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Abstract

A recently proposed method of constructing seismic networks from “record breaking events”

from the earthquake catalog of California (Phy. Rev. E, 77 6,066104, 2008) was successfull in

establishing causal features to seismicity and arrive at estimates for rupture length and its scaling

with magnitude. The results of our implementation of this procedure on the earthquake catalog

of Japan establishes the robustness of the procedure. Additionally, we find that the temporal

distributions are able to detect heterogeneties in the seismicity of the region.
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I. INTRODUCTION

Earthquakes are a prime example of a natural phenomenon– where the spatial and tem-

poral coordinates of an event can be measured with a fair degree of accuracy even as the

dynamics of the process is not fully understood. The unpredictability of an earthquake

occurence has not been reduced by more numerous or more accurate measurements. The

difficulties of seismic analysis involves understanding the roles of the static/geometrical het-

erogeneities in fault zones, the dynamic heterogeneities that result as stress builds up in the

moving lithospheric plates and the possible interactions between the two [1]. The multidi-

mensional character of seismicity makes it difficult to model it and this is further hampered

by the restrictions of having to apply our understanding of rock friction from lab based

results to the enormous length and time scales associated with earthquakes. In order to

develop a realistic model for seismicity and for assessing the seismic potential of a region,

the factors mentioned above needs to be estimated correctly. This will involve being able

to measure the stress and strain at all points along the active fault - which is currently

impossible [2].

The observed clustering of earthquakes suggests that events are correlated in space-time.

Thus, studies of earthquake correlations are important for understanding the dynamics of

the process and for evolving prediction algorithms. In recent times, a large body of work in

seismic studies involves relating the topology of complex networks constructed from earth-

quake catalogs of a region to the spatio-temporal patterns exhibited by seismicity there.

Such an approach is based on the idea that the patterns of seismicity may shed light on

the fundamental physics, since these patterns are the emergent processes of the underlying

many body nonlinear system[2]. New patterns in the clustering of seismicity in space and

time, new parameters that characterise the seismicity in a region, causal connections be-

tween subsequent events, novel methods to estimate the rupture length and its scaling with

magnitude – are some of the prominent outcomes of these catalog based studies ( see for eg.

[3–10]). The central idea contained in these studies is to treat all events in the catalog on

the same footing. That is, the space - time window based distinctions of events as foreshocks

- mainshocks - aftershocks is avoided. Causal connections are extended to beyond immedi-

ately subsequent events and also an event can have more than one correlated predecessor. In

these studies, correlations between events have been established from different perspectives
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and complex networks are constructed by linking correlated events. For example, the region

studied may be divided into small cubic cells. Each cell becomes a node in the network if an

event happens within it. The network is linked by directed edges between nodes representing

successive events in the catalog [3, 7, 8]. Alternately, correlations have been quantified with

a metric which incorporates the fractal dimension df and the b value of the catalog used.

Links are made between highly correlated events with directed edges [4, 5, 9].

A third procedure involves identifying record breaking recurrences of an event and linking

each event in the catalog to its recurrences with directed edges [2, 10]. This procedure,

illustrated on the earthquake catalog of Southern California had evolved a general method

for inferring causal connections. The patterns exhibited by a network constructed from the

actual catalog of the region was compared with the network of a randomly shuffled catalog

(acausal) in order to establish causal features. In addition, this approach provides a method

of estimating the rupture length, its scaling with magnitude and in identifying new scaling

laws associated with the seismicity of the region.

In this paper, we apply the procedure developed by the authors[2, 10] on the earthquake

catalog of Japan, in order to study the patterns exhibited by its network and to examine the

robustness of the procedure for different seismic regions. This paper is organised as follows:-

Section II briefly describes the construction of the network, Section III will describe the

catalogs used for the analysis, Section IV contains the results and a discussion of it and in

Section V we conclude.

II. CONSTRUCTION OF THE NETWORK

The procedure described in [10] is followed here to identify the recurrences and to con-

struct the network. A directed network is constructed by linking each event i, (i = 1,2,3,· · ·

,N) in a catalog of N events with a magnitude threshold of mth, with an edge pointing from

it ( main event) to its recurrence. Each recurrence j, ( j = i+1,· · · ,N) is a record breaking

event which is closer to the main event i than any event k in the intervening period tj − ti

where tj > tk > ti. This implies that the (i+1)th event is the first recurrence of the ith event

for i = 1, 2, · · · , N − 1 and is always a recurrence however distant it might be. In this way,

each event gets to have its own list of recurrences which follow it in time. This definition of

a recurrence is based solely on the spatiotemporal relations between events in the catalog
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and has no arbitrariness in its selection. Also, any event identified as a recurrence of a main

event does not loose its status if the period of the catalog is enlarged later, as this will

only result in the list of recurrences getting longer if the added events satisfy the condition

of coming closer to the main event in the intervening period. The network is constructed

by considering every event in the catalog as a node and each recurrence is represented by

a directed edge between the pair of events, directed according to the time ordering of the

earthquakes. The two variables associated with each edge are – lij, the distance between

the epicentres of the two events and tij , the time interval between the them. Each node has

an out-degree equal to its number of outward edges (the number of its recurrences) and an

in-degree equal to the number of events it is counted to be a recurrence of. The first event in

the catalog will not have any incoming edges to it and the last event in the catalog will have

no outgoing edges from it. Note that the recurrences defined here do not necessarily relate

to the conventional methods of defining aftershocks and thus the largest magnitude event

in the network need not have the most number of recurrences. The overall structure of the

network represented by the outgoing links and the incoming links describes the clustering

of seismicity in the region studied.

III. THE CATALOG

The catalog studied here is the Japan University Network Earthquake Catalog [11] cover-

ing the rectangular region (126.433◦E–148.0◦E) longitude and (25.730◦N–47.831◦N) latitude,

for the period between January, 1986–December, 1998. The catalog has a threshold magni-

tude of mJMA =2.0. However, we have limited our study to events with magnitude ≥ 2.5.

The total number of such events are 114804. In order to verify the dependance of the net-

work properties on magnitude threshold and on the number of events, subsets with higher

magnitude thresholds viz 3.0, 3.5, 4.0 and 4.5 which contain 53525, 20067, 6268 and 2038

events respectively and a subcatalog with mth = 3.0 for a shorter period from 1986 –1992

with 22975 events, were generated from the main catalog. The b value = −0.87 was obtained

from a plot of logN(m) vs m, where N(m) is the cumulative number of earthquakes of mag-

nitudes ≥ m, and the linear fit was good in the range 2.5 ≤ m ≤ 7. In order to distinguish

the causal features of seismicity, networks were constructed from the shuffled catalog, where

we have adopted an identical shuffling procedure as in [10]. Subsets and sub catalogs of
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the shuffled catalog are also made for the same mth values as for the actual catalog. We

propose to contrast the features of their in/out-degree, recurrent length and recurrent time

distributions in order to relate the features of the seismic network of Japan with that of

California [10].

FIG. 1: A spatial plot of the earthquake catalog [11] with mth =2.5 for the period 1986 -1998. The

catalog contains 114804 events.
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IV. RESULTS

A. Degree distributions

The in-degree and out-degree of every node in each of the networks of different mth

is estimated and the histograms in Fig. 2(a) show the degree distributions for the actual

catalog. The points and the lines of the same colour represent the out-degree and the in-

degree distributions respectively, for each mth value. As observed for California [10], the

in-degree histograms are all Poisson in nature while the out-degrees show an excess of nodes

with lesser and higher degree when compared to a Poisson distribution of the same mean

degree. The panel (b) in Fig. 2 represents the in/out-degree histograms for the shuffled

catalog which is equivalent to random process. The in-degree for the shuffled catalog is

observed to be a Poisson distribution. In a random network, the out-degree distributions

are also expected to be Poisson. The shuffled catalog has an out-degree which though not a

typical Poisson distribution, shows significant differences when compared to the out-degree
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FIG. 2: The panels (a) and (b) in the figure represent the degree distributions for the actual and

the shuffled catalogs respectively. The points represent the out-degree and lines of the same colour

as the points represent the corressponding in-degree distributions for the different mth values shown

in the legend of the graph. The in-degree, for all mth values is almost a Poisson distribution for

both the actual and the shuffled catalogs. The out-degree of the actual catalog shows significant

deviations from Poisson behaviour for low and higher degree values. In case of the shuffled catalog,

the marginal deviation from Poisson behaviour is only towards the higher degree values.
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distributions of the actual network especially for the lower degree values. For each network,

the mean in-degree is equal to the mean out-degree. As expected, this decreases with mth

because the number of nodes and therefore, the number of links decrease with mth. For a

Poisson distribution, it is expected that 〈k〉 ≈ logN , which is what we observe in Fig. 3

for the shuffled catalog. For the actual catalog however, the number of links are less than

that of a random network and we get 〈k〉 ≈ 0.91 logN . The value 0.91 is higher than that

reported for California in [10] and this means that larger number of links are possible for

the nodes in the Japanese seismic network.

B. Distance distributions

We use the great circle distance for computing the distance lij between two event lo-

cations. This is calculated using the Haversine formula [12]: if (φi, λi) and (φj, λj) are the

(latitude, longitude) values for the two event locations and, ∆φ = φj −φi and ∆λ = λi−λj,

then

lij = R∆σ
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FIG. 3: The plot shows the variation of the mean degree, 〈k〉 with the number of events N . The

lines represent the best fits from which the slope ie estimated. The shuffled catalog, which is

equivalent to a random process, shows a slope = 1 while the actual catalog shows a lower value of

≈ 0.91.
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R, the radius of the earth, is taken as 6367 km. The PDF of the recurrent distances for all

the i − j recurrent pairs in the actual network is shown in a log− log plot of Pm(l) versus

l in Fig. 4(a). The different coloured points are for networks with different mthvalues. All

the plots show that the PDF is unimodal and exhibits a peak at a typical distance l∗m. The

position of the peak is invariant with respect to the length of the catalog as can be seen

from the peak positions of the green and black points, which corresspond to different catalog

sizes having the same mth value of 3.0. Though we have not shown it in the figure, we have

verified this for the other mth values also. The peak position however, depends upon mth

and increases with it. Beyond the peak the distribution shows a power law decrease with an

exponent ≈ 1.2 upto a cut-off which represents the size of the region studied. Since the least

count of the catalog for latitude and longitude values is 0.001o, which translates to a least

measurable distance ≈ 0.1km, we are unable to resolve the points at distances < 100mts.

This affects the unnambiguous recognition of the peak for the lower mth plots. The position

of the peaks for each plot (l∗m) was estimated by fitting a quadratic near the region of the

peak. The variation of l∗m with m was studied to arrive at the rescaling parameter of 0.41
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FIG. 4: The figure shows the distribution of the distances of recurrences for the different magnitude

thresholds. The panel marked (a) is for the actual catalog and the one marked (b) for the shuffled

catalog. The black points in both the plots represent a smaller catalog(1986 -1992) with mth =

3.0. For the actual catalog, the size of the catalog does not affect the position of the peak as seen

in the peak positions of the green and black points. However, for the shuffled catalog, the distance

distribution varies with size of the catalog. The inset shows the data collapse achieved by rescaling

the distances and the distributions according to eqn. 1. The red line in the inset represents the

pre-factor Lo in the scaling law for the rupture length given by l
∗(m) = Lo × 100.41mth , where Lo

= 0.066 km
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for the inset data collapse in Fig. 4(a). The data collapse obeys the relation

Pm(l) ≈ l−1.2F (l/100.41mth) (1)

The scaling function F has two regimes– a power law increase with an exponent ≈ 1.8 for

small arguments and a constant regime at larger arguments. The characteristic distance of

the peaks can be written as

l∗(m) = Lo × 100.41mth (2)

where Lo = 0.066. The distance distributions for the shuffled catalog in Fig. 4(b) shows the

same overall shape as for the actual catalog. We also find that the peaks shift to higher

values of l as mth increases. However, one important variation observed here was that the

position of the peak is not independant of N . This striking and important feature was
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reported for the California catalog too [10]. The invariance of l∗m for the actual catalog

was attributed to the causal structure of seismicity and is therefore expected to reflect the

features of the underlying dynamics [10].

1. Identifcation with rupture length

An useful outcome of constructing such a network of recurrent events is, being able to

arrive at an estimate for the rupture length in the region, from its earthquake catalog. The

values of l∗m are identified as the rupture lengths and in the case of the California region the

values obtained were reported to be in good agreement with the estimates given in [13, 14].

The identification of l∗m as the rupture length is further established by the appearance of the

same distances in the distribution of the distances of the first recurrences. The distribution

of the first recurrences for California had the form

Pm
1
(l) = l−δr F̄ (l/100.45mth) (3)

with δr = 0.6. The first recurrence of an event i is the distance between the ith and (i+1)th

event. The distances of the first recurrence is estimated for all the events in the catalog and

its distribution for the actual catalog is shown in fig.5. We also observe the peaks for the

different mth values appearing at the same distances as in fig. 4 and therefore the l∗m values

estimated from fig. 4 can be considered as the rupture lengths as indicated in [10]. The

distribution of first recurrences in our analysis can be written as

Pm
1
(l) = l−δr F̄ (l/100.41mth) (4)

with δr = 0.6 and the scaling function F̄ has the same form as F in fig. 4.

The rupture lengths for Japan estimated using eqn. 2 compares favourably with the values

estimated using LR(m
′) ≈ 0.02 × 100.5m

′

[13] and LR(m
′) ≈ 0.018 × 100.46m

′

[14] as seen

from Table I
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TABLE I: The values tabulated here show a comparison of the rupture lengths estimated by this

procedure with other estimates in [13, 14]. Note that the magnitude scale used in [13, 14] are

moment magnitude (Mw). We have used the relation Mw = 0.58MJMA + 2.25 [15] in order to

convert the JMA magnitude values to its equivalent moment magnitude.

MJMA Mw = 0.02× 100.5m
′

km = 0.018× 100.46m
′

km = 0.066× 100.41mthkm

3.0 3.99 1.97 1.23 1.12

3.5 4.28 2.76 1.67 1.79

4.0 4.57 3.85 2.27 2.88

4.5 4.86 5.38 3.09 4.61

FIG. 5: The distribution of distances of the first recurrence for the different mth values is shown

here. The peaks at the characteristic distances that was observed in fig. 4 is visible here too. The

inset shows the datacollpase achieved by rescaling the distances and the distributions according to

eqn. 4.
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C. Temporal distribution of recurrences

The PDF of the time intervals tij , between events and their recurrences for different mth

values is shown in a log− log plot in fig. 6(a) for the actual catalog and in the panel marked

(b) for the shuffled catalog. As observed for the California region, for intermediate times the

distributions show a power law decay with an exponent ≈ 1.0 with an observational cut-off

at the longest time scales. The distributions for the different mth values are all collapsed

showing no dependance on magnitude in this region. However, in the region of the shorter
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FIG. 6: The distributions of the recurrent times for different mth values is shown here in panels

(a) and (b) for the actual and shuffled catalogs respectively. Significant differences can be observed

between the two distributions. However, the dependence of the distributions on m in the actual

catalog is , a major departure from what is expected from a causal network [10].
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time scales, the different distributions show a dependance on m. The power law exponent

in this region is much less than 1.0 and varies from −0.3 to −0.45 as mth increases from

2.5 to 4.5. The range over which this smaller exponent holds good depends on mth and

increases with it. This aspect of the recurrent time distributions is at variance with that

observed for California, where the temporal distributions were found to be independent

of m for the actual catalog and showed a single power law regime over almost the entire

range. This behaviour was attributed to the causal features of seismicity. The recurrent

time distributions for the shuffled catalog in fig. 6(b) shows a more prominent dependence

on m, which is expected for a random network [10]. That the actual catalog for Japan too

shows characteristics attributed to an acausal network signifies a random behaviour in the

temporal distributions in the case of Japan.

V. CONCLUSIONS

The general procedure that was introduced to infer causal structure from clusters of lo-

calised events was illustrated on the earthquake catalog of California. Our results from

adopting the procedure on the earthquake catalog of Japan confirms its robustness. The

construction of the network involves establishing correlations between nodes without making

any assumptions regarding the nature of the correlations. The distinctive features of the
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seismic network when compared to an acausal network was attributed to the causal con-

nections between events. Our results show that features of random networks are universal

with the shuffled catalogs of both the regions showing identical network properties. The

network from the actual catalog on the other hand shows some region specific features along

with exhibiting typical causal attributes. The estimates of rupture length which arise as

natural outcomes of the network construction are in good agreement with values estimated

by other methods. The anamolies that are shown by the recurrent time distributions in the

case of Japan when compared to expectations for a causal network could be a result of the

heterogenous nature of seismicity in the region. Japan experiences a high level of seismicity

due to its position at the cusp of the Pacific-Philippine-Eurasian triple plate junction. It

has a predominantly compressional tectonic regime as compared to Western United States

which is dominantly extensional [16]. We expect this aspect, along with the fact that dif-

ferent recurrence intervals exist in Japan for earthquakes in subduction zones as compared

to areas along crustal faults, to influence the recurrent time distributions which is shown in

our results here. However analysis of catalogs for other such regions would have to be done

in order to confirm this stand.
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