
Reducing Instruction Fetch Energy with Backwards Branch
Control Information and Buffering

Jude A. Rivers, Sameh Asaad, John-David Wellman, and Jaime H. Moreno
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598, USA

{jarivers,asaad,wellman,jhmoreno}@us.ibm.com

ABSTRACT
Many emerging applications, e.g. in the embedded and DSP
space, are often characterized by their loopy nature where
a substantial part of the execution time is spent within a
few program phases. Loop buffering techniques have been
proposed for capturing and processing these loops in small
buffers to reduce the processor‘s instruction fetch energy.
However, these schemes are limited to straight-line or inner-
most loops and fail to adequately handle complex loops.
In this paper, we propose a dynamic loop buffering mech-

anism that uses backwards branch control information to
identify, capture and process complex loop structures. The
DLB controller has been fully implemented in VHDL, syn-
thesized and timed with the IBM Booledozer and Einstimer
Synthesis tools, and analyzed for power with the Sequence
PowerTheater tool. Our experiments show that the DLB
approach, on average, results in a factor of 3 reduction in
energy consumption compared to a traditional instruction
memory design at an area overhead of about 9%.

Categories and Subject Descriptors
B.3.2 [Hardware]: Primary Memory

General Terms
Algorithms, Design, Performance

Keywords
low-power, instruction fetch, loop buffer

1. INTRODUCTION
Many emerging applications, especially in the embedded

and digital signal processing space, are characterized as hav-
ing a loopy nature, where a substantial part of their execu-
tion time is spent within a few program phases or loop nests.
Loop buffering techniques have been proposed [1, 3] for cap-
turing such instruction loops in small buffers, thus reducing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

the microprocessors instruction fetch energy by not power-
ing up the primary instruction memory unit when executing
these loops. Although these prior schemes have been shown
to be effective in reducing the energy consumed for some
applications, they are often limited by either the method of
loop implementation and/or the technique of loop identifi-
cation, capture and buffer management.
Some schemes (e.g. [3]) employ pure hardware dynamic

identification, capture and loop management while others
depend on instruction profiling (e.g. [1]) for static preloading
of identified loops, or compiler support for dynamically load-
ing targeted loops. Profiling and compiler support based
methods tend to be application/platform specific, and not
general enough for portability across different microproces-
sor platforms and instruction set architectures (ISAs). A
dynamic hardware loop caching scheme like the one pro-
posed by Lee et al. (henceforth referred to as the LMA
scheme [3]), though general and portable across micropro-
cessor platforms, is limited in its ability to capture various
complex loop structures like nested loops with if-then-else
constructs and/or exception condition checks. The real ben-
efit of dynamic loop buffering is yet to be fully realized.
As computational devices grow more pervasive, and the

roles of portable, battery-powered devices keeps expand-
ing, there is an increasing focus on issues that affect bat-
tery life. Further, even in the traditional realm of desktops
and servers, there is a growing focus on controlling both the
amount of energy consumed and the resulting power/heat
dissipated, particularly in order to control packaging/cooling
requirements.
There is therefore the need for future systems to provide

sufficient processing power to efficiently execute emerging
workloads at the lowest possible energy consumption levels.
Hence, an instruction fetch scheme is necessary that effi-
ciently, economically, and dynamically exploits instruction
fetch redundancy to save energy.

1.1 Previous Work
Various methods for reducing instruction fetch energy con-

sumption of loopy workloads have been proposed. Signifi-
cant among them include dynamic approaches, like the LMA
loop cache [4, 3] and the filter cache [2], and static ap-
proaches like the pre-loaded loop buffer [1]. Each of these
approaches offers some benefits but also have some limita-
tions.
In [4, 3], Lee et al. describe a simple loop buffering scheme

that dynamically identifies, captures, and manages a small
loop body during processor execution. The loop body, cap-

322

tured in a small tagless memory unit, then feeds the pro-
cessor instruction stream directly if the loop is subsequently
retaken after the capture. The processor is able to power-
down the primary instruction memory unit during the cycles
where the instruction stream is fed from the loop buffer, thus
providing a significant savings in instruction fetch energy.
While the LMA loop cache scheme does reduce the aver-

age instruction fetch energy, there are limitations on its ap-
plicability. The scheme fails to capture loops which contain
internal branches (e.g. an if-then-else construct within the
loop body) and loops which do not use a single loop-ending
branch but instead have a number of separate tail-sections
which all return to the same loop start. Many ISAs with-
out predicated instructions tend to form loops with internal
branches. In addition, the LMA controller may not capture
loops longer than the loop cache. Our analysis [6] of the
LMA scheme on various workloads (not shown here) demon-
strate that many very loopy codes do not benefit enough,
especially loops with more complex inner bodies and longer
larger loop nests.
Gordon-Ross et al. [1] exploits the fact that some embed-

ded systems are designed to run a single application. Taking
advantage of workload-specific information in the hardware
design, a mechanism is provided for the user or compiler
to specify a set of loop bodies to be pre-loaded into a loop
buffer. These loop bodies will remain resident, will include
all the executable code for the loop body, and thus can al-
ways be used to serve the execution of that loop. This has
several advantages, including the ability to avoid the initial
dynamic detection overhead, and the ability to capture more
complex types of loops.
Another approach which indirectly captures loop bodies

is the filter cache [2]. A filter cache is simply a tiny level
zero cache located between the processor and the primary
instruction cache memory. When a relatively small foot-
print sees repeated use, such as a small loop body, the filter
cache can serve the accesses and avoid lookups in the main
instruction cache. This allows for arbitrary loop bodies to
be captured, but does have the drawback of the overheads
associated with a cache, e.g. the tag arrays, etc. and the
energy cost of cache pollution.
Our focus is on exploiting a dynamic hardware mechanism

that uses behavior information to reduce the fetch energy of
arbitrary loopy workloads. We introduce a scheme along
the lines of the LMA approach and do not further consider
other cache design issues.

2. THE DYNAMIC LOOP BUFFER
Our work proposes an improved dynamically-managed loop

buffer (DLB). The DLB structure consists of a loop buffer
memory structure, where upon detection of a loop, copies
of the loop instructions are dynamically filled into the loop
buffer, which is then used to feed subsequent matching fetch
requests. The DLB controller dynamically detects and cap-
tures loop nests (i.e. multiple levels of looping), loops with
complex internal control-flow (e.g. loops which include con-
ditional code within the loop body) and portions of loops
that are too large to fit completely in a loop buffer.

2.1 The Loop Buffer Memory
The loop buffer memory consists of three elements. The

first is a small, tagless buffer array structure which can be
randomly accessed. This structure, which may be built

out of low-power register arrays, sits in parallel with the
SRAM memory arrays of the primary instruction memory
unit. The next element consists of two registers that record
the range of the captured loop (i.e. the loop start and end
addresses). These registers determine when addresses fall
within the captured loop range. The final element is a set
of bits (forming part of the DLB controller logic) used to
indicate whether a loop buffer entry is valid/filled or not.
This allows the loop buffer memory to contain unfilled slots,
providing the ability to capture more complex loop bodies
and structures.

2.2 The DLB Controller
The DLB controller is a finite state machine that provides

more sophisticated utilization of the loop buffer memory.
The DLB state transitions are as shown in Figure 1.

I

A F

2b

4

5

9b

2a

1

O

6a

9c

7

6b

3

2c

9a

8

9d

Figure 1: The DLB Controller

The DLB controller is a four state finite state machine.
In addition to similar Active (A), Idle (I) and Fill (F) states
as used in the LMA controller, there is an Overflow (O)
state. The Overflow state allows the controller to identify,
capture, and manage portions of a loop that is too large
to completely fit within the buffer. The state transitions
illustrated in Figure 1 are further described in Table 1.
Execution begins in the Idle state, and remains there un-

til an appropriate transition is triggered. Upon initial de-
tection of a backward branch (that is also reasonably likely
to be a loop ending branch), the DLB controller declares a
new loop, records the address of the branch as the current
Loop End and the target address as the current Loop Start,
and transitions to the Fill state. Loop Start and Loop End
then defines the current DLB loop range.
The DLB controller will continue to fill the loop buffer

with copies of subsequently fetched instructions until:

• execution moves outside the current DLB loop range,
transitioning to Idle

• execution returns to a previously filled address within
the DLB loop range, transitioning to Active

• execution moves beyond the physical size of the buffer,
transitioning to Overflow

When in Active state, the primary instruction memory
unit is powered-down and the loop buffer supplies requested
instructions. The controller remains in the Active state un-
til execution either moves out of the DLB loop range (to
Idle), beyond the physical buffer size (to Overflow) or into a
previously unfilled area of the loop buffer (Fill). In the Over-
flow state, requests are forwarded to the primary instruction

323

ID From-To Condition
1 I - F [(backward branch(bb) detected & taken) OR

(move within loop range & entry invalid)]
2a F - I [(bb not taken) OR (another cof causes
2b A - I move outside loop range)]
2c O - I
3 I - A (move into loop range & entry valid)
4 F - A [(bb is taken again) OR (another indented

bb is taken)] & (entry valid)
5 A - F [(resume filling rest of loop) OR (move

within loop range & entry invalid)]
6a F - O (end of physical loop buffer reached)
6b A - O
7 O - A [(cof caused within loop range) OR (bb

detected and taken again)] & [(next-data
within buffer range) & (entry valid)]

8 O - F [(cof caused within loop range) OR (bb
detected and taken again)] & [(next-data
within buffer range) & (entry invalid)]

9a I - I (no cof)
9c F - F
9d O - O
9b A - A (no cof) & (entry valid)

Table 1: State Transitions for DLB

memory while monitoring for a transition back into within
the buffer physical range.
The DLB controller is stateful, in that it keeps sufficient

system state and history for loop detection and manage-
ment. In addition to the Overflow state, the DLB approach
uses transition 3 to avoid being a “capture, use, and destroy”
technique like the LMA. Transition 3 allows for future reuse
of abandoned loops that are revisited before they are over-
written.

3. SYSTEM EVALUATION AND ANALYSIS
To accurately estimate the effectiveness, power, area and

timing characteristics of the proposed DLB as well as the
LMA, the two controllers were implemented in VHDL and
synthesized using the IBM 0.13 um ASIC library as a target.
Each controller was implemented to intercept the path be-
tween the processor core and the primary instruction mem-
ory and, based on the algorithm, decide whether to forward
the instruction fetch request to the memory or to block and
serve the request from the local loop buffer. To ensure no
additional delay cycles, we designed for this decision to hap-
pen within the first half cycle from the start of the access.
The design operated at 450 MHz using a nominal supply
voltage of 1.5V.
A new low-power DSP microprocessor, eLite[5], being de-

veloped at the IBM TJ Watson Research Center was the
native core used in this evaluation. eLite fetches 8 byte
long instruction words (LIWs) per cycle. The 32 Kbytes
flat instruction memory was organized as four banks. The
memory banks were each implemented with “compilable”
1K entries x 64 bits wide SRAM arrays, and the loop buffer
with a 64 entry by 64 bits dual ported growable register
array (GRA), all from the IBM technology library.

3.1 Design Entry and Verification
We constructed a VHDL testbench to simulate each of the

controllers. The testbench consisted of the controller unit
under test connected from one side to a model of the pri-
mary instruction memory unit and from the other side to a
driver process that simulates the instruction fetch behavior
of the processor as shown in Figure 2. We verified the cor-
rectness of the implementation through numerous validation

simulations at the RTL level. All instructions returned to
the processor (either from the main instruction memory or
the loop buffer) were verified for correctness.

B0 B1 B2 B3

DLB
Control

64

12

12

12

rdata
w

data

w
addr

imem

data imem

read

rden

rden

rdata

64

64

raddr

raddr

w
ren

DLB_MEM

IMEM IMG

driver
testbench

Trace
File

Figure 2: VHDL Testbench

The benchmarks used in this evaluation are typical signal
processing functions written for the eLite[5]. They included:
viterbi decoding (viterbi), block finite impulse response fil-
ter (bkfir), fast fourier transfom (fftr64a), huffman decoding
(huffman), infinite impulse response filter (iir) and double
precision finite impulse response filter (dpfir).
We ran RTL level simulations to examine the ability of the

two schemes to detect, capture and manage loops. Figure 3
shows the state occupancy distribution of the DLB (right
bar) and LMA (left bar) controller schemes for a 64-entry
loop buffer across the six benchmarks. On the average, the
DLB controller is in the Active state 83% of the time, 4%
in the Fill state, and 12% in Idle. The LMA controller,
however, stays in Active 56% of the time, 21% in Fill, and
23% Idle. The fact that the DLB operates more frequently
in the Active state and substantially less in both Fill and
Idle states shows that these simple workloads possess various
complex loop formations which the LMA controller fails to
adequately handle.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

viterbi bkfir fftr64a huffman iir dpfir

Active

Fill

Idle

Figure 3: State Occupancy Distribution

3.2 Synthesis, Timing and Power Estimation
Each of the controllers was synthesized using IBM Boole-

dozer synthesis tool and timed using IBM Einstimer static
timing analysis tool. Synthesis results are shown in Table 2.
The resulting gate level netlist was saved in Verilog format.
As expected, the loop buffer schemes result in extra area
overheads, adding on 57K cells for the DLB and 52.4K cells
for the LMA. Even though the DLB scheme maintains ade-
quate state information as compared to the LMA, the logic
area difference among them is close to negligible.

324

Area Estimates (KCells) DLB LMA
SRAM Bank (SRAM1DN 1Kx64) 151 151
Decode Logic and Wrapper 37 37
Total Primary Memory 641 641
(4 Banks + Decode Logic)
Controller 10 5.4
Loop Buffer (GRA 64x64) 47 47
Total Added Area 57 52.4
Area Overhead 9% 8%

Table 2: Area Estimates for the DLB and LMA

To estimate power, we modified our VHDL testbench slightly
to instantiate the synthesized gate level description of the
corresponding controller. A monitor process was also in-
cluded in the testbench to monitor gate switching activity
of the design. We ran our benchmarks to record switching
activity.
PowerTheater (a commercial power estimating tool from

Sequence Design) was used for power estimation. The tool
takes as input the gate-level design netlist, the switching
activity file, and a library of power models that characterizes
the power consumption for the various gates in the ASIC
library. The latter came from the IBM ASIC design kit along
with power models for the SRAMs. Since the design was pre-
layout, we configured the tool to estimate wire capacitances
based on the number of cells in the design and also estimate
the clock tree power based on the number of latches, the type
of clock buffers and the allowable fanout limits for each level
in the clock tree.

4. RESULTS
Figure 4 shows the power dissipation of the instruction

memory subsystem. For each benchmark, the right column
depicts the base power, which is the power without any loop
buffer in place. The middle column shows the power using
the LMA controller, and the left column shows the same for
the DLB controller. First, the average power for the base
system remains constant across the different benchmarks.
This is due to the fact that the power model of our SRAM
is not sensitive to data variations. In other words, the ASIC
library assumes the same power for a read access regard-
less of the actual bit values being read. In all but the iir
benchmark, the DLB controller dissipates less power than
the LMA since it can capture more complex loop structures,
as Figure 5 suggests. For the iir, a quick visual inspection
of the assembly code reveals simple straight loop structures
that are easily handled by the LMA, and since the LMA
controller has less state than the DLB, it results in slightly
less power. On the other hand, the huffman benchmark
presents a classic scenario where the LMA controller dissi-
pates more power than the base memory structure without
a loop buffer. This is due to the complex nature of the loops
in the huffman benchmark which causes the LMA controller
to toggle between the “Idle” and “Fill” states while never
trapping into the “Active” state, as shown by the zero LMA
buffer hit rate for huffman in Figure 5.
Our DLB scheme shows, on the average, a factor of 3

improvement on energy consumption reductions over a tra-
ditional primary instruction memory, which in this case is a
flat memory built out of SRAMS. The DLB scheme also im-
proves upon the LMA technique‘s energy reduction by more
than 50%.

viterbi bkfir fftr64a huffman iir dpfir

0

50

100

150

DLB Power

LMA Pwr

Base Power

Figure 4: Power Dissipation

viterbi bkfir fftr64a huffman iir dpfir

0

20

40

60

80

100

DLB % Hit

LMA % Hit

Figure 5: Hit Rate Comparison

5. CONCLUSION
Power considerations are becoming increasingly important

in computer system design. Many applications, including
multimedia, signal processing and high-performance com-
puting, exhibit significant looping behavior. This obser-
vation leads one to consider reducing the instruction fetch
power by the introduction of small, low-power mechanisms
to capture loop code and feed processing elements from that
low-power path.
Previous work on exploiting looping behavior for fetch en-

ergy reductions are limited in the types and kinds of loop
structures that can be captured for low-power buffering.
We have presented an improved dynamically-managed loop
buffering mechanism which addresses most of these limita-
tions. Our proposed dynamic loop buffer controller is state-
ful and intelligently managed and has the ability to capture
the vast majority of simple and complex loop structures in
today‘s emerging loopy workloads.
Our DLB scheme shows, on the average, a factor of 3

improvement on energy consumption reductions over a tra-
ditional primary instruction memory built out of SRAMS.
The DLB scheme also improves upon the loop cache tech-
nique of Lee et al. by more than 50% on average.

6. REFERENCES
[1] A. Gordon-Ross, S. Cotterell, and F. Vahid. Exploiting Fixed

Programs in Embedded Systems: A Loop Cache Example. In
Computer Architecture Letters, 2002.

[2] J. Kin, M. Gupta, and W. Mangione-Smith. The Filter Cache:
An Energy Efficient Memory Structure. In International
Symposium on Microarchitecture, pages 184–193, December
1997.

[3] L. H. Lee, W. Moyer, and J. Arends. Instruction Fetch Energy
Reduction Using Loop Caches for Embedded Applications with
Small Tight Loops. In International Symposium on Low Power
Electronics and Design (ISLPED), August 1999.

[4] L. H. Lee, W. Moyer, and J. Arends. Low-Cost Embedded
Program Looping Cache - Revisited. Technical Report
CSE-TR-411-99, University of Michigan, December 1999.

[5] J. H. Moreno et al. An innovative low-power high-performance
programmable signal processor for digital communications. IBM
Journal of Research & Development, 47(2/3):299–326,
March/May 2003.

[6] J. A. Rivers, S. Asaad, J.-D. Wellman, and J. H. Moreno.
Reducing Instruction Fetch Energy Through Dynamic Loop
Buffering. Technical report, IBM TJ Watson Research Center,
January 2003.

325

	Main Page
	ISLPED'03
	Front Matter
	Table of Contents
	Author Index

