a finite number of derivative funds, where each
fund has a payoff which is independent of the investor’s
attributes.

A third stream of the literature takes payoffs with certain
properties as given, and then determines the characteristics
of investors who would consider these payoffs as optimal.
For example, Benninga and Blume [2] consider the kinked
increasing convex payoff associated with the standard form
of portfolio portfolio insurance. They show that the utility
function of an investor for whom this payoff is optimal
is highly non-standard. In a seminal work, Leland [35]
focuses on optimal payoffs which are globally convex. He
shows that when the investor shares the market’s beliefs,
then the optimal payoff is globally convex if and only if the
investor’s risk tolerance increases with his wealth more rapidly
than the aggregate investor’s risk tolerance increases with
market wealth. Assuming linear risk tolerance with identical
cautiousness and log-normal beliefs with identical volatility,
he also shows that the investor’s optimal payoff is globally
convex if and only if the investor has a higher expected return
than the market. As in our work, Leland generalizes the work
of Brennan and Solanki [9] to heterogeneous beliefs. Thus,
the Leland paper both pre-dates Brennan and Solanki and is
more general.

Our paper differs from Benninga and Blume [2] and
Leland [35] primarily in its focus. We address the inverse
problem of determining what the optimal payoffs are, given
prices, preferences and probability beliefs. For example, we
show when an investor believes volatility will be high, then we
show that this belief induces the sale of at-the-money options,
while his risk aversion induces the purchase of out-of-the-
money options. Leland also assumes conditions which lead
to the existence of a representative agent, whereas we assume
greater heterogeneity among our agents.

Our paper is also related to some recent contributions by
Benninga and Mayshar [3], Franke et al [22, 23] and Cassano
[12]. All of these papers focus on the demand for options in a
general equilibrium setting by agents with HARA (hyperbolic
absolute risk aversion) utility functions. In this context,
Benninga and Mayshar show that heterogeneity in the degree
of CRRA across investors induces a representative agent
with decreasing relative risk aversion. In this economy, the
Black–Scholes formula does not hold and all option prices are
overpriced compared to Black–Scholes. Furthermore, implied
volatility varies with strike prices in a manner consistent with
their behaviour in practice. Assuming that the representative
investor has decreasing relative risk aversion as derived in
Benninga and Mayshar [3], Franke et al [23] derive necessary
conditions for an implied volatility ‘smile’. In another
paper, Franke et al [22] emphasize background risk rather
than heterogeneity in preferences as an explanator of option
demand. Their analysis shows that high levels of this risk can
lead to a demand for options, even if there are no differences in
preferences. Since the presence of heterogeneous background
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risk alters the distribution of individual wealth in the context
of homogeneous beliefs, we suspect that these results could be
related to the consequences of heterogeneous beliefs, which
are investigated here. Also, the three-fund separation results
which we obtain in general equilibrium are very similar to those
in Franke et al [22]. Cassano [12] considers the consequences
of our setup for explaining the determinants of option volume.
Just as heterogeneity in preferences and/or beliefs induces
valuation results that are more consistent with observed prices,
these heterogeneous models can induce option volume results
that are also more consonant with reality.

Our first set of results pertain to a Markowitz-style [36]
partial equilibrium setting in which prices of the bond, stock,
and options are taken as given. However, since variance is an
inadequate risk measure when analysing derivatives positions
(Dybvig and Ingersoll [20]), we instead consider an investor
who maximizes the expected value of an increasing, concave
utility function6. For each such investor and each traded asset,
we derive the concept of a personalized price and show that
optimal positions are determined so that personalized prices
equate to market prices for all traded assets. When options of
all strikes trade, these conditions determine optimal individual
derivatives positions. In general, the optimal financial payoff
is determined by comparing the investor’s probability density
with the market’s ‘risk-neutral’ density. In particular, a
given investor has larger payoffs in states which the investor
perceives as more likely than the market suggests, as reflected
in the prices of state-contingent claims. This propensity to
move payoffs into states with greater relative probability is
tempered by the degree of the investor’s risk aversion.

Specializing preferences to linear risk tolerance, we
observe that zero cautiousness investors and positive
cautiousness investors behave quite differently. In particular,
zero cautiousness investors fix their investment in the optimal
customized fund at their risk tolerance and place all wealth
above this level in the riskless asset. In contrast, investors
with positive cautiousness fix their investment in the riskless
asset and invest all wealth above this threshold in a customized
derivative.

We alternatively specialize beliefs by restricting attention
to log-normal personal beliefs and to log-normal risk-neutral
densities, as in the Black–Scholes model. Under this log-
normality assumption, we determine the optimal payoff for
an investor given that his personal density differs from the
risk-neutral density in either the mean or variance or both.
When we focus on an investor who differs from the market
only on expected return, we obtain the predictable result that
his optimal payoff is increasing with the stock price if he is
bullish, and is decreasing otherwise. However, we find that
the indifference point between long and short is when the
expected return is the risk-free rate. Consequently, an investor
whose expected return is above the risk-free rate, but below that
required for the risk borne, should actually have an increasing
payoff. For a bullish investor, we also find that even though

6 Jarrow and Madan [31] show that mean-variance preferences lead to
negative personalized state prices. Consequently, investors with mean-
variance preference will refuse free calls, since the perceived risk outweighs
the expected return.

the investor agrees with the market on volatility, risk aversion
causes the payoff to be concave for a highly risk-averse investor
and convex for a less risk-averse investor. Thus, a highly risk-
averse investor who believes that the stock has a positive risk
premium will prefer an increasing concave payoff similar to
that in a buy-write strategy. While there is a combination of
beliefs and preferences for which the optimal payoff is linear,
this combination is a very special case. Consequently, in most
cases, options enhance efficiency even if the investor’s views
diverge from the market only on the mean.

We also derive optimal payoffs for the complementary
case where an investor agrees with the market on expected
return, but disagrees with the market on volatility. We obtain
the predictable result that the optimal payoff is U-shaped if the
investor believes that implied volatilities are low. However,
if the investor believes that implied volatilities are high, then
the optimal payoff is not that of an inverted U over the whole
domain, but in general resembles that of a unimodal probability
density. Thus, the volatility beliefs induce a concave payoff for
smaller price moves, but risk aversion convexifies the payoff
for larger moves, in order to dampen the dispersion of payoffs.
Thus, our analysis allows us to determine the optimal payoff
when beliefs and preferences conflict in their implications for
positions in options.

For log-normal beliefs and linear risk tolerance
preferences, we find that positive cautiousness investors
who agree with the market on volatility want a customized
derivative whose payoff is that of the stock price raised to
a power. The power is in fact given by the Sharpe ratio
of the asset so that Sharpe ratios above unity induce convex
payoffs, while Sharpe ratios between zero and one induce
concave payoffs. In all cases, the payoff is bounded below. In
contrast, zero cautiousness investors who agree on volatility
invest in the log contract, which has positive probability of
infinite loss. When these investors disagree with the market
on volatility, then zero cautiousness investors prefer payoffs
which are quadratic in the log of the stock price, while positive
cautiousness investors prefer that the log of their payoff be
quadratic in the log of the stock price.

While our partial equilibrium analysis suggests that
options are optimally held at the individual level, it must be
recognized that options are in zero net supply in aggregate.
Thus, a natural question that arises is whether our conclusions
regarding the optimality of options positions survive when
we shift attention to a general equilibrium. Furthermore, it
is interesting to consider who buys and who sells options,
especially when beliefs and preferences conflict. To consider
the effects of these supply conditions, we consider an n-person
general equilibrium. Here, instead of taking asset prices as
given, we solve for the state pricing density that simultaneously
clears the stock, bond and options markets.

We first show that under homogeneous beliefs, differences
in risk aversion across investors can induce a demand for
derivatives on the part of all investors. Importantly, we
also observe that when all investors agree on the probability
distribution of returns, the risk-neutral distribution can differ
from this common distribution in interesting ways. For
example, in many cases the risk-neutral distribution is often

21



P Carr and D Madan QUANTITATIVE FI N A N C E

not in the same parametric class of densities as the common
prior belief. Furthermore, when beliefs are homogeneous and
symmetric about their mean, the risk-neutral density is often
skewed to the left. This skew arises from strict risk aversion on
the part of all individuals in the economy and the requirement
that just the stock be held in aggregate.

For the special case of homogeneous beliefs, linear risk
tolerance, and identical cautiousness, the resulting two-fund
separation implies that investors in the economy do not hold
derivatives positions. On the other hand, so long as an
investor has beliefs that differ from a risk tolerance weighted
average of individual beliefs, then the investor optimally holds
derivatives. Furthermore, when each investor’s beliefs can
be represented by a set of basis functions, then these basis
functions comprise the derivatives funds into which optimal
portfolios separate. For example, when investors have constant
risk tolerance and heterogeneous log-normal beliefs, we show
that a four-fund separation holds in which besides the stock
and the bond, investors also take positions in a claim which
pays the log of the stock price and a second claim which pays
the square of the log.

The outline of the paper is as follows. In section 2,
we review the well-known relationship between option prices
and the risk-neutral distribution in a complete market. We
also exhibit for the first time an explicit decomposition of
an arbitrary payoff into a portfolio of bonds, stocks and
options. We then derive the investor’s optimal payoff, given
arbitrary preferences, beliefs and risk-neutral distribution.
These results are specialized to utility functions displaying
linear risk tolerance in section 3. Section 4 develops our
partial equilibrium model in which the personal and risk-
neutral distributions are assumed to be log-normal, as in
the Black–Scholes model. Our focus is on the positions
taken in derivatives, with particular interest paid to the case
when preferences and beliefs conflict7 in their implications
when analysed individually. Section 5 details our general
equilibrium model in which the risk-neutral distribution
is not specified ex ante, but rather is determined by the
requirement that markets clear in all assets. We derive explicit
formulae for optimal payoffs and the risk-neutral distribution
under heterogeneous log-normal beliefs and heterogeneous
logarithmic or exponential preferences. The final section
summarizes the paper and provides directions for future
research. The appendices contain proofs of our technical
results.

2. The optimal investment problem
When derivatives are considered as potential investment
vehicles, the problem is complicated by the fact that over-
the-counter markets permit investment in a virtually unlimited
array of alternatives. In our single period setting with a
single underlying asset, the problem can be reduced to that
of determining an optimal piecewise linear payoff made up of
a portfolio of options. However, this simplification comes at

7 For example, we examine whether a highly risk averse individual who thinks
implied volatility is high should buy options or sell them.

the expense of not being able to appreciate the fundamental
principles driving optimal positioning, as well as the inability
to derive closed form solutions for the optimal payoffs of
potential interest to the investing community. For these
reasons, we consider a setting in which there is an entire
continuum of option strikes. This setup shares the analytical
advantages of the Merton [37] continuous-time economy,
except that we now deal with infinitely many assets at a single
point in time.

To deal with the infinite asset problem, we break the
investment problem down into a subproblem of determining
the optimal terminal wealth profile, and a second problem of
determining how to span this payoff with the available assets.
The next subsection reviews how any payoff can be spanned
by a linear combination of the payoffs from a riskless asset, a
single risky asset and options of all strikes. The following
subsection shows how preferences, probabilities and prices
interact to determine the optimal payoff, and consequently,
the optimal position.

2.1. Spanning

Consider a one period model in which investments are made
at time 0 with all payoffs being received at time 1. There
is a riskless asset costing B0 initially and paying unity at
time 1, which we call the bond. There is also a single risky
asset, costing S0 initially and paying the random amount S

at time 1, which we call the stock. In addition to markets in
the bond and stock, we assume that markets exist for out-of-
the-money European puts and calls of all strikes. While this
assumption is not standard, it allows us to examine the question
of optimal positioning in a complete market without requiring
the heavy machinery of continuous-time mathematics. We
note that the assumption of a continuum of strikes is essentially
the counterpart of the standard assumption of continuous
trading. Just as the latter assumption is frequently made as a
reasonable approximation to an environment where investors
can trade frequently, we take our assumption as a reasonable
approximation when there are a large but finite number of
option strikes (e.g. for the S&P 500). In each case, the
assumption adds analytic tractability without representing a
large departure from reality.

For this market structure, it is known from the literature
that investors may purchase any smooth function of the
underlying stock price by taking a static position at time
0 in these markets8. It is also known, (see Breeden and
Litzenberger [6]), that there is a unique risk-neutral density
that may be identified from the prices of options. The market
completeness results of the literature (Green and Jarrow [26]
and Nachman [38]), however, are not constructive and do not
describe the static position that needs to be taken in the various
markets.

We show here that any twice continuously differentiable
function, f (S), of the terminal stock price S, can be replicated
by a unique initial position of f (S0) − f ′(S0)S0 unit discount

8 This observation was first noted in Breeden and Litzenberger [6] and
established formally in Green and Jarrow [26] and Nachman [38].
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bonds, f ′(S0) shares, and f ′′(K)dK out-of-the-money options
of all strikes K:

f (S) = [f (S0) − f ′(S0)S0] + f ′(S0)S

+
∫ S0

0
f ′′(K)(K − S)+dK

+
∫ ∞

S0

f ′′(K)(S − K)+dK. (1)

The positions in the bond and the stock create a tangent to the
payoff at the initial stock price. The positions in the out-of-
the-money options are used to bend the tangent line so as to
match the payoff at all price levels. The derivation leading to
equation (1) is contained in appendix 1.

An important special case of (1) is put-call-parity, where
we takef (S) to be the payoff of an in-the-money call (S−K0)

+

for K0 < S0. In this case f ′(S0) = 1, while f ′′(K0) is a
delta function9 centred at K0. Equation (1) may also be used
to identify the risk-neutral density. Since the payoff f (S) is
linear in the payoffs from the available assets, the same linear
relationship must prevail among the initial values. Specifically,
letting V0[f ] denote the initial value of the arbitrary10 payoff
f (·), and letting B0, P0(K) and C0(K) denote the initial prices
of the bond, put, and call respectively, then it follows from (1)
and the no arbitrage condition that:

V0[f ] = [f (S0) − f ′(S0)S0]B0 + f ′(S0)S0

+
∫ S0

0
f ′′(K)P0(K)dK

+
∫ ∞

S0

f ′′(K)C0(K)dK. (2)

Appendix 2 shows that (2) directly implies that the initial
value of an arbitrary payoff f (·) is:

V0[f ] = B0

∞∫
0

f (K)q(K)dK, (3)

where the state pricing densityB0q(K)may be recovered from
option prices by the relation:

B0q(K) =


∂2P0(K)

∂K2
for K � S0;

∂2C0(K)

∂K2
for K > S0.

(4)

The result (4) is of course well known from Breeden and
Litzenberger [6] and is here seen as a simple consequence of
the replication strategy (1).

2.2. The individual investor’s problem

We suppose that there are n investors in the economy, indexed
by i = 1, . . . , n. Each investor has an endowment of βi

9 See Richards and Youn [42] for an accessible introduction to generalized
functions such as delta functions.
10 We require that the payoff be twice differentiable and that the integrals in
(2) not diverge.

shares, where
n∑

i=1
βi = 1. For an initial stock price of S0, the

initial value of the endowment is the investor’s initial wealth
Wi

0 ≡ βiS0. Each investor’s preferences are characterized
by an increasing concave utility function Ui defined over
their random terminal wealth Wi . Each investor’s beliefs
are characterized by a probability density function pi(S),
defined on the entire positive half line with pi(S) > 0 for
S > 0. Each investor is assumed to maximize expected utility∫∞

0 U(Wi)pi(S)dS. Since all terminal wealth is consumed,Wi

can be replaced by a function f (S) relating terminal wealth to
the terminal stock price S. The completeness of the market
allows investors to maximize expected utility by choice of any
function f (S) that they can afford:

max
f (·)

∞∫
0

Ui[f (S)]pi(S)dS. (5)

The affordability of the payoff f (·) is captured by requiring
that the initial value, V0[f ], of the payoff, f (S), must be less
than or equal to the investor’s initial wealth, Wi

0. From (3),
the initial value of the payoff is simply its discounted expected
value, where expectations are calculated using the risk-neutral
density q(S). Thus, the budget constraint is:

B0

∞∫
0

f (S)q(S)dS � Wi
0 . (6)

To solve this constrained optimization problem, we follow
Brennan and Solanki [9] and consider the Lagrangian for this
problem, given by:

L =
∞∫

0

Ui[fi(S)]pi(S)dS − λi

 ∞∫
0

fi(S)B0q(S)dS − Wi
0

 .

(7)
Differentiating with respect to the payoff function f (·) and
setting the result to zero yields the first order condition
determining the optimal payoff function φi(S):

pi(S)

B0q(S)
U ′

i [φi(S)] = λi. (8)

Before analysing the structure of optimal payoffs, we offer
two interpretations of the condition (8) defining them. The
first is a Marshallian view, while the second is in terms of
personalized prices.

2.2.1. A Marshallian view of payoff design. First note that
all terms on the left hand side (LHS) of (8) are positive, and so
is the Lagrange multiplier λi . From (7), λi is the increase in
expected utility at the optimum if initial wealth is raised by a
dollar. To interpret the LHS, note that the expected payoff from
buying an Arrow–Debreu security paying off in stateS ispi(S).
The initial cost of this security is B0q(S). Consequently,
the fraction on the LHS of (8) is the expected return from
the Arrow–Debreu security. Since the investor is risk-averse,
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the attractiveness of a state is measured by multiplying his
expected return for that state by his marginal utility. This
product gives the rate at which expected utility increases with
each initial dollar spent on the state. Equation (8) indicates that
the optimal payoff is chosen so that the extra expected utility
received from the last dollar spent on each state is the same for
each state. Intuitively, this must be the case as otherwise there
would be an incentive to reallocate initial wealth from states
where the rate of increase in expected utility is low to states
where it is high.

2.2.2. Optimal payoffs and personalized prices. Another
interpretation of the optimal payoff arises from multiplying (8)
by B0q(S)

λi
and integrating over S:

1

λi

∫ ∞

0
pi(S)U

′
i [φi(S)]dS = B0

∫ ∞

0
q(S)dS = B0.

Substituting into (8) gives:

πi(S) ≡ pi(S)U
′
i [φi(S)]∫∞

0 pi(S)U
′
i [φi(S)]dS

= q(S). (9)

The LHS can be interpreted as a probability density since it is
positive and integrates to one. Thus (9) states that the optimal
payoff is chosen so that each investor equates his personalized
risk-adjusted probability density to the risk-neutral density.
More generally, multiplying (8) by B0q(S)f (S)

λi
and integrating

over S gives:

B0

∫ ∞

0
πi(S)f (S)dS = B0

∫ ∞

0
f (S)q(S)dS ≡ V0[f ],

after substituting in (9). For payoffs such as f (S) = S or
f (S) = (S − K)+, the RHS is the observable market price of
the stock or option. Thus, each individual chooses his optimal
payoff so that the personalized value of each asset equates with
the market value.

2.2.3. General properties of optimal payoffs. The optimal
payoff can be determined by solving (8) for φi(S):

φi(S) = (U
′
i )

−1

(
λiB0

q(S)

pi(S)

)
. (10)

We next consider the general shape of this payoff under
various conditions.

Equality of beliefs and prices. If an investor assigns the same
probability to each state as does the risk-neutral density (i.e.
pi(S) = q(S)), then the optimal payoff is independent of the
stock price, and so the optimal investment is to plunge all
wealth into the riskless asset, i.e. φi(S) = Wi

0/B0. When
p = q, the investor believes that the expected return on the
stock is the riskless rate. Since the investor is risk-averse, he
has no incentive in this case to hold stock. Furthermore, when
p = q, the higher moment structures (e.g. variance, skewness
and kurtosis) are identical, so there is no reason to buy other
risky assets such as straddles, risk reversals or strangles.

Beliefs and prices differ in mean. If personal probabilities
differ from the risk-neutral density (i.e. p(S) �= q(S)), then
we cannot have p < q for all S or p > q for all S since the
densities both integrate to 1. It follows that when p �= q, there
are states in which p > q and other states in which p < q.
The payoff in any state for which p > q is strictly greater than
the payoff for any state in which p < q, since risk aversion
forces the inverse of the marginal utility function (U

′
i )

−1(·) to
be a decreasing function of its argument.

If an investor believes that the expected return on the
stock is greater than the risk-free rate, then

∫
Spi(S)dS �∫

Sq(S)dS, and so we would expect pi(S) to exceed q(S)

for most of the higher states. Since p cannot dominate q for
all states, we would also expect p to be less than q for most
of the lower states. This suggests an optimal payoff which
is usually increasing with respect to S when the investor’s
expected excess return is positive. Conversely, if this expected
excess return is negative, then p exceeds q for most of the
lower states, and the optimal payoff is usually decreasing.

Beliefs and prices differ in volatility. Turning to the second
moment, if the investor believes that volatility is higher than
indicated by q, then the investor has p > q for very high and
very low states, with p < q for intermediate states. Thus
from (10), the corresponding payoff is U-shaped for most of
its domain, which would require long positions in options.
Conversely, if the investor believes volatility is lower than is
implied by the market prices of options, then one would expect
the optimal payoff to be an inverted U for most of the domain,
although risk aversion would suggest that infinitely negative
payoffs would generally be avoided.

Risk aversion and derivatives. Focusing on the effect of
preferences on the optimal payoff, note that the greater the
risk aversion, the more marginal utility falls with each dollar
of terminal wealth, and the smaller is the required response
of the optimal payoff to a deviation of the personal density
from the risk-neutral density. Let Ti[φi(S)] ≡ − U ′

i [φi(S)]
U ′′

i [φi(S)]

denote the investor’s risk tolerance and let Di(S) ≡ ln
(

pi(S)

q(S)

)
measure the deviation of the investor’s beliefs from the market.
Taking the logarithmic derivative of both sides of the first
order condition (8) with respect to the stock price yields the
decomposition in Leland [35] of an investor’s optimal exposure
into the product of his preferences and beliefs:

φ′
i (S) = Ti[φi(S)]D

′
i (S). (11)

Thus, when one terminal price is compared to an adjacent
one, the investor increases his payoff at the higher price if
his personal density grows faster than the risk-neutral density,
and decreases it otherwise. However, the lower the risk
tolerance, the smaller the required response of payoffs to
deviations in growth rates of personal probabilities over risk-
neutral probabilities.

Equation (11) is an ordinary differential equation (ODE)
governing the optimal payoff φi(S). Under certain regularity
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conditions on the risk tolerance, this ODE may be solved
subject to the budget constraint:

∞∫
0

φi(S)B0q(S)dS = Wi
0 . (12)

The solution to this problem is given by (10), where the
parameter λi is obtained by substituting the optimal payoff
(10) in (12):

∞∫
0

(U
′
i )

−1

(
λiB0

q(S)

pi(S)

)
B0q(S)dS = Wi

0 . (13)

In order to develop fully explicit solutions for optimal payoffs,
we next restrict preferences.

3. Restrictions on preferences
As mentioned in the introduction, the purpose of this paper is to
describe the derivatives positions that are optimal for investors.
If derivatives are not held in our economy, then the investor
confines his holdings to the bond and the stock and the optimal
derivatives position is zero. Clearly, a necessary condition for
the optimality of a zero derivatives position is that two-fund
monetary separation hold11. In turn, Cass and Stiglitz [11]
have shown that a necessary condition for two-fund monetary
separation to hold is that investors have linear risk tolerance
(LRT):

Ti(W) ≡ − U ′
i (W)

U ′′
i (W)

= τi + γiW. (14)

The parameter γi is frequently called cautiousness in the
literature12 as it describes how risk tolerance changes with
wealth. In this paper, we only consider utility functions with
increasing risk tolerance, i.e. γi � 0. To avoid negative
risk tolerance, the utility function is defined only for wealth
levels Wi � − τi

γi
. For positive cautiousness, this lower bound

is finite and as terminal wealth approaches it, the tolerance
for risk approaches zero. Thus, LRT investors with positive
cautiousness invest so as to create a floor of − τi

γi
on final

wealth. In order that this floor be attainable, we require
Wi

0 � −B0τi/γi .
Solving the differential equation (14) for marginal13 utility

U ′
i (W) gives:

U ′
i (W) =


ρi (τi + γiW)−1/γi if γi > 0;

ρi exp

(
−W

τi

)
if γi = 0,

(15)

11 Working in a multiasset setting with arbitrary concave utility functions,
Ross [44] describes the distributional restrictions which are necessary and
sufficient to generate two-fund monetary separation.
12 See Huang and Litzenberger [30] p 134 for example.
13 Integrating (15) once implies that LRT utility functions are positive linear
transformations of:

Ui(W) =



1

γi − 1
(τi + γiW)1−1/γi , if γi �= 1, 0;

ln(τi + W), if γi = 1;

−τi exp

(
−W

τi

)
, if γi = 0,

for W � − τi
γi

.

where the arbitrary positive constantρi can be interpreted as the
individual’s rate of time preference. Substituting the inverse
of this function in (13), solving for λ, and substituting in (10)
implies14 that LRT investors prefer a payoff of the form:

φi(S) =


− τi

γi
+
Wi

0 + B0τi/γi

V0
[
eγiDi

] eγiDi(S), if γi > 0;

Wi
0 − τiV0[Di]

B0
+ τiDi(S), if γi = 0,

(16)
where V0

[
eγDi

]
is the initial value of the payoff eγiDi(S) =

(pi(S)/q(S))
γi , and V0[Di] is the value of the payoff Di(S) ≡

ln (pi(S)/q(S)):

V0
[
eγDi

] = B0

∫ ∞

0
[pi(S)/q(S)]

γi q(S)dS

V0[Di] = B0

∫ ∞

0
ln[pi(S)/q(S)]q(S)dS.

The optimal payoffs in (16) separate into the riskless
asset and a single customized derivative. Under homogeneous
beliefs and identical cautiousness, the derivative fund is the
same across investors, so that two-fund monetary separation
obtains. Cass and Stiglitz [11] have shown that these restrictive
conditions are also necessary. In what follows, we will allow
for heterogeneous beliefs and cautiousness parameters in order
to explore how differences in these attributes affect the optimal
customized payoff. As indicated in (16), the nature of this
payoff depends on whether the cautiousness parameter γi is
positive or zero. We discuss each case in turn.

3.1. Positive cautiousness

When γi > 0, (16) implies that the optimal payoff in each
state is linear in a power of the expected return from that state
pi(S)/q(S):

φi(S) = − τi

γi
+
Wi

0 + B0τi/γi

V0 [(pi/q)γi ]

(
pi(S)

q(S)

)γi

. (17)

The position in the riskless fund is taken to ensure that the floor
of − τi

γi
is preserved. Since γi > 0, whether the investor is long

or short in the fund depends on the sign of τi . When τi < 0, the
investor is long in the riskless fund and the remaining wealth is

used to buy the risky fund with payoff
(

pi(S)

q(S)

)γi
. When τi = 0,

then from (14), the investor has proportional risk tolerance and
invests all his assets in the risky fund. When τ > 0, the investor
is short in the riskless fund and invests the proceeds and his
initial wealth in the risky fund. In this last case, the lower the
cautiousness, the more the investor shorts in the riskless fund.

In any case, all of the excess of initial wealth over the
present value of this floor is invested in a long position in

the risky fund with customized payoff
(

pi(S)

q(S)

)γi
. This payoff

can be synthesized with investor-specific positions in bonds,
stocks and options. Since the risky fund has a non-negative

14 The solutions can also be obtained by substituting (14) in the ODE (11) and
solving this linear ODE subject to (12).
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payoff, options must be used if the implicit position in either
the bond or the stock is negative. Thus, if the investor believes
the expected return on the stock is very positive, then the
investor might borrow to obtain leverage, but in this case the
investor will also buy puts to guarantee a non-negative payoff.
Similarly, if the investor believes the expected return on the
stock is below the risk-free rate, then the investor would short
in the stock, but in this case the investor would also buy calls to
prevent the payoff from going negative at high prices. Turning
to the second moment, if the investor believes the volatility of
the stock to be substantially lower than is implied by the market
prices of options, then one would expect the risky fund’s payoff
to be a bell-shaped curve, since the payoffs cannot go negative.

In summary, an LRT investor with positive cautiousness
first invests in the riskless fund to establish the floor, and then
invests the remainder in a limited liability risky asset. The next
subsection shows that an LRT investor with zero cautiousness
behaves quite differently.

3.2. Zero cautiousness

Consider rewriting the optimal payoff (17) with positive
cautiousness as:

φi(S) = Wi
0

V0 [(pi/q)γi ]

(
pi(S)

q(S)

)γi

+
τi

γi

[
B0

V0 [(pi/q)γi ]

(
pi(S)

q(S)

)γi

− 1

]
.

If we require τi > 0 and let γi approach zero, then L’Hôpital’s
rule implies that the payoff approaches15 the zero-cautiousness
payoff:

φi(S) = Wi
0 − τiV0[Di]

B0
+ τiDi(S), (18)

where recall V0[Di] is the initial cost of the customized payoff

Di(S) ≡ ln
(

pi(S)

q(S)

)
. Given the availability of this payoff,

the zero cautiousness investor buys τi units of this risky fund.
Substituting γi = 0 in (14) implies that the number of units
that the investor buys is fixed at his risk tolerance, in contrast
to the case with positive cautiousness. The zero-cautiousness
investor then invests all remaining wealth in the riskless fund.
In further contrast to the case with positive cautiousness,
the risky fund can have an arbitrarily large negative payoff.
Since risk tolerance is independent of final wealth, low wealth
realizations do not induce the zero-cautiousness investor to
place a floor on final wealth.

4. Optimal investment in a
partial equilibrium
Thus far, the optimal payoff has been expressed in terms of
the investor’s personal probability density pi , the investor’s
utility function Ui and in terms of the risk-neutral density q.
In general, the latter is determined by equilibrating investor
demand for assets with the fixed supply. In the absence of an
options market, the investor would need to know the tastes and

15 Thus, the payoffs in (16) are continuous in γi for all γi � 0.

beliefs of all other participants in order to determine his optimal
position. Thus, a fundamental role of the options markets in
our setting is to summarize the tastes and beliefs of all other
participants, so that it is not necessary for a given investor
to solve a general equilibrium problem in order to determine
his optimal position. In principle, each investor can back
out the risk-neutral density from option prices and combine
this information with his personal information to solve for his
optimal position.

The next section demonstrates a general equilibrium
setting in which all asset prices are determined endogenously.
In this section, we will take bond, stock and option prices
as given, and demonstrate an investor’s optimal position in
our partial equilibrium framework. For tractable results in
closed form, we assume log-normality for both the personal
densities and the risk-neutral density. The existence of
general equilibrium models with this property are discussed in
Rubinstein [45], Breeden and Litzenberger [6], Brennan [7],
Stapleton and Subrahmanyam [48], Bick [4, 5] and He and
Leland [29]. A sufficient condition for log-normality in both
the personal densities and the risk-neutral density is constant
proportional risk aversion (CPRA) on the part of all investors.
To our knowledge, necessary conditions for log-normality in
both densities have not been established. Thus, we will first
derive results for arbitrary preferences and then specialize them
to linear risk tolerance, which includes CPRA as a special case.

The partial equilibrium Black–Scholes model also has
the property that personal densities and risk-neutral densities
are both log-normal. In this section, one can think of the
Black–Scholes model as holding, except that the investor under
consideration is unable to trade continuously. This investor is
assumed to invest so as to maximize the expected utility of
wealth at the next trading opportunity. The Rubinstein and
Black–Scholes models assume that investors have the same
volatility, which implies that the risk-neutral and personal
volatilities are equal16.

It is important from both an empirical and a theoretical
perspective to consider the case when personal and risk-neutral
volatilities differ. On the empirical side, there is considerable
evidence that implied volatilities are substantially higher than
historical volatilities. This phenomenon is most likely due to
risk aversion, which causes extreme states to be priced higher
than their relative frequency of occurrence. Since one would
expect rational investors to account for this phenomenon in
formulating their personal volatilities, one would expect that
personal volatilities are closer to historical volatilities than risk-
neutral volatilities. A second reason for considering unequal
personal and risk-neutral volatilities is purely theoretical. The
equality of the two volatilities in the Black–Scholes model
is a consequence of Girsanov’s theorem, which only applies
to diffusion processes. For continuous time jump processes
or for all discrete time processes (for example the binomial
process), the two volatilities generally differ, except in the
diffusion limit.

16 In the Black–Scholes model, if an investor disagreed with the risk-neutral
volatility, then he would take an arbitrarily large position, stressing the price-
taking assumption.
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A second justification for studying the log-normal
distribution is that as a two-parameter distribution, it allows
us to address the effect of differences of opinion on the mean
and variance of return. As in the last two sections, we first
develop results for arbitrary preferences and then specialize to
LRT preferences.

4.1. Log-normal beliefs and arbitrary preferences

This subsection specializes the results on optimal positioning
to the case where preferences are arbitrary, but where the
personal and risk-neutral distributions are both log-normal.
Letting x ≡ ln(S/S0) denote the log price relative, the log-
normal density is given by:

 (S;µ, v) = 1√
2πvS

exp

{
−1

2

[
x − (µ − v2/2)

v

]2
}
,

(19)
where µ and v are the mean and volatility of return17 over
our single period. We now suppose that the investor’s
personal density is  (S;µi, vi), while the risk-neutral density
is  (S; r, σ ), where r is the assumed constant riskless rate and
σ is the implied volatility.

Under log-normal densities, the deviation of the investor’s
probability density from that of the market is quadratic in
x ≡ ln(S/S0):

Di(S) ≡ ln

(
pi(S)

q(S)

)
= Ai + Bix − Ci

x2

2
, (20)

where:

Ai = ln

(
σ

vi

)
+
(r − σ 2/2)2

2σ 2
− (µi − v2

i /2)2

2v2
i

Bi = µi

v2
i

− r

σ 2

Ci = 1

v2
i

− 1

σ 2
. (21)

To focus on the effects of an investor differing from the
market only in the mean parameter, we temporarily assume
that the personal and risk-neutral volatilities are the same. In a
diffusion setting, this is a consequence of Girsanov’s theorem
and this case was also considered in the context of a static
model under homogeneous beliefs by Brennan and Solanki [9].
If vi = σ , then Ci = 0, so (20) simplifies to:

Di(S) = Ai + Six, (22)

where Ai ≡ 1
2

(
µi − r − µ2

i −r2

σ 2

)
and Si ≡ µi−r

σ 2 is defined as

the investor’s Sharpe ratio18.

17 Note that µ is the log of the expected value of the periodically compounded
gross return, µ = ln E S

S0
, while v is the standard deviation of the continuously

compounded return, v = Std ln(S/S0).
18 The Sharpe ratio is usually defined as the expected excess return relative to
the standard deviation of return. We define it relative to the variance for ease
of reference.

Recall the multiplicative decomposition (11) of the
investor’s exposure φ′

i (S) into his risk tolerance Ti[φi(S)] and
the deviation of his beliefs from the market:

φ′
i (S) = Ti[φi(S)]D

′
i (S). (23)

Differentiating (22) and substituting into (23) gives an
exposure of:

φ′
i (S) = Ti[φi(S)]

S
Si .

Since risk tolerance is positive, the sign of the investor’s
exposure matches the sign of the Sharpe ratio Si . Thus,
under log-normal beliefs and risk-neutral densities with equal
volatilities, the investor’s optimal payoff is monotonically
increasing if his mean µi is higher than the market’s, is flat if
means match, and is decreasing otherwise. Thus, an investor
with an expected return above the risk-free rate should have
an increasing payoff, even if he believes this premium is
insufficient to cover the risk borne.

4.2. Log-normal beliefs and linear risk tolerance

In order to completely determine the optimal payoff,
this subsection assumes both log-normal beliefs and LRT
preferences. Substituting (20) in (16) and simplifying implies
that the optimal payoff is:

φi(S) =



− τi

γi
+

Wi
0 + B0τi/γi

V0[eγi (Bix−Cix2/2)]
e
γi

(
Bix−Ci

x2

2

)
, if γi > 0;

Wi
0 − τi(BiV0[x] − CiV0[x2/2])

B0

+τi

(
Bix − Ci

x2

2

)
, if γi = 0.

(24)

4.2.1. Positive cautiousness and homogeneous volatility
To analyse (24), we temporarily assume that cautiousness is
positive and that the risk-neutral and personal volatilities are
equal. Setting Ci = 0 and x = ln(S/S0) in the γi > 0 case of
(24) gives:

φi(S) = − τi

γi
+
Wi

0 + B0τi/γi

V0[SγiSi ]
SγiSi , (25)

where for the log-normal risk-neutral density, V0[SγiSi ] =
S
γiSi

0 B0eγiSi (r−σ 2/2)+γ 2
i S2

i σ
2/2. Thus, for γi > 0, the optimal

payoff19 is the sum of the riskless fund and a risky fund whose
payoff takes the simple form of the stock price raised to a
power. The power is the product of the investor’s cautiousness
γi and his Sharpe ratio Si = (µi − r)/σ 2. As shown in
the last subsection, if µi > r , then the optimal payoff is
increasing in the stock price, while if µi < r , it is decreasing.
If µi > r + γ σ 2, the optimal payoff is convex in the stock
price, while if µi is below this level, it is concave. For the
optimal position to not require derivatives, it must be the case

19 For proportional risk tolerance, the optimality of this payoff in the
continuous-time context is discussed in Cox and Huang [15].
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Figure 1. Optimal payoffs when volatilities agree.

that µi = r + γ σ 2, i.e. that the investor’s independently
determined mean return happens to agree with the cost of
financing the stock and bearing the risk. Although this can
occur for some individuals, most investors will optimally hold
derivative positions.

Figure 1 shows the effect of varying the expected return
on the optimal payoff for an investor with proportional risk
tolerance (i.e. τi = 0, γi > 0).

When µi > r + γiσ
2, the investor takes a leveraged

position in stock. He also buys puts to protect the downside
and buys calls to convexify the upside. As expected, return is
lowered, the investor borrows less, buys less stock and reduces
his option purchases. When µi = r + γiσ

2, the investor holds
only stock. As expected, return is reduced below this point,
the investor starts to be long in the riskless asset but continues
to maintain a long position in stock as well. The investor now
judiciously sells puts and calls. When µi = r , the investor
holds only the riskless asset. Finally, whenµi < r , the investor
shorts in the stock and buys puts to convexify the effect of stock
price declines, while buying calls to protect against stock price
rises.

4.2.2. Zero cautiousness and homogeneous volatility.
Setting Ci = 0 and x = ln(S/S0) in the γi = 0 case of
(24) gives the optimal payoff for an investor with constant risk
tolerance τi :

φi(S) = Wi
0 − τiSiV0[ln(S/S0)]

B0
+ τiSi ln(S/S0), (26)

where for log-normal risk-neutral density V0[ln(S/S0)] =
B0(r − σ 2/2). Thus, for constant risk tolerance, the investor
either has no exposure to the risky asset (if Si = 0) or else
uses derivatives in conjunction with the underlying stock. If
µi > r , then the optimal payoff is increasing and concave. It
is also unbounded, tending to −∞ as S tends to 0, and tending
to ∞ as S tends to ∞. The position is a leveraged position in
stock combined with aggressive selling of out-of-the-money

options. If µi < r , then the optimal position is decreasing,
convex, and unbounded. This position is created by shorting
the stock with the proceeds used to buy bonds and out-of-the-
money options. The puts are held to steepen the payoff as the
stock falls and the calls are held to dampen the decline as the
stock rises.

In summary, for non-negative cautiousness, stocks and
derivatives are not held if the investor is in complete agreement
with the risk-neutral density or else is infinitely risk averse. In
addition, derivatives are not held if the stock’s independently
determined expected return lines up with the cost of financing
the stock purchase and bearing the risk. In all other cases,
options are used as part of the optimal payoff even though the
investor’s personal volatility agrees with that implied. The
positions taken in options will be even larger in absolute terms
when the investor’s personal volatility differs from implied
volatility, as shown next.

4.2.3. Positive cautiousness and unequal volatility.
Recall the optimal payoff (24) for an investor with positive
cautiousness γi :

φi(S) = − τi

γi
+

Wi
0 + B0τi/γi

V0
[
eγi (Bix−Cix2/2)

]e
γi

(
Bix−Ci

x2

2

)
, (27)

where when the risk-neutral density is log-normal:

V0

[
eγi (Bix−Cix

2/2)
]

= v

σ
exp

{
−1

2

[
(r − σ 2/2)2

σ 2

−
(
γiBi +

(r − σ 2/2)

σ 2

)2

v2

]}
,

with 1
v2 ≡ γi

1
v2
i

+ (1 − γi)
1
σ 2 .

When an investor’s personal volatility vi exceeds the risk-
neutral volatility σ , then the investor’s precision is below that
of the market, and thus the coefficient Ci defined in (21) will
be negative. It follows from differentiating (27) twice that the
optimal payoff will tend to be convex. Figure 2 shows the
effect of lowering the personal volatility on the optimal payoff
of an investor with proportional risk tolerance (τi = 0, γi > 0)
and zero Sharpe ratio.

When vi > σ , the optimal payoff is U-shaped and
amounts to overlaying straddles or strangles onto a riskless
bond position. As volatility is lowered, the investor cuts back
his option purchases and invests more in the riskless bond, until
when vi = σ , the investor holds only the riskless asset. As
volatility is lowered further, the payoff is similar in form to a
log-normal density function. Thus the investor now sells near-
the-money options to be consistent with the volatility view, but
buys further out-of-the-money options to enforce the floor.

4.2.4. Zero cautiousness and unequal volatility. Recall the
optimal payoff (24) for an investor with constant risk tolerance
τi :

φi(S)

= Wi
0 − τi(BiV0[x] − CiV0[x2/2])

B0
+ τi

(
Bix − Ci

x2

2

)
,

(28)
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Figure 2. Optimal payoff with zero Sharpe ratio.

where for log-normal risk-neutral density, V0[x] = B0(r −
σ 2/2) and V0[x2/2] = B0

2

[
σ 2 + (r − σ 2/2)2

]
. Given the

existence of a contract paying the log price relative x =
ln(S/S0) and another paying its square, the zero cautiousness
investor confines his investments to these two contracts and
the riskless asset. In this economy, the log contract is used to
speculate on expected return20. The investor is long in the log

contract if µi > r
v2
i

σ 2 , is out of the contract if µi = r
v2
i

σ 2 , and
is short otherwise. The greater the investor’s expected return
µi , the larger Bi is, and thus the larger the position in the log
contract. In contrast, the log squared contract is a vehicle for
speculating on volatility. The investor is long in this contract if
vi > σ , is out of the contract if vi = σ , and is short otherwise.
The larger the investor’s volatility vi , the smaller the coefficient
Ci indicating the difference in precisions, and thus the larger
the position in the log squared contract. Furthermore, the larger
vi is, the lower Bi is, and thus the lower the position in the
concave log contract. Thus, the larger the personal volatility,
the more convex the payoff.

Determining the conditions under which the investor is
uniformly long or uniformly short options is complicated by

the concavity of the log contract. However, if µi = r
v2
i

σ 2 , then
Bi = 0 and the curvature (gamma) of the total position has
the same sign as the excess of personal volatility over implied.
Consequently, in contrast to the positive-cautiousness case, the
zero-cautiousness investor who thinks volatility is lower than
implied sells options at all strikes.

5. Optimal positioning in general
equilibrium
Our results on optimal positioning thus far are mainly affected
by the attributes of the individual investor under consideration.
The attributes of other investors were summarized by the

20 Neuberger [39] and Dupire [19] stress the role of the log contract in allowing
investors to speculate on variance. However, their anlysis requires that the
investor be able to trade continuously.

risk-neutral density, which aggregates their preferences and
beliefs. As a practical matter, the empirical estimation of this
risk-neutral density from option prices is probably a robust
procedure. However, our results thus far are theoretically
incomplete, as it is not clear whether, in equilibrium, someone
is available to take the other side of the investor’s optimal
derivatives position. To address this issue, we consider the
solution of a general equilibrium model.

Consider an economy in which multiple investors
simultaneously optimize their holdings. We no longer take
option prices as given, and so the form of the risk-neutral
density must be solved for endogeneously. We require that
the risk-neutral density must price the bond:

B0

∞∫
0

1q(S)dS = B0, (29)

or equivalently, that the risk-neutral density q(·) integrates to
one. We further assume that bonds and options are in zero net
supply and thus in the aggregate, it is just the stock that is held:

n∑
i=1

φi(S) = S, (30)

which implies that the sum of the exposures is unity:

n∑
i=1

φ′
i (S) = 1. (31)

Finally, the above equations imply that the the risk-neutral
expected return on the stock is the riskless rate. To see this,
recall that each investor is endowed with βi shares, where
n∑

i=1
βi = 1. Since Wi

0 ≡ βiS0, initial wealths sum to the

initial stock price:
n∑

i=1

Wi
0 = S0.

Substituting in the budget constraint (12) and interchanging
summation and integration implies:∫ ∞

0
B0

n∑
i=1

φi(S)q(S)dS = S0.

Finally, substituting in (30) gives the desired result:

B0

∞∫
0

Sq(S)dS = S0. (32)

5.1. The risk-neutral density in equilibrium

In any equilibrium model, only relative prices are determined.
Thus, we will take S0 as given, and solve for the risk-
neutral density q(S), the bond price B0 and then determine
optimal payoffs φ(S) in terms of S0. To obtain an expression
for the risk-neutral density in general equilibrium, recall the
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multiplicative decomposition (23) of exposures into beliefs and
preferences:

φ′
i (S) = Ti[φi(S)]D

′(S) = Ti[φi(S)]
d

dS
ln [pi(S)/q(S)] .

(33)
Summing over i implies:

n∑
i=1

φ′
i (S) =

n∑
i=1

Ti[φi(S)]

[
d

dS
ln pi(S) − d

dS
ln q(S)

]
= 1,

(34)
from (31). Solving for q(S) gives the desired expression:

q(S) = q(0) exp

{
−
∫ S

0

1

T (Z)
dZ

}
× exp

{∫ S

0

n∑
i=1

Ti[φi(Z)]

T (Z)

p′
i (Z)

pi(Z)
dZ

}
, (35)

where T (S) ≡
n∑

i=1
Ti[φi(S)] is the total risk tolerance in state

S. Since the optimal payoff φi depends on q, this is not an
explicit expression for the risk-neutral density. Furthermore,
under heterogeneous beliefs, (35) indicates that the equilibrium
risk-neutral density is the product of a factor reflecting total risk

tolerance, i.e. exp
{
− ∫ S

0
1

T (Z)
dZ
}

, and a factor reflecting the

personal beliefs, which we term the market view. The greater
the risk tolerance of a given investor, the more his probability
density gets reflected in the market view.

Under homogeneous beliefs, (35) simplifies into:

q(S) = q(0) exp

{
−
∫ S

0

1

T (Z)
dZ

}
p(S). (36)

The first factor is a positive declining function of S which
changes the mean in the market view to the riskless rate, and
may add negative skewness. For example, if p(S) is a normal
density and aggregate risk tolerance is constant, then q(S) is
also normal but with a shifted mean. However, if p(S) is log-
normal and risk tolerance is constant, then q(S) is not in the
log-normal family and is skewed to the left with the density
having a fatter left tail. For linear aggregate risk tolerance,
similar results hold. If aggregate risk tolerance is infinite or
equivalently, if there exist individuals with zero risk aversion,
then q(S) = p(S). It follows that the disparity between the
risk-neutral density and the density describing homogeneous
beliefs is a consequence of universal risk aversion and the
requirement that the risky stock be held in equilibrium.

5.2. The optimal payoffs in general equilibrium

To obtain the optimal payoffs in our general equilibrium, we
substitute (36) into (33) to express the optimal exposure in
terms of preferences and beliefs:

φ′
i (S) = Ti[φi(S)]

T (S)
+ Ti[φi(S)]

×
[

d ln pi(S)

dS
−

n∑
i=1

Ti[φi(S)]

T (S)

d ln pi(S)

dS

]
. (37)
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Figure 3. Optimal payoff under homogeneous beliefs and opposite
cautiousness.

The first term reflects the investor’s risk tolerance relative to
the population total. The second term is a composite of the
investor’s risk tolerance and the extent to which the investor’s
beliefs differ from a risk tolerance weighted average of the
beliefs of other investors in the economy.

If investors have homogeneous beliefs (i.e. pi(S) =
p(S) ∀i), then the second term vanishes:

φ′
i (S) = Ti[φi(S)]

T (S)
. (38)

Since the right side is positive, homogeneous beliefs imply
that all investors must have an increasing payoff. The
greater the investor’s risk tolerance relative to the total, the
greater the exposure of the investor’s position. The next
two subsections show that LRT investors with homogeneous
beliefs and identical cautiousness will not hold derivatives.
Appendix 3 shows that derivatives are held in an economy with
two LRT investors with homogeneous beliefs, but opposite
cautiousness. In particular, if T1[W1] = τ1 + γW1 and
T2[W2] = τ2 − γW2, then:

φ1(S) = S

2
− τ

2γ
+

√(
S

2
+
τ2 − τ1

2γ

)2

+ k2

φ2(S) = S

2
+

τ

2γ
−
√(

S

2
+
τ2 − τ1

2γ

)2

+ k2, (39)

where τ ≡ τ1 + τ2 and k is an arbitrary constant.
Thus, in this simple economy, a three-fund separation

occurs in which each investor holds equal positions in the stock
and offsetting positions in the bond and the derivative21. The
optimal derivative security is the square root of the sum of a
positive constant and a squared linear position in the stock.
Figure 3 plots the optimal payoffs.

21 Appendix 3 also shows that if k = 0, then the investors no longer hold
derivatives.
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Although our results pertain to only two investors, it is
worth quoting from Dumas [18]22:

The two-investor equilibrium is as basic to financial
economics as is the two-body problem in mechanics.

In order to obtain explicit solutions for the optimal
payoff in an n investor economy, we next restrict preferences.
In particular, the next subsection assumes generalized
logarithmic utility23, Ui(W) = ln(τi +W), while the following
subsection considers negative exponential utility Ui(W) =
−τi exp

(
−W

τi

)
. In both cases, we examine the cross section of

investor beliefs and preferences in order to explain the positions
held.

5.3. Generalized logarithmic utility

Setting γi = 1 in (17), the optimal payoff becomes:

φi(S) = −τi +
Ri

0

B0

pi(S)

q(S)
, (40)

since V0[pi/q] = B0
∫∞

0
pi(S)

q(S)
q(S)dS = B0 and since Ri

0 ≡
Wi

0 + B0τi � 0 is defined as the risk capital of investor
i. Note that the greater τi is, the greater the risk tolerance
Ti[Wi] = τi +Wi and the greater the risk capital Ri

0. Summing
(40) over investors and invoking the market clearing condition
(30) gives:

S = −τ +
n∑

i=1

Ri
0

B0

pi(S)

q(S)
, (41)

where τ ≡
n∑

i=1
τi . Solving (41) for the risk-neutral density

gives:

q(S) =
n∑

i=1

Ri
0

B0

pi(S)

S + τ
. (42)

In order that q(S) be non-negative for all non-negative S, we
require τ � 0, i.e. that the aggregate floor −τ cannot be
positive. Thus, positive floors on the part of some must be
compensated for by negative floors on the part of others. From
(42), the greater the risk capital Ri

0 of an investor, the more
impact his beliefs have on the risk-neutral density.

Substituting (42) in (40) gives the optimal payoff:

φi(S) = −τi +
Ri

0pi(S)τ∑n
i=1 R

i
0pi(S)

+
Ri

0pi(S)S∑n
i=1 R

i
0pi(S)

. (43)

Thus, each investor first establishes a floor at −τi and then
invests all remaining wealth in two derivative funds. The
holdings in the riskless fund and the first customized derivative
sum to zero across investors, while the holdings in the second
customized derivative sum to the stock price. The higher τi
is, the higher the investor’s risk tolerance and risk capital, and

22 In a highly original paper, Dumas [18] numerically solves for an equilibrium
without derivatives in an intertemporal setting with two investors with different
utility functions.
23 See Rubinstein [46] for further motivation for the use of this preference
structure.

the larger his position in each customized derivative. Note that
each customized derivative is a limited liability claim. The first
customized derivative is also bounded above by the absolute
value of the aggregate floor τ , while the second customized
derivative is bounded above by the stock price. If the two
customized payoffs are made available to investors, then no
one holds the stock directly, although holdings must sum to
the stock.

5.3.1. Generalized logarithmic utility and homogeneous
beliefs. Under generalized log utility, derivatives are not held
if beliefs are homogeneous. In this case, payoffs simplify to:

φi(S) = −τi +
Ri

0τ∑n
i=1 R

i
0

+
Ri

0S∑n
i=1 R

i
0

. (44)

Thus, each investor holds the riskless asset and a long position
in the stock. The higher is τi or Wi

0, the higher the investor’s
risk tolerance and risk capital, and the larger the position
in stock. Thus, for generalized log utility investors24 with
homogeneous beliefs, differences in risk tolerance do not
induce demand for derivatives, but instead only affect the
division between the riskless asset and the stock.

5.3.2. Generalized logarithmic utility and derivative
fund theorems. Under certain conditions, the customized
derivatives optimal for a given investor can be decomposed
into a linear combination of payoffs of univeral interest. Under
heterogeneous beliefs, an m-fund separation arises if each
investor’s density can be represented as:

pi(S) = p(S)

m∑
k=1

cikfk(S), i = 1, . . . , n, (45)

where p(S) is the unknown true density and {fk(S), k =
1, . . . , m} is a collection of basis functions. In words,
each investor’s density differs from the true density by a
multiplicative error, which can be represented by a finite
number of basis functions. When (45) holds, we have:

Ri
0pi(S) = p(S)

m∑
k=1

Ri
0cikfk(S),

n∑
i=1

Ri
0pi(S) = p(S)

m∑
k=1

θkfk(S),

where θk ≡
n∑

i=1
Ri

0cik . Substituting into (43) gives an optimal

payoff of:

φi(S) = − τi +
m∑

k=1

Ri
0cik

fk(S)τ∑m
k=1 θkfk(S)

+
m∑

k=1

Ri
0cik

fk(S)S∑m
k=1 θkfk(S)

. (46)

Thus, each investor’s holdings separate into 2m + 1 funds.
The first fund is the riskless fund, which is used to establish

24 It can be shown that this result generalizes to the case when investors have
identical cautiousness and beliefs.
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the floor of −τi . Each investor holds Ri
0cik units of each of

the 2m derivative funds, where the funds have a payoff of{
(τ )1−lSlfk(S)∑m

k=1 θkfk(S)
, k = 1, . . . , m, l = 0, 1

}
. No one holds the stock

individually, although the collective holdings sum to the stock.

5.3.3. Log-normal beliefs and zero aggregate floor Under
further restrictions on preferences and beliefs, we can obtain
explicit formulae for the risk-neutral density, for the bond
price, and for the optimal payoffs in equilibrium. When each
generalized log utility investor has log-normal beliefs, then the
density is:

 (S;µi, vi)

= 1√
2πviS

exp

{
−1

2

[
ln(S/S0) − (µi − v2

i /2)

vi

]2
}
.(47)

Substituting in (42) and setting the aggregate floor of −τ to
zero gives a risk-neutral density of:

q(S) =
n∑

i=1

Ri
0

B0

 (S;µi, vi)

S
. (48)

Multiplying (48) by SB0 and integrating over S implies that
capital at risk aggregates to the initial stock price:

n∑
i=1

Ri
0 = S0, (49)

from25 (32). Completing the square in the log-normal in (48)
implies that the risk-neutral density can also be written as:

q(S) =
n∑

i=1

Ri
0

B0

e−µi+v2
i

S0
 (S;µi − v2

i , vi). (50)

Integrating over S and invoking (29) gives the bond pricing
equation:

B0 =
n∑

i=1

Ri
0

S0
e−µi+v2

i . (51)

Thus, from (49), the bond price is a risk-capital weighted
average of each investor’s expectation of S0

S
. Recalling that

the risk-capital Ri
0 = Wi

0 + B0τi depends on the bond price,
substitution gives an explicit expression:

B0 =

n∑
i=1

βie−µi+v2
i

1 −
n∑

i=1

τi
S0

e−µi+v2
i

. (52)

This expression simplifies if we further assume that τi = 0 ∀i:

B0 =
n∑

i=1

βie
−µi+v2

i . (53)

Thus, each investor’s expectation of S0
S

is now weighted by
their initial stock endowment.
25 From (42), (49) holds for any density when τ = 0.
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Figure 4. Optimal payoffs when means agree.

In general, (50) indicates that the risk-neutral density is not
log-normal, even though each investor has log-normal beliefs.
However, under homogeneous beliefs, the risk-neutral density
simplifies to:

q(S) =  (S;µ − v2, v). (54)

In this case, the risk-neutral density is log-normal with mean
µ − v2 and volatility v. The requirement (32) that the stock’s
risk-neutral expected return be the risk-free rate implies that
µ − v2 = r , so that the Black–Scholes formula holds for
options, as shown in Rubinstein [45]. However, no one holds
any options in this economy, as shown in (44) or subsection
4.2.1.

Returning to the case of heterogeneous log-normal beliefs,
substituting (47) in (43) gives the optimal payoff as:

φi(S) = −τi +
Ri

0 (S;µi, vi)S∑n
i=1 R

i
0 (S;µi, νi)

. (55)

since the aggregate floor is zero. Figure 4 shows the optimal
payoffs for a two-investor economy when the investors have
the same initial wealths, the same floor of zero and agree on
the mean. Investor 1 believes volatility is 10%, while investor
2 thinks it is 20%. The optimal payoff for investor 1 resembles
a bell-shaped curve, consistent with his low volatility view and
his floor of zero. The optimal payoff of investor 2 accomodates
the payoff of investor 1 and the requirement that payoffs sum
to the stock price.

Assuming that investors all agree on volatility, vi = v ∀i,
then the optimal payoff simplifies to:

φi(S) = −τi +
R̂i

0(S/S0)
pi S∑n

i=1 R̂
i
0(S/S0)pi

, (56)

where R̂i
0 ≡ Ri

0epi(µi−v)/2 and pi ≡ µi

v2 . Thus, the optimal
customized payoff when means differ is a power of the stock
price divided by a sum of powers. Figure 5 shows the optimal
payoffs for a two-investor economy when the investors have
the same initial wealths, the same floor of zero and agree
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Figure 5. Optimal payoffs when volatilities agree.

on the volatility. Investor 1 believes the expected return is
10%, while investor 2 thinks it is 0%. Both payoffs would
be synthesized using long positions in the stock. However,
the more bullish investor 1 borrows at the risk-free rate and
buys options while the less bullish investor 2 lends at the risk-
free rate and sells options. Thus, in contrast to the case with
homogeneous beliefs, options are used in the optimal portfolio,
even if investors agree on volatility.

To obtain a separation result for the n investors case with
equal volatility, let us further suppose that the n investors select
their means from among m < n possible values µ1, · · ·µm. In
particular, if investor i believes that the mean is µj , where µj

is one the m possible values, then his optimal payoff is:

φi(S) = −τi +
R̂

j

0 (S/S0)
pj S

m∑
k=1

R̂k
0(S/S0)pk

.

In aggregate, the n investors hold m risky funds, although each
investor only has non-zero holdings in one risky fund.

To summarize, investors with unitary cautiousness do not
hold derivatives if beliefs are homogeneous, while derivatives
are held when beliefs differ. The next subsection shows that
both conclusions also hold when cautiousness is zero.

5.4. Negative exponential utility

Consider an n person economy in which all investors have
constant risk tolerances, i.e. Ti[φ(S)] = τi ∀i.

From (37), each investor has an optimal exposure of the
form:

φ′
i (S) = τi

τ
+ τi

[
d ln pi(S)

dS
−

n∑
i=1

τi

τ

d ln pi(S)

dS

]
, (57)

where now τ ≡
n∑

i=1
τi is the total risk tolerance. Integration

gives the optimal payoff in terms of bonds, stocks and

derivatives:
φi(S) = κi +

τi

τ
S + τidi(S), (58)

where di(S) ≡ ln pi(S) −
n∑

i=1

τi
τ

ln pi(S). The constant of

integration κi is determined by substituting (58) in the budget
constraint (12).

κi = Wi
0 − τi

τ
S0 − τiV0[di]

B0
.

In this economy, each investor’s stock and derivatives
position does not depend on his initial wealth. Thus, the
bond position is used to finance the positions in stocks and
derivatives. The magnitude of this position in stock and
derivatives depends on their risk tolerance. The greater the risk
tolerance, the greater the exposure to stocks and derivatives.
Each investor’s stock position does not depend on his beliefs.
In contrast, each investor’s derivatives position depends mainly
on the extent to which his beliefs differ from those in the
market. Thus, the open interest in derivatives markets is
primarily a reflection of the heterogeneity of beliefs. If
investors have homogeneous beliefs but differing risk aversion,
then they do not hold derivatives. Differences in risk aversion
under homogeneous beliefs affect only the division between
the riskless asset and the stock.

To obtain separation results under constant risk tolerance
and heterogeneous beliefs, note from (47) that the log of the
log-normal density is a linear combination of the log-price
relative and its square. Suppose more generally that the log of
each personal density can be written as a linear combination
of basis functions:

ln pi(S) =
m∑

k=1

cikfk(S). (59)

Then (58) implies that the optimal payoff separates into m + 2
funds:

φi(S) = κi +
τi

τ
S + τi

m∑
k=1

[(
cik −

n∑
i=1

τi

τ
cik

)
fk(S)

]
. (60)

Furthermore, the m derivative funds are the m basis functions
which make up the log of the density. The optimal holding in

the kth fund is τi

(
cik −

n∑
i=1

τi
τ
cik

)
. Thus, if investors agree on

the coefficient of ln p on the j th basis function, i.e. cij = cj ,
then that fund is not held by anyone.

Under constant risk tolerance, the risk-neutral density
given in (35) simplifies to:

q(S) = κ exp(−S/τ)

n∏
i=1

[pi(S)]
τi
τ , (61)

where κ is a normalizing constant given by the requirement
that q integrates to 1. Thus, the market view is a risk-tolerance
weighted geometric average of the individual densities.

Given a specification of probability beliefs and an array
of risk tolerances, it is straightforward to use (61) to value an
option or any other derivative.
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Note that under homogeneous beliefs, (61) simplifies to:

q(S) = κ exp(−S/τ)p(S). (62)

Thus, if p(S) is normal, then q(S) is also normal with
the same variance and with mean equal to the forward price as
shown in Brennan [7]. The next subsection assumes that p is
log-normal, and shows that q ends up in a different class from
p. We also allow for heterogeneity in means and volatilities.

5.4.1. Zero cautiousness and log-normal beliefs. Recall
that when all investors have log-normal beliefs, the log of each
density is quadratic in x ≡ ln(S/S0) :

ln l(S;µi, vi) = − ln(
√

2πviS0)−x−1

2

[
x − (µi − v2

i /2
)

vi

]2

.

(63)
To obtain the optimal payoff under log-normal beliefs and

constant risk tolerance of τi, substitute (63) in (58):

φi(S) = Wi
0 − miV0[x] + piV0[x2/2] − S0τi/τ

B0

+
τi

τ
S + mix − pi

x2

2
,

where

mi ≡ τi

(
µi

v2
i

−
n∑

i=1

τi

τ

µi

v2
i

)
and

pi ≡ τi

(
1

v2
i

−
n∑

i=1

τi

τ

1

v2
i

)
.

Under constant risk tolerance and log-normal beliefs, the
optimal payoff for each investor involves just two derivatives,
one paying the log of the stock price and the other paying its
square. As discussed in subsection 4.2.4, the log contract is
used to speculate on expected return, while the squared-log
contract is used to speculate on variance. If investors agree on
the ratio of the mean to the variance, then from the definition
of mi , they do not hold the log contract. Similarly, if investors
agree on volatility (i.e. vi = v ∀i), then they do not hold the
log-squared contract. If, in addition, investors agree on the
mean (i.e. µi = µ ∀i), then no derivatives are held, consistent
with (38).

In order to determine each investor’s position in the
riskless fund, the two derivative funds must be priced.
Substituting (63) in (61) implies that the equilibrium risk-
neutral density is:

q(S) = κ ′ exp(−S/τ) (S; µ̂, v̂) (64)

where the aggregate precision 1
v̂2 = ∑n

i=1
τi
τ

1
v2
i

is a risk-

tolerance weighted average of the individual precisions, and

µ̂ =
∑n

i=1(τi/v
2
i )µi∑n

i=1(τi/v
2
i )

is a weighted average of the individual means,

where the weights are given by the ratio of the risk tolerance
to the risk. The constant κ ′ is determined by requiring that q
integrate to 1:

κ ′ = 1/

[∫ ∞

0
exp(−S/τ) (S; µ̂, v̂)dS

]
. (65)

Unfortunately, the denominator is the Laplace transform
of a log-normal density, which must be determined
numerically. Once κ ′ is known, the values of the two
derivatives funds are also obtained by quadrature:

V0[xj ] = B0

∫ ∞

0
[ln(S/S0)]

j q(S)dS, j = 1, 2.

To obtain the bond price, multiply (64) by B0S and
integrate over S:

B0

∫ ∞

0
Sκ ′ exp(−S/τ) (S; µ̂, v̂)dS = S0,

from (32). Substituting S (S; µ̂, v̂) = S0eµ̂ (µ̂ + v̂2, v̂) gives
the bond pricing equation:

B0 = 1/

[∫ ∞

0
κ ′ exp(µ̂ − S/τ) (S; µ̂ + v̂2, v̂)dS

]
.

From (64), we note that q(S) is not a log-normal density
even though each investor believes that the stock price is log-
normally distributed. However, the market view is log-normal
since it is a geometric average of the log-normal individual
views. The negative exponential adds negative skewness to this
log-normal density26. As a result, a graph of Black–Scholes
implied volatilities against strike prices will slope down, as is
observed in equity index option markets.

6. Summary and future research
Our primary contribution is the delineation of the optimal
payoffs which arise for investors in both a partial and a
general equilbrium context. In each case, the optimal payoff is
chosen so that the marginal utility of the initial investment
in each state is equalized across states. This Marshallian
principle leads to an optimal payoff given by the inverse of
the marginal utility function evaluated at the state price per
unit of probability. Optimal positions are hence seen as the
outcome of combining investor preferences, probabilities and
prices of state contingent dollars.

In our partial equilibrium setting, we observe that investors
use derivatives even when their personal volatility agrees
with implied volatility. They also use derivatives when
beliefs suggest selling options, while risk aversion suggests
buying them. In particular, when implied volatility exceeds
personal volatility, the optimal position involves writing near-
the-money options to capture the volatility view, coupled
with buying out-of-the-money options to eliminate unlimited
downside exposure.

In our general equilibrium setting, we show that for
unitary or zero cautiousness, homogeneous beliefs induce
investors to shun derivatives, even though they differ in risk
aversion. However, under heterogeneous beliefs or other
preference specifications, investors optimally hold derivatives
individually, even though they are not held in aggregate. Under
negative exponential utility and log-normal beliefs, a four-
fund separation occurs in which in addition to the bond and

26 However, if one investor is risk-neutral, say the nth investor, then aggregate
risk tolerance is infinite, and q(S) =  (S;µn, vn).
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the stock, investors take positions in two other derivatives:
one which pays the log of the price and the other which pays
the square of the log. The log contract is primarily used to
express views on the mean, whereas the squared-log contract
is a vehicle for trading volatility. If investors use options to
create the squared-log contract, then the discontinuity in slope
at the current stock price induces relatively large positions in
at-the-money options. In a multiperiod setup, movement of
the stock price would induce a large trading volume in such
options, a phenomenon which is universally observed in listed
options markets.

It would also be useful to investigate more fully the
relationship between the implications of heterogeneous beliefs
and the consequences of background risk as studied in Franke
et al [22]. For example, it would be interesting to investigate
whether higher background risk corresponds to a larger
effective volatility view held by an investor engaged in a
buy and hold strategy. Other interesting directions for future
research would be to extend these results to a multiperiod or
intertemporal setting. In a continuous time economy with
continuous trading opportunities, jumps of random size would
induce the demand for options demonstrated here. The optimal
control problem induced by this extension is solved in Carr
and Madan [10]. To our knowledge, the general equilibrium
formulation with jumps in continuous time remains an open
problem. Hence, an investigation of the properties of such an
equilibrium is an interesting topic for future research.
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Appendix 1. Proof of equation (1)
The fundamental theorem of calculus implies that for any fixed
F :

f (S) = f (F ) + 1S>F

∫ S

F

f ′(u)du − 1S<F

∫ F

S

f ′(u)du

= f (F ) + 1S>F

∫ S

F

[
f ′(F ) +

∫ u

F

f ′′(v)dv
]

du

− 1S<F

∫ F

S

[
f ′(F ) −

∫ F

u

f ′′(v)dv
]

du.

Noting that f ′(F ) does not depend on u and applying Fubini’s
theorem:

f (S) = f (F ) + f ′(F )(S − F) + 1S>F

S∫
F

S∫
v

f ′′(v)dudv

+ 1S<F

F∫
S

v∫
S

f ′′(v)dudv.

Performing the integral over u yields:

f (S) = f (F ) + f ′(F )(S − F) + 1S>F

S∫
F

f ′′(v)(S − v)dv

+ 1S<F

F∫
S

f ′′(v)(v − S)dv

= f (F ) + f ′(F )(S − F) +

∞∫
F

f ′′(v)(S − v)+dv

+

F∫
0

f ′′(v)(v − S)+dv. (66)

SettingF = S0, the initial stock price, gives equation (1). Note
that if F = 0, the replication involves only bonds, stocks, and
calls:

f (S) = f (0) + f ′(0)S +

∞∫
0

f ′′(v)(S − v)+dv,

provided the terms on the right-hand side are all finite.
Similarly, for claims with lim

F↑∞
f (F ) and lim

F↑∞
f ′(F )F both

finite, we may also replicate using only bonds, stocks and puts:

f (S) = lim
F↑∞

f (F )+ lim
F↑∞

f ′(F )(S−F)+

∞∫
0

f ′′(v)(v−S)+dv.

Appendix 2. Proof of equations (3) and
(4)
Given the existence of options of all strikes, absence of
arbitrage and (66) imply:

V0[f ] = [f (F ) − f ′(F )]B0 + f ′(F )S0

+

∞∫
F

f ′′(v)(S − v)+dv +

F∫
0

f ′′(v)(v − S)+dv. (67)

Integrating (2) by parts gives:

V0[f ] = [f (F ) − f ′(F )]B0 + f ′(F )S0f
′(K)P (K) |F0

−
F∫

0

f ′(K)P ′(K)dK

+ f ′(K)C(K) |∞F −
∞∫

F

f ′(K)C ′(K)dK.
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SinceP(0) = 0 andC(∞) = 0 andC(F)−P(F) = S0−FB0,
the second, third and fifth terms cancel. Integrating by parts
once again yields:

V0[f ] = B0f (F ) − f (K)P ′(K) |F0 +

F∫
0

f (K)P ′′(K)dK

− f (K)C ′(K) |∞F +

∞∫
F

f (K)C ′′(K)dK.

Noting that C ′(∞) = P ′(0) = 0 and P ′(F )−C ′(F ) = B0 by
differentiating put call parity, we observe that:

V0[f ] = B0

∞∫
0

f (K)q(K)dK,

where q(K) is proportional to the second derivative with
respect to strike of the option pricing function:

q(K) ≡


1

B0

∂2P(K)

∂K2
for K � F ;

1

B0

∂2C(K)

∂K2
for K > F.

Setting F = S0 gives the desired result.

Appendix 3. Proof of equation (39)
Recall that under homogeneous beliefs, the optimal exposure
simplifies to:

φ′
i (S) = Ti[φi(S)]

T (S)
,

whereT (S) ≡
n∑

i=1
Ti[φi(S)]. Suppose we haven = 2 investors

with linear risk tolerance:

φ′
1(S) = τ1 + γ1φ1(S)

τ + γ1φ1(S) + γ2φ2(S)
(68)

φ′
2(S) = τ2 + γ2φ2(S)

τ + γ1φ1(S) + γ2φ2(S)
, (69)

where τ ≡ τ1 + τ2. This is a coupled system of nonlinear
ODEs. Fortunately, it can be solved if we assume opposite
cautiousness, i.e. γ1 = −γ2. Without loss of generality, let
γ1 = −γ2 = γ � 0. Dividing (68) by (69) implies:

φ′
1(S)

φ′
2(S)

= τ1 + γφ1(S)

τ2 − γφ2(S)
.

Rearranging gives γ [φ1(S)φ
′
2(S) + φ2(S)φ

′
1(S)] − τ2φ

′
1(S) +

τ1φ
′
2(S) = 0. Integrating both sides gives γφ1(S)φ2(S) −

τ2φ1(S) + τ1φ2(S) = c, where c is the constant of integration.
Substituting φ1(S) = S − φ2(S) gives a quadratic in φ2:

γ [S − φ2(S)]φ2(S) − τ2[S − φ2(S)] + τ1φ2(S) = c.

Dividing by 2γ and rearranging gives:

1

2
φ2

2(S) −
[
S

2
+

τ

2γ

]
φ2(S) +

τ2S + c

2γ
= 0,

with solution:

φ2(S) = S

2
+

τ

2γ
−
√(

S

2
+

τ

2γ

)2

− τ2S + c

γ
. (70)

Since φ1(S) = S − φ2(S), we have:

φ1(S) = S

2
− τ

2γ
+

√(
S

2
+

τ

2γ

)2

− τ2S + c

γ
.

In order that both payoffs be real, we require:(
S

2
+

τ

2γ

)2

− τ2S + c

γ
� 0.

Completing the square gives
(

S
2 − τ2−τ1

2γ

)2
+ τ1τ2

γ 2 − c
γ

� 0.

Thus, a necessary condition for real payoffs is that c � τ1τ2
γ

.

Choosing c so that this condition holds, define k2 by:

c = τ1τ2

γ
− k2γ.

Then the optimal payoffs can be written as:

φ1(S) = S

2
− τ

2γ
+

√(
S

2
− τ2 − τ1

2γ

)2

+ k2

φ2(S) = S

2
+

τ

2γ
−
√(

S

2
− τ2 − τ1

2γ

)2

+ k2.

Note that if we set k = 0, then the payoffs are linear:

φ1(S) = S − τ2

γ
φ2(S) = τ2

γ
.

In any case, the positions sum to the stock as required.
Furthermore, since T1[φ1(S)] = τ1 + γφ1(S), we have:

T1[φ1(S)]

= γ S − (τ2 − τ1)

2
+

√(
γ S − (τ2 − τ1)

2

)2

+ γ 2k2,

which is non-negative. Similarly, since T2[φ2(S)] = τ2 −
γφ2(S), we have:

T2[φ2(S)]

= −γ S − (τ2 − τ1)

2
+

√(
γ S − (τ2 − τ1)

2

)2

+ γ 2k2,

which is also non-negative.
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