
ar
X

iv
:h

ep
-p

h/
03

10
18

4v
2 

 5
 M

ar
 2

00
4
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Abstract

We extend our model for the pion, which we used previously to calculate its diagonal structure function, to the off-forward
case. The imaginary part of the off-forward γ⋆π → γ⋆π scattering amplitude is evaluated in the chiral limit (mπ = 0) and

related to the twist-two and twist-three generalised parton distributions H , H3, H̃3. Non-perturbative effects, linked to the
size of the pion and still preserving gauge invariance, are included. Remarkable new relations between H , H3 and H̃3 are
obtained and discussed.
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1 Introduction

Structure functions, which can be extracted from deep-
inelastic experiments, are useful tools to understand the
structure of hadrons. Even if their Q2 evolution is con-
sistent with perturbative QCD, they result mainly from
non-perturbative effects that are still not calculable in
the framework of QCD. This has led to phenomenolog-
ical quark models embodying various non-perturbative
aspects of QCD. These models can be used to depict the
behaviour of the structure functions and to understand
the connection between data and non-perturbative as-
pects of hadrons. There has been extensive work on di-
agonal distributions along these lines (see Refs [1]-[2] for
the pion case). These distributions can be used as the
initial condition for a DGLAP evolution, which is neces-
sary before a comparison with data [3]. Such models can
be applied to the off-diagonal case, for which generalised
structure functions [4] can be linked [5] to generalised
parton distributions (GPD’s).

One of the setbacks of phenomenological quark models
suited to the description of the low-energy features of
hadrons is that the underlying quark structure is ob-
scured by the necessary introduction of regularisation
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procedures which result in non-negligible differences in
the structure functions.

To avoid these complications, we investigated the diag-
onal structure functions in the case of a simple model
for the pion [1], where the pion-quark-antiquark pseu-
doscalar coupling (iγ5gπqq̄) yields the correct symmetry,
while the non-perturbative aspects come from a momen-
tum cut-off mimicking the size of the pion, but still pre-
serving gauge invariance. This freed us from the ques-
tion of what would be the detailed inner structure of the
meson. In that calculation, owing to the introduction
of such a cut-off, crossed diagrams for the pion-photon
scattering appear as higher twists, leading twist struc-
ture functions can be identified, and a reduction of the
momentum fraction carried by the quarks is observed.Of
course, as the cut-off is relaxed to let the quarks behave
freely, the momentum sum rule 〈2x〉 = 1 is recovered at
infinite Q2. Having that tool at hand, we now turn to
the investigation of the properties of off-diagonal par-
ton distributions, which are likely to shed some light on
parton correlations and which have therefore attracted
much interest in recent years [6,7,8,9,10,11].

In the following, we calculate the imaginary part of the
off-forward photon-pion scattering amplitude, and of the
structure functions F1, . . . , F5, related to the five inde-
pendent tensor structures in the scattering amplitude,
and we discuss their behaviour.We relate them to vector
and axial vector form factors and to the twist-two and
twist-three generalised parton distributions (GPD’s) H ,
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H3 and H̃3. We shall show that, within our model and in
the high-Q2 limit, the non-diagonal structure functions
F3 and F4 are related to F1, while F5 happens to be a
higher twist. These results lead to new relations for the
GPD’s in the neutral pion case.

2 General tensorial structure of the γ⋆π → γ⋆π
amplitude

2.1 External Kinematics

Let p1 and p2 be the momenta of the ingoing and out-
going pions, q1 and q2 those of the corresponding pho-

tons (see Fig. 1). Defining p = (p1+p2)
2 , q = (q1+q2)

2 and
∆ = p2 − p1, one can then write the scattering ampli-
tude as a function of the Lorentz invariants t = ∆2,

Q2 = −q2, x = Q2

2p·q and ξ = ∆·q
2p·q .

In the elastic limit, characterised by (q+∆
2 )

2 = (q−∆
2 )

2,
one has ∆ · q = 0 and thus ξ = 0, while the diagonal
limit (∆ = 0) is obtained for ξ = 0 and t = 0. We
further recover the Bjorken variable x = xB , where xB =

− q2
1

2p1·q1 .

For Virtual Compton Scattering (VCS), for which the
outgoing photon is on-shell, ξ is related to x through ξ =

−x
(

1− ∆2

4Q2

)

. Hence in the Deeply Virtual Compton

Scattering (DVCS) limit, t≪ Q2 and ξ = −x.

2.2 The structure functions Fi’s

The hadronic tensor is defined through

Tµν(q, p,∆) = i

∫

d4reir·q 〈p2|T jµ(r/2)jν(−r/2)|p1〉 .(1)

There exist five independent kinematical structures in
Eq. (1) that parametrise the photon-pion amplitude.
Defining the projector Pµν = gµν − q2µq1ν

q1·q2 and making

use of these five structures, we can rewrite Tµν as follows:

Tµν(q, p,∆) = −Pµσg
στPτνF1 +

Pµσp
σpτPτν

p · q F2

+
Pµσ(p

σ(∆τ − 2ξpτ ) + (∆σ − 2ξpσ)pτ )Pτν

2p · q F3

+
Pµσ(p

σ(∆τ − 2ξpτ )− (∆σ − 2ξpσ)pτ )Pτν

2p · q F4

+Pµσ(∆
σ − 2ξpσ)(∆τ − 2ξpτ )PτνF5. (2)

Current conservation is ensured by means of the projec-
tor Pµν . Our notation slightly differs from Ref. [5]: we

have included a factor 1/m2
π in the definition of F5 in or-

der to avoid divergences when the chiral limit is taken.
Note that Bose symmetry requires F1, F2, F4, F5 to be
even and F3 to be odd in ξ.

3 The model

3.1 General description

We use the pion model introduced in our previous
work [1], in which the qqπ vertex is represented by
the simplest pseudoscalar coupling. The Lagrangian
includes massive pion and massive quark fields interact-
ing through the pseudoscalar vertex, with an effective
pion-quark coupling constant.

Considering an isospin triplet pion field ~π = (π+, π0, π−)
interacting with quark fields ψ the Lagrangian density
reads

Lint = ig(ψ ~τγ5ψ). ~π, (3)

where ~τ is the isospin vector operator.

Of course, if our pseudoscalar field is to represent real pi-
ons, we have to impose that the corresponding hadrons
have a finite size. That we shall do through the use of
a cut-off, as detailed below, the choice of which sets a
constraint on the value of the quark-pion coupling con-
stant [1].

We shall limit ourselves in this paper to the calculation
of the imaginary part of the scattering amplitude, which
allows a direct comparison with our previous work and
which is sufficient to determine the GPD’s of neutral
pions [5].

At the leading order in the loop expansion, four diagrams
contribute. They are displayed in Fig. 1. Following the
kinematics defined in section 2.1 and applying Feynman
rules, it is straightforward to write down the analytical
expression for the scattering amplitude. For a given set
µ, ν of the photon indices and with well-known conven-
tions 4 , the contribution of the first diagram (a) shown
in Fig. 1 to the scattering amplitude reads

4 The isospin/charge factor (e2u + e2d) corresponds to the

following choice of the isospin matrix: π− :





0 0
√
2 0



 ; π0 :





1 0

0 −1



 ; π+ :





0
√
2

0 0



 ; γ :





eu 0

0 ed





2
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Fig. 1. The simplest diagrams contributing to the imaginary part of the amplitude for the scattering γ⋆π → γ⋆π. Upper (lower)
diagrams are referred to as box (crossed) diagrams. Dashed lines represent the discontinuity of the amplitudes, i.e. their imaginary
parts.

Mµν
a = 3g2(e2u + e2d)

∫

d4kTr(γ5((k/ − p/) +mq)γ
5

k/+ ∆/
2 +mq

(k + ∆
2 )

2 −m2
q

γν((k/ + q/) +mq)γ
µ k/− ∆/

2 +mq

(k − ∆
2 )

2 −m2
q

). (4)

Expressions from the other three diagrams of Fig. 1 – the
one with reverse loop-momentum and the two crossed
diagrams – are similar and are not written down. Results
below all pertain to the chiral limit mπ = 0.

3.2 The implementation of the cut-off

A simple way to impose that the pion has a finite size is to
require that the square of the relative four-momentum of
the quarks inside the pion is limited to a maximum value
Λ2. Before writing this explicitly, let us give the details of
the internal kinematics, i.e. the one involving the loop-
momentum k. Let φ and θ be the spherical angles of
~k with respect to the z-axis taken as the direction of

the incoming photon. Defining k2ρ = |~k|2 and τ = k2 =

k20 − k2ρ, and using spherical coordinates, we write the
element of integration as:

d4k = dk0dkρk
2
ρd(cos θ)dφ, (5)

or with the help of the variable τ :

d4k = dk0
kρ
2
dτd(cos θ)dφ. (6)

According to Cutkosky rules, the imaginary part of
the amplitude is obtained by putting the intermediate
quark lines on shell. This is realised by the introduc-
tion of the two delta functions, δ

(

(k + q)2 −m2
q

)

and

δ
(

(k − p)2 −m2
q

)

.

Working out the delta functions, we obtain that:

δ
(

(k + q)2 −m2
q

)

δ
(

(k − p)2 −m2
q

)

=

1

2kρ|~q|
δ (cos θ − cos θ0)

1

2
√
s
δ (k0 − k′0) (7)

with cos θ0 =
2k0q0−Q2−m2

q+τ

2kρ|~q| and k′0 =
Q2+mπ− t

4

2
√
s

. Fi-

nally, the element of integration over the internal mo-
mentum, considering only the imaginary part of the am-
plitude, reads:

d4k = dτdφ
1

8
√
s|~q|

∣

∣

∣

∣

k0=k′

0
,cos θ=cos θ0

, (8)

with |~q| = 1
2x

√

4sx2Q2+(1−2x)2Q4

s . The boundary values

of the integration domain on τ are obtained by solving
cos θ0 = ±1.

Now we may look at the effect of the finite size of the
pion on the integration procedure upon k. The relative
four-momentum squared of the quarks inside the pion is
given by

3



O±
1 =

(

2k − p± ∆

2

)2

= 2τ + 2m2
q −m2

π +
t

2
± 2k ·∆, (9)

for pion-quark vertices like the ones in diagram
Fig. 1.(a), and by

O±
2 =

(

2k − p+ 2q ± ∆

2

)2

=−2τ + 6m2
q −m2

π +
t

2
− 2Q2

x
± 2(k ·∆+

ξQ2

x
), (10)

for vertices as in diagram Fig. 1.(b). Note that k ·∆ is a
known function of the external variables as well as of θ
and τ . Generalising the procedure of [1], we require ei-
ther |O±

1 | < Λ2 or |O±
2 | < Λ2 for all diagrams. Gauge

invariance is preserved by the cut-off, since |O±
i | depend

only upon the external variables of the γ⋆π → qq̄ pro-
cess.

As the Oi’s and τ are always negative, we require one of
the two following conditions:

τ >
−Λ2

2
+
m2

π

2
−m2

q −
t

4
+ |k ·∆| ,

τ <
Λ2

2
− m2

π

2
+ 3m2

q +
t

4
− Q2

x
−
∣

∣

∣

∣

ξQ2

x
+ k ·∆

∣

∣

∣

∣

. (11)

For t small, |O1| and |O2| cannot be small simultane-
ously. The crossed diagrams have their main contribu-
tion for O1 ≃ O2, and are thus suppressed by a power
Λ2/Q2 when the cut-off is imposed. The box diagrams
have a leading contribution for |O1| or |O2| small, and
are not power suppressed by the cut-off.

It may be worth pointing out that the vertical propaga-
tors are more off-shell in DVCS than in DIS, hence one
would expect DVCS to be better described by perturba-
tion theory than DIS.

3.3 The coupling constant

In the diagonal case, we have determined the coupling
constant g = gπqq by imposing that there are only two
constituents in the pion. This sum rule constraints F1 as
follows [1]:

∫ 1

0

F1(x)dx =
5

18
. (12)

As F1/g
2 is a priori a function of Q2, the sum rule im-

poses that g should be a function of Q2. But at high
enough Q2, where the details of the non-perturbative
interaction are less and less relevant, F1/g

2 reaches its
asymptotic shape when the cut-off procedure is ap-
plied, and we obtain a constant value for g. In Ref. [1],
this asymptotic regime was reached for Q2 as small as
2 GeV2. In the following, we shall make use of these
previously obtained values, which are functions of the
cut-off Λ.

However in the DVCS case, an ambiguity may arise as
one of the vertices has an external kinematics similar to a
vanishing Q2 DIS. This ambiguity is lifted if one notices
that the pertinent quantities are not q21 and q

2
2 separately

but the factorisation scale, which may be taken as the
square of their mean, Q2. Thus in DVCS, although q22
vanishes, Q2 does not and we shall consider that g is
constant.

4 Results

4.1 General features

From the imaginary part of the total amplitude, the five
structure functions Fi can be obtained by a projection on
the corresponding tensors. Fromnowon,Fi will stand for
the imaginary part of these structure functions. In order
to display their general features, we plot them in Fig. 2
first as functions of x and ξ for parameter values mq =
0.3 GeV and Λ = 0.75 GeV, to ease the comparison
with [1], and for Q2 = 10 GeV2 and t = −0.1 GeV2.
Let us notice that for any fixed value of ξ not close to
±1, we recover for F1 and F2 the same behaviour as in
the diagonal case. We checked indeed that the diagonal
limit is recovered for ξ = 0 and t = 0. Let us notice also
that the structure functions F3, F4, F5 depend little on
ξ except when this variable is close to ±1.

Let us turn now to DVCS. Fig. 3 displays the behaviour
of F1 for various values of t with and without cut-off. In
the presence of size effects, the value of F1 gets signif-
icantly reduced, especially for small x, as |t| increases,
whereas that effect is much less noticeable without cut-
off.

In the elastic case (see Fig. 4), the same suppression
at small x is observed, especially when the cut-off is
applied. In Fig. 5, we display the average value of 2xwith
respect to theF1 distribution. The value of 〈2x〉 increases
when |t| increases. The momentum fraction carried by

4
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Fig. 2. Plot of the five structure functions as functions of x (∈ [0, 1])and ξ (∈ [−1, 1]) with a cut-off Λ = 0.75 GeV, at
Q2 = 10 GeV2 and t = −0.1 GeV2.
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Fig. 3. F1 as a function of x for various values of t in the DVCS case with (a) and without (b) cut-off (Λ = 0.75 GeV), at
Q2 = 10 GeV2.
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Fig. 4. Evolution of F1 (elastic case, ξ = 0) for decreasing values of t with (a) and without (b) cut-off, for Q2 = 10 GeV2.

1 5 10 15 20

Q (GeV )
2 2

0.6

0.65

0.7

0.75

∫2
 x

 F
1 / 

∫ F
1

t =  0 GeV
2

t = -0.1 GeV
2

t = -0.2 GeV
2

t = -0.4 GeV
2
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Fig. 6. F1 as a function of x for t = −0.1 GeV2 and for various values of Q2 in the DVCS case with (a) and without (b) cut-off.

the quarks and probed by the process thus increases with
the momentum transfer.

The effects of the variation of Q2 are displayed in Fig. 6.
As in the diagonal case [1], we can conclude that the
details of the non-perturbative effects cease to matter for
Q2 greater than 2 GeV2, that is significantly larger than
Λ2. On the other hand, when the cut-off is not applied,
we see (Fig. 6 (b)) that F1 evolves so slowly withQ

2 that
the asymptotic state is not visible.

4.2 High-Q2 limit: new relations

Having determined the 5 functions Fi’s in the context of
our model, we shall now consider their behaviour at high
Q2. Expanding the ratios of F2

F1

, F3

F1

,F4

F1

,F5

F1

, we obtain the
following asymptotic behaviour:

F2 = 2xF1 +O(1/Q2), (13)

F3 =
2xξ

ξ2 − 1
F1 +O(1/Q2), (14)

F4 =
2x

ξ2 − 1
F1 +O(1/Q2), (15)

F5 =O(1/Q2). (16)

The fact that at leading order there are only three in-
dependent structure functions has been known for some
time [5,10]. However, we show here that they can all be
obtained from F1. The first relation is similar (at lead-
ing order in 1/Q2 and with the replacement of x by xB)
to the Callan-Gross relation between the diagonal struc-
ture functions F1 and F2, valid for spin one-half con-
stituents in general. Except for F5, which is small at
large Q2, these relations show that F2, F3 and F4 are
simply related to F1 at leading order. These relations
clearly display and therefore confirm the symmetries of

these functions. Combining Eqs. (14) and (15), we have,
at leading order,

F3 = ξF4, (17)

which confirms that F3 is an odd function of ξ, while F4

is even.

The simple relations between the Fi’s (at leading order)
constitute a remarkable result of our model. Further-
more, we checked that the term O(1/Q2) in Eq. (13) is
numerically quite small, even for moderateQ2. One may
wonder whether these results are typical of our model or
more general.

5 Linking the Fi’s to H, H3, and H̃3

Having at hand the five functions Fi’s that parametrise
the amplitude for γ⋆π → γ⋆π, we would like to link
them to the off-forward parton distribution functions or
to the generalised parton distributions. For this purpose,
we make use of a tensorial expression coming from the
twist-three analysis of the process, which singles out the
twist-two H and the twist-three H3, H̃3 form factors.
Following Ref. [5], we write 5 :

Tµν(q, p,∆) =−Pσµg
στPντ

q · V1
2p · q

+ (Pσµp
σPνρ + Pρµp

σPνσ)
V ρ
2

p · q
−Pσµiǫ

στqρPντ
A1 ρ

2p · q . (18)

5 Please note that Ref. [5] uses Pνµ instead of Pµν as pro-
jector.
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Fig. 7. A comparison of the values of H3 and H̃3 obtained in our model (left) with those calculated in the Wandzura-Wilczek
approximation, using the value of H from our model (right), for Q2 = 10 GeV2.

where the Vi’s and A1 read

V1 ρ = 2pρH+ (∆ρ − 2ξpρ)H3 + twist 4, (19)

A1 ρ =
iǫρ∆pq

p · q H̃3, (20)

V2 ρ = xV1 ρ −
x

2

pρ
p · q q · V1 +

i

4

ǫρσ∆q

p · q A
σ
1 + twist 4.

(21)

In Ref. [5], gauge invariance of Eq. (18) beyond the twist-
three accuracy was in fact restored by hand, contrarily
to the present calculation for which the amplitude is
explicitly gauge invariant.

To relate the Fi’s to the H’s, we project the ampli-
tude (18) onto the five projectors contained in Eq. (2)
and identify the results with the Fi’s. Note that, in the
neutral pion case, the imaginary part of the form factors
H directly gives the GPD’sH ,H3 and H̃3 up to a factor
2π. As we have kept the off-shellnesses of the photons
arbitrary, we in fact can relate the imaginary parts of Fi

to the GPD’s for arbitrary x and ξ:

1

2π
F1 =H, (22)

1

2π
F2 = 2xH +O(

1

Q2
), (23)

1

2π
F3 =

2x

x2 − ξ2

(

H3x2 + H̃3ξx−Hξ
)

+O(
1

Q2
), (24)

1

2π
F4 =

2x

x2 − ξ2

(

H3ξx+ H̃3x2 −Hx
)

+O(
1

Q2
), (25)

1

2π
F5 =O(

1

Q2
). (26)

Replacing the Fi’s by the expressions (13-16), we can
write

H̃3 =
(x− 1)

x(ξ2 − 1)
H +O(

1

Q2
), (27)

and

H3 =
(x− 1)ξ

x(ξ2 − 1)
H +O(

1

Q2
) = ξH̃3 +O(

1

Q2
). (28)

As F1 to F4 can be written in term of only one of them,
e.g. F1, it is not surprising that H3 and H̃3 are simply
related to H . Note that polynomiality of the Mellin mo-
ments of H , H3 and H̃3, together with Eqs. (27) and
(28), imply that H must be a polynomial PH multiply-

ing ξ2 − 1. The fact that, as can be seen from Fig. 7, H̃3

is almost independent of ξ shows that PH is very close
to a constant.

To convince ourselves that relations (27) and (28) are
new, we have compared them to the Wandzura-Wilczek
approximation [12], given in the pion case in [5,13]. First
of all, it is well-known that these relations are discon-
tinuous at ξ = ±x, which is not the case for (27) and
(28). Furthermore, we show in Fig. 7 the results of the
Wandzura-Wilczek approximation compared with our
results. We see that the two are numerically very differ-
ent. Hence the relations (27) and (28), derived in an ex-
plicitly gauge-invariant model, do not come from ”kine-
matical” twist corrections, but emerge from the dynam-
ics of the spectator quark propagator and from finite-size
effects.
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6 Discussion and conclusion

We have extended our previous model for the pion to
investigate the off-diagonal structure functions for this
particular case. The introduction of a cut-off allows the
crossed diagrams to behave as higher-twists and to relate
the imaginary part of the forward amplitude with quark
GPD’s.

We used the formalism of Ref. [5] in order to decompose
the amplitude along the relevant Lorentz tensors, to de-
fine five structure functions Fi, and to relate the latter to
the GPD’s H , H3 and H̃3 introduced in the twist anal-
ysis. We have found that our results in the forward case
are qualitatively preserved when departing from the for-
ward limit.

Our investigation yields new results. In particular, we
singled out new relations, which link the Fi’s in a simple
manner at leading order in 1/Q2. More intriguing, we
found that the twist-three structure functions are simply
related toH by relations that differ from the Wandzura-
Wilczek approximation.

Although these relations are derived in the context of our
simple model, it is possible that they can be extended
to a more general case.
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