
Semi-AutomaticDesign of Agent Organisations
Anthony Karageorgos

PhD Student
Dept. of Computation

UMIST, Manchester M60 1QD, UK
+44-161-2003306

karageorgos @ acm.org

Simon Thompson
Team Leader

Intelligent Agents Research Group
BT Exact Technologies

+44-1473 605531
simon.2.thomoson @ bt.com

Nikolay Mehandjiev
Lecturer

Dept. of Computation
UMIST, Manchester M60 1QD, UK

+44-161-2003319
nikolay@ com.outer.oro

ABSTRACT
Multi-agent systems can be viewed as organisations of individual
agents. Designing an agent organ[sat[on is a complex process
involving defining the structural relationships among agents, the
lines of inter-agent communication, and the agent functionality.
Existing sppmaches to agent organ[sat[on design are difficult to
apply in practicc sincc they require designers to make decisions
while working at a low level of abstraction.

This paper contributes towards designing agent organisations in a
practical and effective manner by proposing to semi-automate the
organ[sat[anal desig~ process, The proposed semi-automatic
approach enables agent system designers to reason at a high
abstraction level and conveniently re-use previous design
decisions. This semi-automatic approach to agent organisation
design uses role modelling and a role algebra which captures a
number of basic relations among roles. The role algebra's
semantics are formally defined using a two-sorted algebra.

The applicability of the semi-antomatic agent organ[sat[on design
approach is demonstrated by an example drawn from a case study
involving telephone repair service teams.

Keywords
Sol~vare Agents, Multi-Agent Systems, Agent Orgenisations,
Agent-Oriented Software Engineering.

1. INTRODUCTION
Multi-agent system architectures can bc naturally viewed as
organ[sad societies of individual computational entities e.g. [5,
13, 17], and hence the problem of designing a multi-agent system"

J refers to designing an agent organ[sat[on. The criteria affecting
an agent organ[sat[on design decision are numerous end highly
dependent on factors that may ch~ngn dynamically. Therefore,
there is no standard best organ[sat[on for all circumstances [12,
13]. As a result, agent organisatiun design rules are left vague and
informal, and their application is lef~ on the creativity and the
intuition of the human designer. This can be a serious drawback
when designing large and complex real-world agent systems.

Permission to make digital or hard copies of all or part of this work for
pcnonal or cl~sroom use is granted without fee provided that copies arc
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the fiat page. To copy
otherwise, or republish, to post onservmm or to redistribute to lists,
requires prior specific punnission and/or a fee.

SAC 2002, March 10-14, 2002, Madrid, Spain.
© 2002 ACM 1-58 ! 13-445-2/02/03_ .55.00.

Therefore, many authors argue that social end organ[sat[anal
abslractions should be considered as first class design constructs
and that the agent system designer should reason at a high
abstraction level, e.g. [7,10].

In this paper, an approach providing semi-automatic support for
the high-level design of agent organisations is proposed, it uses
a l e models as basic building blocks, and formal[sos the rules and
constraints of their combination, This enables semi-automatic tool
support for the agent organ[sat[on designer. The approach has
been incorporated in an experimental version of the Zeus agent
building toolkit [9].

The rest of this paper is structured as follows: in the next section
some deficiencies in the current methodologies for agent-oriented
s o l , a r e engineering are highlighted, and an overview of a semi-
automatic approach to role-b~cd agent orgenisation design is
given. Subsequently. role characteristics and possible relations
among a les are discussed in the light of examples. In the next
step, a formal model of role relations, the role algebra, is defined
and its semantics are discussed using a two-sorted algebra, The
use of the role algebra to design an agent organ[sat[on is
illustrated by an example based on a ease study of telephone
repair service teams. Finally, directions for future work eu'e
presented.

2. DESIGNING AGENT ORGANISATIONS
Early research prototypes of agent-based systems were built in an
ad-hoc manner. However, the need to engineer agent systems
solving real-world problems has given rise m a number of
systematic methodologies for agent oriented analysis and design
such as MESSAGE [4], GAIA [17] and SODA [10]. All these
methodologies involve a number of analysis and design sub-
models emphasising particular analysis and design aspects.
Organ[sat[anal settings are either specified explicitly in an
organ[sat[anal model e.g. [4] or are defined implicitly from the
functionality that agents are assigned e.g. [7].

2.1 Weaknesses of Agent Organisation Design
Methodologies
Existing approaches to designing agent systems could be further
improved in the following ways:

t I n this paper the terms multi-agent system and agent
organisallon are used interohengeably.

306

• A more systematic way to construct large agent system
design models from the analysis models. The main drawback
of existing approaches such as MESSAGE is that after a
certain point the design decisions are left solely to the
creativity and the intuition of the designer. The steps
involved in transforming analysis models to design models
are not specified in a detail that would enable an adequate
degree of automation by a soft'ware tool. This view is similar
to the one described in [14] where agent architectures are
automatically derived from analysis specifications.

• By considering non-functional requirements on design time.
For example, it would be better to avoid massive run-time
reorganisation for the sake of system stability and
performance. Therefore, the aim should be to achieve as
optimum organisation on design time as possible.
Consequently, some means for considering non-functional
requirements before actually deploying a multi-agent system
is needed. This hypothesis is along the lines of similar works
[11, 13] where the behaviour of a multi-agent system is
modelled and studied before actual system deployment.

• By reusing organisational settings. This view regarding reuse
of organisational settings has been inspired by the concepts
introduced in [I 9]. It is believed that that work can be further
extended by classifying known organisational patterns, and
by providing some rigorous means for selecting them in a
particular design context. In order for organisational patterns
to be practically useful in implementing large-scale, real-
world applications, a way to easily integrate organisatinnal
with application design decisions is required.

2.2 Background
Many modelling approaches use roles as basic building blocks.
For example, roles are used in organisational theory [12] to
represent positions and responsibilities in human organisations.
Roles are also used in software engineering [I]. Roles arc
particularly suitable for modelling the behaviour of sot'Yware
agents, e.g. [3,7]. Agent roles are defined in a manner similar to
organisational roles referring to a position and a set of
responsibilities in an organisation [5]. To better represent agent
concepts, the agent role definition includes additional
characteristics, for example planning, co-ordination and
negotiation capabilities [7].

Existing role-based approaches to multi-agent system design
stress the need to identify and characterise relations between roles
[I, 7]. However, only a small number of approaches attempt to
investigate the consequences of role relations on the design of
multi-agent systems, e.g. [7]. This is partly due to lack of formal
foundations of role relationships. In this work, role relations that
would affect multi-agnnt system design are identified and are
formalised in an algebraic specification model. Role identification
was based on organisational principles and in particular on role
theory [2].

The essence of role theory is that persons are appointed to roles
within an organisation, which are representations of concrete
behaviour. This behaviour is characterised by authorities
describing things that can be done and responsibilities describing
things that must be done. For example, directors, help-desk staff,
developers and test engineers are all associated with job

descriptions specifying their responsibilities in the organisation.
Organisational goals, policies and procedures further determine
their rights and duties within the departments, projects or groups
of which they are members.

Role theory emphasises that various relations may exist between
roles. For example, an examiner cannot be a candidate at the same
time and therefore appointing these roles to a person at the same
time results to inconsistency. Role relations can be complex. For
example, a university staff member who is also a private
consultant may have conflicting interests. In this case, appointing
these roles to the same person is possible but it would require
appropriate mechanisms to resolve the conflicting behaviour.

This paper describes part of a work where an attempt to extract
role relations from human organisations with an eye on using
them to specify agent behaviour has been made. The reason for
searching for role relations in the human organisations domain
was that agent research traditionally aimed to develop agents that
mimic human behaviour and can be organised in a manner similar
to humans. As roles have been extensively used in human
organisations, e.g. [18], it was natural to examine human
organisations to identify role relations.

3. ROLES AND ROLE MODELS
Roles can be used as building blocks for an approach to agent
organisation design addressing the weaknesses described in
Section 2.1. This is achieved by extending existing role definition
to allow for modelling of non-functional requirements, and by
introducing a systematic role model transformation technique
enabling semi-automation of the design process.

3.1 Role Characteristics
Following [7]. a role is defined as a position and a set of
characteristics. Each characteristic includes a set of attributes.
Countable attributes may further take a range of values. More
specifically, a role is considered capable of carrying out certain
taskz and can have various responsibilities or goals that aims to
achievc. Roles normally need to interact with other roles, which
are their collaborators. Interaction takes place by exchanging
messages according to interaction protocols.

Roles can be extended to create specialised roles by a process
called role specialisation or refinement [I, 7]. Specialised roles
represent additional behaviour on top of the original role
behaviour in a manner similar to inheritance in object-oriented
systems.

In order for roles to pragmatically represent behaviour in an
application domain, they need to model issues relevant to non-
functional requirements in that domain. Therefore, the above role
definition is extended to include performance variables.
Performance variables are parameters whose value defines the
run-time behaviour represented by a role. For example, if the
behaviour a role represents requires using some resource like
memory, the resomce capacity can be modelled by a performance
variable. Performance variables can also be defined at an agent
level. In that case, their value is a function of the values of the
respective performance variables of all roles the agent is capable
of playing. This allows us to apply design heuristics by imposing
constraints on the values of the agent performance variables that

307

I ole Chnractoristi~
~ Goal.~/Responsibilitiea
l'~Tasks
~Capabilities
~;Collaboraters
q~ Performance variables

specialiMtion

~ collaboration

F igure 1: Schemat ic representat ion o f a role model

must be observed when allocating roles to agents. This is
illustrated in the example given in Section $.

3.2 Role Models
A collection o f roles and their interactions constitutes a role
mode! (Figure I). A role model represents thc behaviour required
to carry out some activity 2 in tbe system. An agent application
normally consists o f more than one activity and hence it will
involve more than onc role models. R.ole modcls that occur
frequently in some application domain are called role interaction
patterns. Role models can be used to represent reoccurring
complex behaviour based on multiple points o f interaction.
Therefore, they are considered to be first class design constructs,
that entities that can be instantiated and given identity. Role
models can be used to describe both application behaviour and
organisational settings. An agent system designer should bc able
to reuse role interaction patterns and specify ncw role models as
required. Therefore, the problem o f designing an agent
organisation refers to selccting and instantiating suitable
application and organisetional role models.

4. A R O L E A L G E B R A F O R A G E N T
SYSTEM D E S I G N
Based on role theory [2] and on case studies o f human activity
systems, e.g. [15], six basic role relations have been identified. In
this section, a formal model of role relations is defined, referred
by the term role algebxa. Using relations from the role algebra,
constraints driving the assignment o f roles to agents can be
specified and hence the agent organisation design process can be
partially automated.

4.1 Relat ions o f the Role Algebra
Let R be a set o f roles. For any r~, ra E R, the following binary
relationships may hold:

1) Equals (eq) - - T h i s means that rl and rz describe exactly the
same behaviour. For example, the terms Adviaoi, and
Supervisor can be used to refer to people supervising PhD
students. When two roles are equal, an agent playing the one
role also plays the other at the same time. The relation Equals
c: R'xR is an equivalence relation since it is reflexive,
symmetric end transitive:

z Activity in this context will represent the whole causal sequence
o f events and actions caused by one triggering event, and will
correspond to the U M L ' s concept of "use case".

It) V r : R (req r)

b) V (rt, r2) : RxR (rl eq ra ~ ra eq rl)

c) V (r~, rz, rs) : R > ~ ' ~ i ((e l eq r ,) ^ (r a eq r j) =~ (rj eq rj))

2) Excludes (not) - - This means that rl and r 2 cannot be
assigned to the same agent simultaneously. For example, in a
conference reviewing agent system, an agent should not be
playing the roles o f paper author and paper reviewer at the
same time. Furthermore, a role cannot exclude i t s e l f - - i f it
would then no agent would ever play it. Therefore, the
relation Excludes ~ RxR is anti-reflexive and symmetric:

a) Y r : R (--,(r not r))

b) W (rl, ra) : R'xR (rl not r2 =~ r2 not rl)

3) Contains (in) ~ This means that a role is a sub-
case/specialisation of another role. Therefore, the behaviour
the first role represents completely includes the behaviour of
the second role. For example, a role representing Manager
behaviour completely contains the behavinur o f the Employee
role. When two roles such that the first contains the second
are composed, the resulting role contains the characteristics o f
the first role only. Therefore, the relation Contains ~ RxR is
reflexive and transitive;

a) ~ / r : R (r i n r)

b) V (r h r~ rj) : RxR:~,R ((r I in r~) ^ (ra in r~) =~ (rl in rj))

4) Requi res (and) - - The Requires relation can be used to
describe that when an agent is assigned a particular role, then
it must also be assigned some other sp~ i f i c role as well. This
is particularly applicable in cases where agents need to
conform to general rules or play organisational roles. For
example, in a university application context, in order for one
to be a Library_Borrower it must be a University_Member as
well. Although the behaviour o f a Library_Borrower could be
modelled as part of the behaviour o f a University_Member,
this would not be convenient since this behaviour could not be
reused in other application domains where being a
Library Borrower is possible for everyone. Furthermore,
each role requires itself. Intuitively, the roles that some role r
requires are also required by all other roles that require r.
Therefore, the relation Requirer ~ RxR is reflexive, and
transitive:

308

AGENT ORGANISATION

\ a 2

II

. t --~rl

plays has

Figure 2: Semantics of role relations

a) V r : R (r and r)

b) V (rl, rz, rs) : R x R ~ ((r I and rz) ^ (rz and rj) =~ (r I and

r j))

5) Addswith (add) - - T h e Addswi th relation can be used to
express that the behaviours two roles represent do not
interfere in any way. For example, the Student and the
Footbal l_Player roles describe non-excluding and non-
overlapping behaviours. Hence, these roles can be assigned to
the same agent without any problems. The relation Addswi th
¢: RxR is reflexive and symmetric:

a) V r ; R (r a d d r)

b) V (rh r2) : ~ ((rl add r2) :~ (r2 add rj))

6) Mergeswlth (merge) - - T h e Mergeswi th relation can be used
to express that the behavioure of two roles overlap to some
extend or that different behaviour occurs when two roles are
put together. For example, a Student can also be a
S t a f f Member. This refers to cases when PhD students start
teaching before they complete their PhD or they register for
another degree (e.g. an MBA) after their graduation. Although
members of staff, these persons cannot access certain
information (e.g. future exam papers) due to their student
status. Also, their salaries are different. In cases like this,
although the two roles can be assigned to the same agent, the
characteristics o f the composed role are not exactly the
characteristics of the two individual roles put together. The
relation Mergeswi th ~ R ~ is symmetric:

a) '¢ (r~, rz) : ~ ((rt merge r:) =:~ (r: merge r:))

4 . 2 S e m a n t i c s o f R o l e R e l a t i o n s
To describe the semantics of role relations we represent an agent
organization by a two-sorted algebra (Figure 1). The algebra
includes two sorts, A representing agents and R representing roles.

Let Has: A -~ R be a relation mapping agents m roles. The term
"'has" means that a role has been allocated to an agent by some
role allocation procedure or tool. it is possible for an agent to
have roles that do not contribute to defining the agent behaviour.
For example, this happens when roles merge with other roles. For
each a e A, let a.has be the set of roles that the agent a maps to in
the relation Has. In other words, a.has denotes the relational
image of the singleton [a} ~ A in the relation Has.

Let Plays: A --~ R be a relation mapping agents to roles again. The
term "plays" means that that the behaviour a role represents is
actively demonstrated by the agent, for example the role does not
merge with other roles that are also played by the agent. For each
a • A, let a.plays denote the set o f roles that the agent a maps to
in the relation Plays. In other words, a.plays denotes the relational
image of the singleton Is} c:A to the relation Prays.

The meaning of the relations between roles introduced in Section
4. i can now be described as follows:

I) Equals - - A n agent has and plays equal roles at the same
time.

V a : A, (rl, rj) : R x R . (rl eq r~ ~ ((r~ • a .has ~ ra • a.has)
A (r l • a.plays ¢:~ r~ • a.plays)))

2) Excludes m Excluded roles cannot be assigned to the same
agent.

V a : A, (rh rz) : Rm~ • (rj not r2 ¢~ ~ (r l • a.has ^ rz •
a.has))

3) Contains - -Con ta ined roles must be assigned and played by
the same agent as their containers.

V a : A, (rj, r2) : R x R . (rl in r2 ¢:~ ((r2 • a .has ~ rl • a.has)
^ (rz E a.playx ~ rj ¢ a~plays)))

4) Requires - -Requ i red roles must be played by the same agent
as thc roles that require them.

V a : A, (rj, r:) : R'J~R • (rl and r2 ¢* (rl • a.plays ~ r2 •
a.plays))

5) AddsWith - - T h e r e is no constraint in having or playing
roles that add together.

W a : A , (r l , r2) : R x R • (r / a d d r~ ¢~ (r / • a .has ~ ((r : •

a.has v r: ~ a.has) ^ (r2 s a.pluys v r: ~ a.plays))))

6) MerlgesWith ~ When two roles merge, only the unique role
that results from their merge is played by an agent.

V a : A, (rl, r:) • ~ . (rj merge r2 *~ 31 r j : R "((rl • a .has
^ r: • a.has) =~ (rl ~ a.plays A r~ ~ a.plays ^ r j E a.has)))

For example, let us assume that roles rz and rj merge resulting to
role r4. Based on the above semantic definition, if an agent has r2
and rj then it must also have re and it must not play rz and rj (the
agent may or may not play re depending on the relations of re
with the other roles the agent has). The example of a Mergezwi /h
relation between roles r~, rj, and re, where re is played by the
agent, is depicted in Figure 2.

Using the above semantic axioms, it is trivial to verify that the
properties ofrole relations introduced in Section 4.1 hold.

3 0 9

maintain schedules

Toanmork
Coox-d£aae £om

[i. To coordinate teamwork I

I.t To usist workers in I-2 To manage work i.e.
work coordination, i.e. grant day offs, confirm
receive work ta~ks and assignments of work tasks

and monilm workflow

T=:,-,rel
Ida.1~gem~ni:

I. To obtain and organise
work travel infommtion i.e.
wed(task location and
optimal trsvcl mute

2. To nminmin and stem
tmvet information from
various travel resom~-es i.e,
GPS and tndTtc databases

2. To assist workers in non-
technical work pmb|ems

3. To maintain and numage a
work pool of customer
requests

gram,ledge
k g m s -

I 4. To assist customers in I
placing their requests and
receiving service

5. To maintain and manege a
database ofbmincas rules

I. To scmch and obtain
assistance f r o m experts
regarding complex work
tasks.

2. To maintain and manage a
knowledge base of e~pertisz
about compex work tasks.

Figure 3: Use case goals for the telephone repair service teams case study

Furthermore, relations between more than two roles can be
defined in a similar manner. In that case, a predicate notation is
more convenient to represent role relations. For example, when
thrcc roles rl, rz, and rj merge to r 4 this can be noted by merge(r;,
r2, rj, r4). In this paper, we will not provide any formal definitions
for relations among roles with arity greater than two.

4.3 A Semi-Automatic Agent Organisation
Approach
Role relations, as defined in the above algcbra, restrict the way
that roles can be allocated to agents. The agent organisation
design problem is thus transformed to a constraint satisfaction
problem that must be solved for roles to be allocated to agents.
The problem can be constrained further by including constraints
based on general design heuristics. These constraints are
expressed on the performance variables of the agents. For
example, the system designer should be able to define the
maximum number of roles that an agent could play, or an upper
limit to the resource capacity that an agent would require.
Furthermore, role allocation heuristics could also be specified..
For example, roles requiring access to similar resources could be
assigned to the same agent.

The manual and automatic steps of the semi-automatic approach
to role-based agent organisation design are the following:

i. Select role models: There are many ways to carry out role-
based analysis. The most common approach is to start from
use cases and for each use ease identify roles and their
interactions [i]. Many role interaction patterns can be used
directly from existing role pattern libraries like the one
documented at BT [7]. Selection or definition of appropriate
role models is a manual step that must be carried out by
humans.

2. Specify role characteristics and compositional constraints:
This is an automatic step since role characteristics and inter-

role relations are expected to be stored in some role model
library. After the designer selects existing role models, role
characteristics and role compositional constraints arc
automatically retrieved.

3. Refine role models: The agent system designer is expected
to manually specify role characteristics and role relations
for any new role models he or she defines. These new role
models should be stored in the role model library. At this
step, additional characteristics of existing role models, for
example performance variables, should also be specified.

4. Specify design heuristics: This is also a manual step where
design heuristics are specified as constraints on the
performance variables of roles and agents.

5. Assign roles to agents: Solving the constraint satisfaction
problem and allocating roles to agents can be done
automatically.

5. EXAMPLE: SUPPORTING MOBILE
WORK TEAMS
For this example a case study concerning telephone repair service
teams is considered. The aim is to build an agent system that
would assist field engineers to carry out their work. Among the
issues involved in such a system are those of Travel Management,
Teamwork Coordination, and Knowledge Management [15, 16].

Travel management is about support to mobile workers for
moving from one repair task location to another. It involves
finding the position of each worker, obtaining relevant travel
information, planning the route to the next repair task location and
allocating travel resources as required. Teamwork coordination is
about allocating and coordinating the execution of repair tasks in
decentralised manner taking into account the personal preferences
and working practices of the mobile workers. Work knowledge
management concerns storage and dissemination of work related
expertise.

310

Bmlebaso]

~mer.ory '~~wo~,Poo,
I Customer ~:~ ~mernory

[TravelManagedj
i -

Knowledge ~nder[~

[TravellnroBaae~

Knowledge' "- base -[

Figure 4: Role models for the telephone repair service teams case study

5.1 Role Identification
In order to model the above system in terms of roles, the first
thing to do is to identify the roles involved in the case study.
According to [8] a way to identify roles in an application domain
is to start from identifying use cases, associating each use case
with a goal, creating a goal hierarchy from the use case hierarchy
and coalescing semantically relevant goals to roles. For the
purpose of the telephone repair service teams example, the
following use cases are considered (Figure 3):

• Teamwork Coordination." In this activity the customer places
a request for a telephone repair. This request is placed in a
pool of repair request tasks and it is eventually allocated to
some mobile field engineer who will be responsible for its
execution.

• Trove/ Management: This involves providing up to date
travel information to the field engineer including his current
exact location, an optimal plan of the route to the next
telephone repair task, as well as traffic information and
managerial policy regarding travelling.

• Work Knowledge Management: This activity deals with
maintaining and storing of expertise for complex telephone
repair tasks.

Each use case has a number of high-level goals depicted in Figure
3. The behaviour leading to achieving these goals can be
modelled by appropriate roles. Hence, the following roles can be
identified (Figure 4):

I. Employee: This role describes generic behaviour of the
members of the customer service learns. An example of this
type of behaviour is accessing common team resources
including work practice announcements and business news.

2. Coordinator: The Coordinator role describes the behaviour
required to coordinate the work of a field engineer. This
includes bidding for and obtaining repair work tasks from a
work pool, negotiating with other workers and the team
manager as required and scheduling and rescheduling work
task execution.

3. Manager, The Manager role models the bchaviour of the
team manager. This includes confirming task allocation,
monitoring work and ensuring that business rules arc
followed.

4. Mentor: The Mentor role provides assistance to field
engineers for non-technical issues.

5. WorkPooi: The WorkPool role maintains a pool of telephone
repair requests. Customers interact with this role to place
requests and engineers interact with this role to select tasks to
undertake.

6. Cuztomer: The Customer role models the bchaviour of a
customer. In involves placing telephone repair requests,
receiving relevant information and arranging appointments
with field engineers.

7. Brulebase: This role maintains a database of business rules. It
interacts with manager providing information about the
current work policy of the business.

8. TravelManager: The TravelManager role provides travel
information to the field engineer including current location,
traffic information and optimal route to next telephone repair
task.

9. TravellnfoBase: This role store travel information from
various travel resources i.e. GPS and traffic databases.

10. KnowledgeFinder: This role searches for experts and obtains
assistance regarding complex work tasks.

I1. KnowledgeBase: The KnowledgeBase role maintains and
manages a database of expertise about telephone repair tasks.

5.2 Specifying Design Constraints
In Figure 5, compositional constraints for the roles described in
Section 5.1 are specified in liCL (Role Constraint Language).

RCL is simple declarative constraint language that was
introduced to represent design constraints on agent and role
characteristics. The use of RCL in Figure 5 is self-explanatory and
therefore in this paper no further description of RCL will be give.
RCL is described in detail in [6].

Roles in RCL are specified in a manner similar to programming
languages. In the telephone repair service teams example, roles
that directly manipulate databases require access to some storage
space. This is modelled by the performance variable memory. The
memory requirements of each role are different. For example,
TravellnfoBase and KnowledgeBase require twice as much
memory as WorkPool and Brulebaxe.

311

/ * ROLE DEFINITIO~IS * / /* ROLE CONSTRAINTS * /

Role employee, coordinator, mentor,

customer, travelmanager,

knowledgefinder;

Role workpool, brulebase, workerassistant,

travelinfobase, knowledgebase (

int memory;

]

workpool.memory = I;

brulebase.memory ffi I;

travelinfobase.memory ffi 2;

knowledgebase.memory = 2;

workerassistant.memory = I;

Role manager [

collaborators = [Coordinator,

Brulebase];

protocols = [contracting);

]

in(employee, coordinator);

in(en~Inyee, manager);

not(customer, employee};

not(customer, travelinfohase);

not(customer, knowledgebase|;

not(mentor, manager};

not(manager0 coordinator);

and(mentor, employee);

merge(coordinator,
knowledgeEinder,
workeraesistant);

travelmanager,

/ * GENERAL CONSTRAZNTS * /

Constraint Y [

forall a:Agent [

a.memory ~= 2

)

%

F i g u r e 5: C o m p o s i t i o n a l cons t r a in t s for the t e l e p h o n e r e p a i r serv ice t eams case s t u d y

Part o f the definit ion o f the characteristics o f the Manager role is
shown in more detail in Figure 5. The collaborators o f the
Manager role are the Coordinator and Brulebuse roles and its
interaction protocol is the Contract Net. The Employee role is
contained in both Manager and Coordinator roles. Furthermore, a
Manager cannot coexist with Menlor or Coordinator and for
security purposes a Customer cannot coexist with Employee,
Tr~weilnfoBuse or KnowledgeBuse. In order for an agent to be
Mentor it must also be an Employee.

When an agent plays all three Coordinator, TravelManager and
KnowledgeFinder roles, overheads in synchronis ing results from
the three different activities, travel management , teamwork
coordination and knowledge management , may occur_ This is
modelled as a merge o f the Coordinator, TravelManager and
Knowledge.Finder resulting to the WorkerAssistont role. The
WorkerAxsistant role requires some memory to store intermediate
synchronisat ion r e s u l t s - as specified in Figure 5.

An example o f a non-funct ional requirement is to limit to the
memory each agent could occupy. In this case study, agents
supporting field engineers should be able to operate in PDAs with
limited amount o f memory. This is model led as a general design
constraint on the performance variable memory (Figure 5). The
agent types o f an agent organisat ion satisfying the above design
constraints are depicted in Figure 6.

6. C O N C L U S I O N S A N D F U R T H E R W O R K
Existing approaches to agent organisat ion design do not pay
enough attention to semi-automat ing the t ransformation o f
analysis into design, nor do they consider non-funct ional
requirements on design time. The semi-automatic approach

described in this paper addresses these concerns by extending the
definit ion of role to include performance parameters and by
defining a s imple role algebra to facilitate automatic allocation of
roles to agents. This approach enables reuse o f organisational
design patterns by representing them as role models being able to
be manipulated consider ing the proposed role algebra.

However, there are issues that have not been addressed in this
paper. For example, agents can play different roles in different
contexts and hence the possible contexts should be considered
when designing agent organisations. It is p lanned to extend the
semi-automatic approach to consider role playing within some
context in the near future. As a Iongnr- term research task it is
p lanned to use the role algebra to s tudy the impact o f dynamical ly
allocating and de-al locating roles to agents on run-t ime.

7. A C K N O W L E D G M E N T S
This work has been supported by B T under a grant f rom the office
o f the Ch ie f Technologis t (No. MLg16801 /MH354166) .

8. R E F E R E N C E S
[l] Andersen, E., Conceptual Model l ing o f Objects: a role

model l ing approach. PhD Thesis, Dept. o f Computer
Science, Univers i ty o f Oslo, Oslo, 1997.

[2] Biddle, B.J., Role Theory- Expectat ions, Identit ies and
Behaviors. Academic Press, London, 1979.

[3] Depke, 1%., Hcckel, 1%. and Kuster, J .M. Improving the
Agent-or iented Model ing Process by Roles, in Proceedings
of Autonomous Agents '01 (Montreal , Canada, 2001), A C M
Press.

312

has plays

Employee Employee
Coordinator WorkEr
Trat, el Assistant
manager

Knowledge
Finder

Worker
Assistant

memory I

has plays

Employee Employee
Manager Manager

Brulebose Brulebase

Work.Pool Work.Pool

Mentor Mentor

memory 2

has playi

Customer Customer

memory 0

has plays

Traveilnfo Travelinfn
bare bose

memory 2

has plays

Knowledge Knowledge
bose base

memory 2

Figure 6: Agent types for the telephone repair service teams case study

[4] Evans, R., MESSAGE: Methodology for Engineering
Systems of Software Agents. BT Labs, Ipswich, 2000.
http://www.labs, bt.conrdpmjects/agents.htm.

[5] Ferber, J. and Gutknecht, O. A recta-model for the analysis
and design of organizations of Multi-Agent systems, in
Proceedings of ICMAS'91q (Paris, France, 1991q), IEEE Press.

[6] Karageorgns, A., Thompson, S. and Mehandjiev, N. Using
Role Algebra for Semi-Automatic Agent System Design: A
Case Study. Dept. of Computation, UMIST, Manchester,
2001. http://www.co.umist.ac.uk/-mcaihak2/respapers.html.

[7] Kendall, E.A., Role models - patterns of agent system
analysis and design. BT Tech. Journal, 1999. 17(4), 46-57.

[8] Kendall, E.A. and L. Zhao. Capturing and Structuring Goals,
in Proceedings ot'OOPSLA'98 (1998), ACM Press.

[9] Nwana, H.S., et al., Zeus: A Toolkit for Building Distributed
Multi-Agent Systems. Applied Artificial Intelligence
Journal, 1999. 13(I), 187-203.

[]0] Omicini, A. SODA : Societies and Infrastructures in the
Analysis and Design of Agent-based Systems, in
Proceedings of AOSE'00 (Limerick, Ireland, 2000), Springer
Verlag.

[l 1] Parunak, V., Sauter, J. and Clark, S. Towards the
Specification and Design of Industrial Synthetic Ecosystems,
in Intelligent Agents IV: Agent Theories, Architectures, and
Languages, Singh, M.P., Ran, A. and Wooldridge, M.J.,
(eds.), 1998, Springer Voting, 45-59.

[12] Scott, W.R., Organizations: Rational, Natural and Open
Systems. Prentice Hall International, New York, 1992.

[13] So, Y.-p. and Duffee, E.H. Designing Organizations for
Computational Agents, in Simulating Organizations:
Computational Models of institutions and groups, Prietula,
M.J., Carley, K.M. and Gasser, L. (eds.), 199g, AAAI Press,
47-64.

[14] Sparkman, C.H., DeLoach, S.A. and Self, A.L. Automated
Derivation of Complex Agent Architectures from Analysis
Specifications, in Proceedings of AOSE'01 (Montreal,
Canada, 2001), Springer Verlag.

[15] Stark, J., et al., ACSOSS' a case study applying the
MESSAGE analysis method, BT Labs, Ipswich, 2001.
http://www.labs.bt.com/projects/agnnts.htm.

[16] Thompson, S.G. and Odgers, B.R. Collaborative Personal
Agents for Tcam Working, in Proceedings of AISB'00
(Birmingham, England, 2000).

[17] Wooldridge, M., Jennings, N.R. and Kinny, D. The Gain
methodology for agent-oriented analysis and design.
International Journal of Autonomous Agents and Multi-
Agent Systems, 2000. 3(3), 285-312.

[18] Yu, L. and Schmid, B.F. A Conceptual Framework for
Agent-Oriented and Role-Based Workfiow Modelling. in
AOIS'99 (Heidelberg, 1999), MIT Press.

[19] Zambonelli, F., Jennings, N.R., and Wooldridge, M. J.,
Organizational Abstractions for the Analysis and Design of
Multi-Agent Systems. In Proceedings AOSE'00 (Limerick,
Ireland, 2000), Springer Verlag.

313

