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ABSTRACT
Multi-layered composite structures manufactured with honeycomb, foam or balsa wood
cores are finding increasing utility in a variety of aerospace, transportation, and
infrastructure applications. Due to the low conductivity and inhomogeneity associated
with these composites standard nondestructive testing (NDT) methods are not always
capable of inspecting their interior for various defects caused during the manufacturing
process or as a result of in-service loading. On the contrary, microwave and millimeter
wave NDT methods are well-suited for inspecting these structures since signals at these
frequencies readily penetrate through these structures and reflect from different interior
boundaries revealing the presence of a ! wide range of defects such as disbond,
delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency
spectrum spans 30 GHz - 300 GHz with corresponding wavelengths of 10 - l mm. Due
to the inherent short wavelengths at these frequencies, one can produce high spatial
resolution images of these composites either using real-antenna focused or synthetic-
aperture focused methods. In addition, incorporation of swept-frequency in the latter
method (i.e., holography) results in high-resolution three-dimensional images. This paper
presents the basic steps behind producing such images at millimeter wave frequencies
and the results of three specific horneycomb composite panels (two flat and one curved)
will be demonstrated at Q-band (33-50 GHz). In addition, these results will be compared
to others using computed tomography and near-field microwave and millimeter wave
methods.
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ABSTRACT. Multi-layered composite structures manufactured with honeycomb, foam or balsa
wood cores are fmding increasing utility in a variety of aerospace, transportation, and infrastructure
applications. Due to the low conductivity and inhomogeneity associated with these composites
standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for
various defects caused during the manufacturing process or as a result of in-service loading. On the
contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these
structures since signals at these frequencies readily penetrate through these structures and reflect from
different interior boundaries revealing the presence of a wide range of defects such as disbond,
delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum
spans 30 GHz - 300 GHz with corresponding wavelengths of 10 - 1 mm. Due to the inherent short
wavelengths at these frequencies, one can produce high spatial resolution images of these composites
either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of
swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional
images. This paper presents the basic steps behind producing such images at millimeter wave
frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50
GHz). In addition, these results are compared to previous results using X-ray computed tomography.
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INTRODUCTION

Microwave and millimeter wave nondestructive testing (NDT) techniques have
been effectively used for inspection of a wide variety of complex composite structures.
These investigations have primarily used near-field [1-9] or focusing lens [9-10]
techniques for testing, evaluation, material characterization and imaging. The ability of



these signals to readily penetrate inside of composite structures, their relatively short
wavelengths and the fact that near-field and focusing lens inspection produces high spatial-
resolution images makes these techniques extremely attractive, viable and in some cases
unique for the purpose of composite inspection. There are other advantageous attributes
that these techniques possess and the entire list along with pertinent discussions can be
found in [1,9].

There are two significant attributes associated with these signals that make them
very attractive for producing synthetic-aperture and holographical images; namely, the
relatively wide bandwidth associated with various millimeter wave bands and the ability to
perform coherent measurements (e.g., availability to measured magnitude and phase
referenced to a known plane). The latter provides for the necessary requirement of
coherent signal addition when producing a synthetic-aperture image, which inherently
possesses high spatial resolution [I 1- 12].  The former provides for high depth resolution
(similar to a narrow pulse in time domain) and hence allows for holographic algorithms to
be used to produce a high-resolution three-dimensional (31)) image of an object or a
composite structure [12-14]. In addition to producing a high-resolution 3D image, one can
also slice the 3D image at various depths (depending of the available signal bandwidth)
and hence create image slices similar to those produced by X-ray computed tomography.
Microwave holography, as described above has recently been successfully used for
acreage heat tile and spray-on-foam-insulation (SOFI) imaging of the Space Shuttle
structural components [14].

To describe the method simply, a compensation of the round trip phase is
performed for wave signals originating from points on a plane to an arbitrary located target
using angular spectrum decomposition. This requires a swept-frequency measurement of
the complex microwave reflection coefficient over a plane, which for the purpose of this
investigation, was taken using an open-ended waveguide probe over the Q-band (33-50
GHz) frequency range. The resulting dataset is a volumetric representation of the specimen
and can be graphically illustrated as such. The spatial resolution is approximately one
quarter of the mid-frequency wavelength and the range resolution is c12B, where c is the
speed of light and B is the transmitted signal bandwidth, which in this case is 17 GHz [12-
13].  For a signal originating at a point target, signals add constructively otherwise the
signals add destructively resulting in a high-resolution image. For processing purposes, it
is assumed that the wave is not delayed as it propagates through air or the honeycomb
composite sample. This assumption is acceptable since the interior of the composites is
made of honeycomb with a dielectric constant close to that of free-space. Therefore, image
processing is used to aid in finding reflections occurring at air to honeycomb interfaces.

DESCRIPTION OF PANELS AND PREVIOUS RESULTS

Two honeycomb composites panels (1"-thick and 0.5"-thick) were evaluated. Each
panel had one side bonded with a thin glass fiber reinforced polymer (GFRP) laminar skin
and the other side bonded with a thin multi-directional carbon fiber reinforced polymer
(CFRP) skin. The panels appear to be produced with several embedded defects made out
of thin polymer sheets (i.e., Teflon tape, plastic, paper, etc.) and missing honeycomb/skin
material. The embedded defects primarily represented planar disbonds, crushed core, and
delaminations at various heights within the thickness of the panels and with different
shapes. The first panel (Panel # 1) was a 1 "-thick honeycomb sample produced by stacking
two 0.5"-thick honeycomb layers on top of one another with a mid-thickness composite
septum separating the honeycomb layers. The second panel composite (Panel #2) similarly



Vigure 1: X-ray CT image slices of panel #1.

V. gure 2: X-ray Ur image slices of panel # 2.

was manufactured except that it had a single layer of 0.5"-thick honeycomb core [15].
These panels were used in an earlier investigation for the purpose of comparing the

ability of several NDT methods, including near-field millimeter waves, X-ray computed
tomography (CT), shearography and through-transmission ultrasound, for inspecting these
panels. The results indicated that X-ray CT and near-field millimeter wave NDT methods
scored very high in terms of detecting the most number of inserts while providing high
spatial resolution images, as shown in Table 1. In addition, the X-ray CT provided very
high depth resolution as well as image slices of the samples [15]. Thus, in the investigation
we will focus on comparing the millimeter wave holographical results with those from the
X-ray CT.

Table 1. Summary of detection and resolution attributes of the four NDT methods 1151.

Lateral ResolutionPanel #1

Detection Number of FlawsL_^Panel #2

X-RayCT 8 7 High

Near-Field Millimeter Wave 6 7 High

Shearography 4 6 Low
Through-Transmission UT 4 5 Moderate

RESULTS

Figures 1 and 2 show several X-ray CT slices of the two panels obtained from the
previous investigation [ 15]. These results clearly show the relative size and location of the
various embedded flaws in these samples. Figure 3a shows the picture of the
measurements setup with the Q-band open-ended waveguide probe held approximately 22
mm above panel #1. Since the bottom skin of this and panel #2 is made of multi-
directional CFRP sheet, millimeter wave reaching the bottom skin are reflected back
towards the
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probe (i.e., this sheet acts as a very good reflector of millimeter wave signals). Figure 3b
shows a 3D-view of panel #1 showing several of the flaws under the top skin. This 3D
image (hologram) is an impressive demonstration of the utility of millimeter wave
holography for thick composite inspection. Figures 4a-c show three different slices of the
hologram at three different depths within panel #1; namely, the region immediately
corresponding to the top of the panel, 8 mm below that and then 6 mm deeper,
respectively. There are several important observations that must be made with respect to
the results shown in Figure 4. The spatial resolution associated with this holography
technique is approximately half of the dimension of the waveguide probe aperture (in each
direction). Given that at Q-band the aperture dimension of the waveguide probe is 5.7 mm
by 2.8 mm, one can see the high spatial resolution associated with images in Figures 3b
and 4a-c. The spatial resolution associated with these images provides similar image
interpretation capability as those images obtained using X-ray CT. The transmitted signal
bandwidth for these measurements was 17 GHz. Therefore and as explained earlier, the
depth resolution associated with these images is —8.8 mm. This is clearly not as fine of a
resolution as that obtained by the X-ray CT. Therefore, when considering the hologram
slice images in Figure 4, flaws under the skin (Figure 4a) also appear in Figure 4b.
However, it is important to note that at each depth the flaw associated with that depth
looks much more focused and clear compared to the same flaw observed in slices as when
looking at a slice less than a resolution depth away. Collectively these results show the
tremendous capability and utility of millimeter wave holography for comprehensive 3D
inspection of thick composite structures.

(a)	 (b)
Figure 3: a) Measurement setup and b) 3D view (hologram) of panel #1.

(a)	 (b)	 (c)
Figure 4: Hologram slices of panel #1 at relative distances to the probe of a) 24 mm, b) 32 mm and c)

38 mm.



Figure 5 shows the picture of the measurement set up for panel #2. This panel was thinner
than panel #1. Therefore, the preceding discussions with respect to depth resolution apply
even more to this panel. Figure 6a-c show three slices of the hologram of this panel,
clearly showing the embedded flaws and the associated spatial resolution. The results
show that even for this thinner panel, millimeter wave holography is a very useful imaging
technique for evaluating interior characteristics of the panel.

SUMMARY

Millimeter wave holography is an effective and useful imaging techniques for
evaluating interior characteristics of thick composite panels with honeycomb, balsa wood
or foam cores. The large signal bandwidth associated with millimeter wave signals, the
relatively small waveguide probe dimensions at these frequencies, along with available
synthetic and holographical algorithms provides a great opportunity for an exciting area of
imaging and nondestructive testing of composite structures. The results of two panels
shown in this paper indicate that at Q-band (33-50 GHz) the spatial resolution associated
with the images is excellent (in the few mm range) for nondestructive testing purposes. In
addition, the depth resolution associated with the images also provides ample information
with respect to the depth at which an embedded flaw may exist. The results also provided
similar information to those obtained by X-ray CT. However, there are several
advantageous practical features associated with millimeter wave holographical imaging
techniques, such as safety, portability, relatively low cost, weight and size that make them
very attractive for practical nondestructive testing purposes.

Figure 5: Measurement picture for panel #2.

(a)	 (b)	 (c)
Figure 6: Hologram slices of panel #2 at relative distances to the probe of a) 36 mm, b) 38 mm and c)

40 mm.
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Measurements at  Q-band 
(33-50 GHz). 

Used the PNA at NASA 
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Detection of disbond, corrosion, and other 
anomalies is an important and critical issue 
wi th  respect t o  the Space Shuttle health 
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5 F vonitoring -+ and other similar space vehicles. 
% 

$L ~ e a l  -aperture methodz1:of f eg h igh  spatial - - 1,. L : r . d , , ,  I - 
- 1- 2 ,- p 1 - #  --F+e - r; 2 1- -?rrq .: , L- - - L 

- resolu I ,  I - 3 -  
I ): i  

, r .  T - , -  $-< 7 r -  ,- -.- !> < 

3 ,i;;JL 3 L , , $ 2  . 1 . . I % -I?" " ' ;,: sfi ;  
- 

-I r l - ~ p - + > + ~ : - - - - ~ ~  I : , ;  ? < ,  ; - - ,  4T - 
I .-,r I 

L: + Synthetic+perturen methods, * in particular h 
p rr - -  swept~frequency version produces 3 0  high 
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F 
resofution images wi th  the ability t o  produce I - 

image slices a t  various depths. 

Custom-made systems eliminate need for PNA. 
Scan time may be a practical concern (in some 
cases). 
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