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Abstract

We extend our recent work on the two-fluid hydrodynamics of the conden-

sate and non-condensate in a trapped Bose gas by including the dissipation

associated with viscosity and thermal conduction. For purposes of illustra-

tion, we consider the hydrodynamic modes in the case of a uniform Bose gas.

A finite thermal conductivity and shear viscosity give rise to a damping of

the first and second sound modes in addition to that found previously due to

the lack of diffusive equilibrium between the condensate and non-condensate.

The relaxational mode associated with this equilibration process is strongly

coupled to thermal fluctuations and reduces to the usual thermal diffusion

mode above the Bose-Einstein transition. In contrast to the standard Lan-

dau two-fluid hydrodynamics, we predict a damped mode centered at zero

frequency, in addition to the usual second sound doublet.
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I. INTRODUCTION

Since the original discovery in 1995, the subject of Bose-Einstein condensation in trapped
atomic gases has become a major field of research [1,2]. Even though these systems consist of
a very dilute vapor, they exhibit robust collective oscillations which are strongly influenced
by mean-field interactions and collisions between the atoms. There has been considerable
theoretical work devoted to describing the collective modes of a trapped gas at very low
temperatures in terms of the solution of the time-dependent Gross-Pitaevskii (GP) equation
for the macroscopic wavefunction of the condensate. As discussed in several recent reviews
[1,2], there is excellent agreement between experimental observations for T ≪ TBEC and
theoretical calculations based on the T = 0 GP equation.

At elevated temperatures where the condensate is appreciably depleted by thermal ex-
citations, one enters a more complex regime in which collisions between the atoms must be
considered. Two limiting cases for the dynamics of the gas correspond to the collisionless
and hydrodynamic regimes [2,3]. In the collisionless regime, the main effect of the non-
condensate component appears to be a shift in the collective mode frequencies as a result
of the change in the condensate number, and to the appearance of Landau damping. There
have been several studies of this collisionless region in trapped gases where dynamic mean
fields dominate the physics (we refer to the review articles in Ref. [2]). The second regime
arises when collisions between atoms are rapid enough to establish a state of dynamic local
equilibrium in the non-condensate gas. This collision-dominated hydrodynamic regime is
the subject of this paper. To be in this regime the collective modes of frequency ω must
satisfy the condition ωτ ≪ 1, where τ is some appropriate relaxation time for reaching local
equilibrium. As a rough estimate, we can take τ to be the collision time τcl for a classical gas.
Here 1/τcl =

√
2nσv̄, where σ = 8πa2 is the low energy quantum mechanical cross-section

for bosonic atoms and v̄ is the average thermal velocity [4]. It is clear that a high density
and/or a large atomic scattering cross-section are favorable for reaching the hydrodynamic
region. Experiments which can probe this region in trapped Bose gases are now feasible and
promise to provide much new physics.

One finds in the hydrodynamic regime that the dynamics of the condensate and non-
condensate components can both be described in terms of a few macroscopic (coarse-grained)
variables (such as the local densities and velocities of the two components). The coupled
equations of motion for these local quantities will be referred to as the two-fluid hydrody-
namic equations. The microscopic basis of these two-fluid equations rests on a generalized
Gross-Pitaevskii equation for the condensate atoms and a quantum kinetic equation for the
non-condensate atoms. These two components are coupled through mean-field interactions
as well as collisions between the atoms. The authors have recently given a detailed deriva-
tion and discussion of such a two-fluid hydrodynamics for trapped atomic gases at finite
temperatures [5,4,6].

These equations were derived for temperatures where the dominant thermal excitations
in the trap can be treated as atoms moving in a self-consistent Hartree-Fock field. In
particular, the original ZGN hydrodynamic equations derived in Ref. [5] were generalized in
Refs. [4,6] to include collisions between condensate and non-condensate atoms. This allows
for the possibility of treating the situation in which atoms of the non-condensate are in local
thermodynamic equilibrium among themselves but are not in diffusive equilibrium with the
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condensate atoms. The resulting ZGN′ hydrodynamic equations [4,6] involve a characteristic
relaxation time τµ which is the time scale on which local diffusive equilibrium is established.
This equilibration process leads to a novel damping mechanism which is associated with the
collisional exchange of atoms between the two components. The ZGN′ equations are briefly
reviewed in Section II.

In Section III, we further generalize the ZGN′ equations by considering the effects of
deviations from local equilibrium within the non-condensate. At the finite temperatures
of interest, this deviation from local equilibrium gives rise to damping associated with the
thermal conductivity and the shear viscosity. This generalization has already been discussed
in Section V of Ref. [11] starting from the ZGN hydrodynamic equations.

In the limit that the two components are in complete local equilibrium with each other,
our two-fluid hydrodynamic equations reduce to those first derived by Landau in 1941 [7].
The Landau two-fluid equations give an excellent description of the low frequency response
of superfluid 4He [8]. As noted by several authors, the Landau theory is also valid for
Bose-condensed gases. The thermal conductivity and shear viscosity were first derived for a
uniform Bose-condensed gas at finite temperatures in a pioneering paper by Kirkpatrick and
Dorfman [9]. Their results were used by Gay and Griffin [10] to evaluate the temperature-
dependent damping of first and second sound as predicted by the Landau two-fluid hydro-
dynamic equations. Our present results are consistent with both of these early papers in the
appropriate Landau limit, namely when ωτµ ≪ 1 [4,6]. However it is important to point out
that our generalized two-fluid hydrodynamic equations provide a more complete description
than the original Landau version since they can be used in situations in which the superfluid
and normal fluid are not in local diffusive equilibrium with each other.

To illustrate the physics, we use our ZGN′ equations in Section IV to study the hydro-
dynamic normal mode spectrum of a uniform Bose gas in the presence of hydrodynamic
dissipation. In particular, we show how first and second sound modes are affected by vis-
cosity and thermal conduction, and also discuss how the new relaxational mode exhibited
in Refs. [4,6] is modified. In another paper, we apply these same equations to a discussion
of the damping of the out-of-phase dipole mode recently observed [5,12] in a trapped Bose
gas.

II. A REVIEW OF THE ZGN′ EQUATIONS

In this section, we first briefly review the finite temperature ZGN′ equations [5,6] based
on the assumption that the non-condensate is in local equilibrium. In the next section, we
calculate the corrections to these equations which arise from a small deviation from local
equilibrium. The non-condensate atoms are described by the distribution function f(r,p, t),
which obeys the quantum kinetic equation (we set h̄ = 1 throughout this paper):

∂f(r,p, t)

∂t
+

p

m
·∇f(r,p, t) − ∇U ·∇pf(r,p, t)

= C12[f ] + C22[f ]. (1)

Here the effective potential U(r, t) ≡ Uext(r)+2g[nc(r, t)+ñ(r, t)] includes the self-consistent
Hartree-Fock (HF) mean field, and as usual, we treat the inter-atomic interaction in the s-
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wave approximation with g = 4πa/m. The condensate density is nc(r, t) ≡ |Φ(r, t)|2 and
the non-condensate density ñ(r, t) is given by

ñ(r, t) =
∫ dp

(2π)3
f(r,p, t). (2)

The two collision terms in (1) are given by

C22[f ] ≡ 4πg2
∫

dp2

(2π)3

∫

dp3

(2π)3

∫

dp4

×δ(p+ p2 − p3 − p4)δ(ε̃p + ε̃p2 − ε̃p3 − ε̃p4)
× [(1 + f)(1 + f2)f3f4 − ff2(1 + f3)(1 + f4)] , (3)

C12[f ] ≡ 4πg2nc

∫ dp1

(2π)3

∫

dp2

∫

dp3

×δ(mvc + p1 − p2 − p3)δ(εc + ε̃p1 − ε̃p2 − ε̃p3)
×[δ(p− p1)− δ(p− p2)− δ(p− p3)]
×[(1 + f1)f2f3 − f1(1 + f2)(1 + f3)], (4)

with f ≡ f(r,p, t), fi ≡ f(r,pi, t). The expression in (4) takes into account the fact that
a condensate atom locally has energy εc(r, t) = µc(r, t) +

1
2
mv2c (r, t) and momentum mvc,

where the condensate chemical potential µc and velocity vc will be defined shortly. On the
other hand, a non-condensate atom locally has the HF energy ε̃p(r, t) =

p2

2m
+ U(r, t). This

particle-like dispersion relation limits our analysis to finite temperatures.
The equation of motion for the condensate was derived in Ref. [6] (see also Ref. [13]) and

is given by a generalized Gross-Pitaevskii equation for the macroscopic wavefunction Φ(r, t)

i
∂Φ(r, t)

∂t
=

[

−∇2

2m
+ Uext(r) + gnc(r, t) + 2gñ(r, t)− iR(r, t)

]

Φ(r, t), (5)

where

R(r, t) =
Γ12(r, t)

2nc(r, t)
, (6)

with

Γ12 ≡
∫

dp

(2π)3
C12[f(r,p, t)]. (7)

The dissipative term R in (5) is associated with the exchange of atoms between the con-
densate and non-condensate as described by the collision integral C12[f ] in (4). We see
that (1) and (5) must be solved self-consistently. It is customary to rewrite the GP equa-

tion (5) in terms of the amplitude and phase of Φ(r, t) =
√

nc(r, t)e
iθ(r,t), which leads to

(vc = ∇θ(r, t)/m)

∂nc

∂t
+∇ · (ncvc) = −Γ12[f ] ,
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m

(

∂

∂t
+ vc ·∇

)

vc = −∇µc , (8)

where the condensate chemical potential is given by

µc(r, t) = −
∇2
√

nc(r, t)

2m
√

nc(r, t)
+ Uext(r) + gnc(r, t) + 2gñ(r, t) . (9)

One sees that Γ12 in (8) plays the role of a “source function” in the continuity equation
for the condensate, arising from the fact that C12 collisions do not conserve the number
of condensate atoms [6]. Because of the structure of the equations in (8), they are often
referred to as “hydrodynamic equations”, even though they are completely equivalent to the
generalized GP equation in (5).

Following the standard procedure in the classical kinetic theory of gases [14], we take
moments of (1) to derive the most general form of hydrodynamic equations for the non-
condensate. These moment equations take the form (µ and ν are Cartesian components):

∂ñ

∂t
+∇ · (ñvn) = Γ12[f ] ,

mñ

(

∂

∂t
+ vn ·∇

)

vnµ = −∂Pµν

∂xν
− ñ

∂U

∂xµ
−m(vnµ − vcµ)Γ12[f ] , (10)

∂ǫ̃

∂t
+∇ · (ǫ̃vn) = −∇ ·Q−DµνPµν +

[

1

2
m(vn − vc)

2 + µc − U
]

Γ12[f ].

The non-condensate density was defined earlier in (2) while the non-condensate local velocity
is defined by

ñ(r, t)vn(r, t) ≡
∫

dp

(2π)3
p

m
f(r,p, t) . (11)

In addition, we have

Pµν(r, t) ≡ m
∫ dp

(2π)3

(

pµ
m

− vnµ

)(

pν
m

− vnν

)

f(r,p, t),

Q(r, t) ≡
∫ dp

(2π)3
1

2m
(p−mvn)

2
(

p

m
− vn

)

f(r,p, t), (12)

ǫ̃(r, t) ≡
∫

dp

(2π)3
1

2m
(p−mvn)

2f(r,p, t) .

Finally, the symmetric rate-of-strain tensor appearing in (10) is defined as

Dµν(r, t) ≡
1

2

(

∂vnµ
∂xν

+
∂vnν
∂xµ

)

. (13)

Formally, these results are exact consequences of the kinetic equation (1).
The lowest order approximate solution of (1) is based on the assumption that C22 col-

lisions are sufficiently rapid to force the distribution function to have the form of the local
equilibrium Bose distribution
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f̃(r,p, t) =
1

eβ[
1

2m
(p−mvn)2+U−µ̃] − 1

. (14)

Here, the temperature parameter β, normal fluid velocity vn, chemical potential µ̃, and mean
field U are all functions of r and t. One may immediately verify that f̃ satisfies C22[f̃ ] = 0
independent of the value of µ̃. In contrast, one finds that C12[f̃ ] is in general finite, namely

C12[f̃ ] = 4πg2nc[1− e−β(µ̃− 1

2
m(vn−vc)2−µc)]

×
∫

dp1

(2π)3

∫

dp2

∫

dp3δ(mvc + p1 − p2 − p3)δ(ε̃1 + εc − ε̃2 − ε̃3)

×[δ(p− p1)− δ(p− p2)− δ(p− p3)](1 + f̃1)f̃2f̃3. (15)

Using the local distribution function (14) to evaluate the moments in (2) and (12), we find
that the heat current Q(r, t) = 0, and that

ñ(r, t) =
∫

dp

(2π)3
f̃(r,p, t)

∣

∣

∣

vn=0
=

1

Λ3
g3/2(z) , (16)

Pµν(r, t) = δµνP̃ (r, t) ≡ δµν

∫

dp

(2π)3
p2

3m
f̃(r,p, t)

∣

∣

∣

vn=0
= δµν

1

βΛ3
g5/2(z). (17)

Here z(r, t) ≡ eβ[µ̃−U(r,t)] is the local fugacity, Λ(r, t) ≡ [2π/mkBT (r, t)]
1/2 is the local

thermal de Broglie wavelength and gn(z) =
∑∞

l=1 z
l/ln are the Bose-Einstein functions. The

kinetic energy density is given by ǫ̃(r, t) = 3
2
P̃ (r, t) which is the same relation as found for

a uniform ideal gas.
To summarize, using f ≃ f̃ , we obtain the ZGN′ lowest-order hydrodynamic equations

for the non-condensate given in Refs. [4,6]

∂ñ

∂t
+∇ · (ñvn) = Γ12[f̃ ] ,

mñ

(

∂

∂t
+ vn ·∇

)

vn = −∇P̃ − ñ∇U −m(vnµ − vcµ)Γ12[f̃ ] , (18)

∂P̃

∂t
+∇ · (P̃vn) = −2

3
P̃∇ · vn +

2

3

[

1

2
m(vn − vc)

2 + µc − U
]

Γ12[f̃ ].

where Γ12[f̃ ] is obtained from (7) with C12[f̃ ] given by (15).

III. ZGN′ EQUATIONS WITH HYDRODYNAMIC DISSIPATION

We next derive the additional terms which arise from the equations in (10) due to a
deviation of the distribution function from local equilibrium, f ≃ f̃ + δf [14]. Following
Refs. [9,11], we write this deviation in the form

δf = f̃(r,p, t)[1 + f̃(r,p, t)]ψ(r,p, t). (19)

To first order in ψ, the C22 collision integral in (3) reduces to
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C22[f̃ + δf ] ≃ 4πg2
∫

dp2

(2π)3

∫

dp3

(2π)3

∫

dp4δ(p+ p2 − p3 − p4)δ(ε̃1 + ε̃2 − ε̃3 − ε̃4)

×f̃ f̃2(1 + f̃3)(1 + f̃4)(ψ3 + ψ4 − ψ2 − ψ) ≡ L̂22[ψ]. (20)

In the left hand side of (1) and in the C12 collision integral, we approximate f by the local
Bose distribution f̃ . The various derivatives of vn, µ̃, T and U with respect to r and t
can be written using the lowest-order hydrodynamic equations given in (18). The resulting
linearized equation which determines ψ is (for details, see the Appendix)

{

u ·∇T

T

[

mu2

2kBT
− 5g5/2(z)

2g3/2(z)

]

+
m

kBT
Dµν

(

uµuν −
1

3
δµνu

2
)

+

(

σ2 +
mu2

3kBT
σ1 +

m

kBT
u ·w

)

Γ12[f̃ ]

ñ

}

f̃(1 + f̃)− C12[f̃ ] = L̂22[ψ]. (21)

Here the thermal velocity u is defined bymu ≡ p−mvn and w ≡ vc−vn. The dimensionless
thermodynamic functions σ1, σ2 are defined by

σ1(r, t) ≡
γñ
[

1
2
mw2 + µc − U

]

− 3
2
ñ2

5
2
P̃ γ − 3

2
ñ2

,

σ2(r, t) ≡ β

5
2
P̃ ñ− ñ2

[

1
2
mw2 + µc − U

]

5
2
P̃ γ − 3

2
ñ2

, (22)

where γ(r, t) ≡ β
Λ3 g1/2(z(r, t)). We note that Refs. [4,6] introduce a related dimensionless

quantity γ̃ ≡ gγ.
Since (21) is a linear equation for ψ, one may write the solution as ψ = ψ(1)+ψ(2), where

ψ(1) is the solution of
{

u ·∇T

T

[

mu2

2kBT
− 5g5/2(z)

2g3/2(z)

]

+
m

kBT
Dµν

(

uµuν −
1

3
δµνu

2
)

}

f̃(1 + f̃) = L̂22[ψ
(1)], (23)

and ψ(2) is the solution of
(

σ2 +
mu2

3kBT
σ1 +

m

kBT
u ·w

)

Γ12[f̃ ]

ñ
f̃(1 + f̃)− C12[f̃ ] = L̂22[ψ

(2)]. (24)

We note from its definition that f̃(r,p, t) is a function of the variable u2 while the linearized
operator L̂22 defined in (20) is a function of u. The expression (15) for C12[f̃ ] can be written
in the form

C12[f̃ ] =
2g2ncm

3

(2π)2
[1− e−β(µdiff−

1

2
mw2)]

∫

du1

∫

du2

∫

du3

×δ(w + u1 − u2 − u3)δ(µc − U +
m

2
(w2 + u21 − u22 − u23))

×[δ(u− u1)− δ(u− u2)− δ(u− u3)](1 + f̃1)f̃2f̃3, (25)

where µdiff ≡ µ̃ − µc. This expression shows that C12[f̃ ] depends on u and w, and in
particular, obeys the relation C12[u,w] = C12[−u,−w]. Finally, we note that Γ12[f̃ ] in (24)
is independent of u, but depends on w.
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The equations (23) and (24) can be shown to have unique solutions if we impose the
following constraints on ψ(1) and ψ(2):

∫

dp f̃(1 + f̃)ψ(i) =
∫

dp pµf̃(1 + f̃)ψ(i) =
∫

dp p2f̃(1 + f̃)ψ(i) = 0. (26)

Physically these constraints mean that the deviations from local equilibrium make no con-
tribution to ñ, vn and the diagonal component of Pµν . The solution for ψ(1) of (23) has been
given already in Ref. [11], namely

ψ(1) =

[

∇T · u
T

A(u) + 2Dµν

(

uµuν −
1

3
u2δµν

)

B(u)

]

. (27)

Using this solution for ψ(1), one finds that the heat current density Q and the pressure tensor
Pµν are given by

Pµν = δµνP̃ − 2η
[

Dµν −
1

3
TrDδµν

]

+ P (2)
µν ,

Q = −κ∇T +Q(2), (28)

where P (2)
µν and Q(2) are the contribution from ψ(2). The explicit expressions for the trans-

port coefficients η and κ are associated with ψ(1). They are given in Eqs. (38) and (34),
respectively, of Ref. [11] for a trapped Bose gas below TBEC. The analogous transport coef-
ficients for a uniform degenerate Bose gas above TBEC were first calculated by Uehling and
Uhlenbeck [15].

The additional corrections due to ψ(2) are given by

P (2)
µν = m

∫

dp

(2π)3
uµuν f̃(1 + f̃)ψ(2),

Q(2) =
∫

dp

(2π)3
m

2
u2uf̃(1 + f̃)ψ(2). (29)

The most general solution of (24) for ψ(2) is of the form

ψ(2) = [1− e−β(µdiff−
1

2
mw2)]D(u,w). (30)

If w ≡ vn − vc = 0, the left hand side of (24) and D(u) are isotropic functions of u. Using
this fact in conjunction with the relation C12[u,w] = C12[−u,−w] as noted below (25), we
conclude that D must have the following form

D(u,w) ≃ D0(u) +D1(u)w · u+D2(u)wµwν

(

uµuν −
1

3
u2δµν

)

+O(w3). (31)

Using this, the additional terms given by (29) have the following form

P (2)
µν ∝ [1− e−β(µdiff−

1

2
mw2)]

(

wµwν −
1

3
w2δµν

)

,

Q(2) ∝ [1− e−β(µdiff−
1

2
mw2)]w. (32)

We note that the constraints in (26) imply that
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∫

du u2f̃(1 + f̃)ψ(i) = 0, (33)

and thus it follows that the isotropic term D0(u) in (31) makes no contribution to P (2)
µν in

(29).
In summary, we have obtained the following hydrodynamic equations for the non-

condensate including the normal fluid transport coefficients

∂ñ

∂t
+∇ · (ñvn) = Γ12[f̃ ],

mn

(

∂

∂t
+ vn ·∇

)

vnµ +
∂P̃

∂xµ
+ ñ

∂U

∂xµ
= −m(vnµ − vcµ)Γ12[f̃ ]

+
∂

∂xν

{

2η
[

Dµν −
1

3
(TrD)δµν

]}

− ∂P (2)
µν

∂xν
,

∂ǫ̃

∂t
+∇ · (ǫ̃vn) + (∇ · vn)P̃ =

[

1

2
m(vn − vc)

2µc − U
]

Γ12[f̃ ]

+∇ · (κ∇T ) + 2η
[

Dµν −
1

3
(TrD)δµν

]2

−∇Q(2). (34)

Since P (2)
µν and Q(2) in (32) are at least of second order in the fluctuations in δµdiff and δw

around static equilibrium, these terms can be neglected when discussing the linearized form
of these hydrodynamic equations. The equivalent “quantum” hydrodynamic equations for
the condensate are given in (8).

In closing this Section, it is useful to summarize the logical structure of our analysis.
The kinetic equation (1) leads to the exact set of equations involving the variables ñ, vn,
ε̃, Pµν and Q which are defined in terms of various moments of the distribution function
f(r,p, t). In addition, the equations in (10) contain the function Γ12 in (7) associated
with collisions between condensate and non-condensate atoms. In Refs. [4,6], the closed
set of hydrodynamic equations displayed in (18) were derived by making use of the local
equilibrium distribution function. In the present paper, we have extended this analysis
to include a small deviation (19) from local equilibrium, following the Chapman-Enskog
approach. However, we have only included contributions to the function ψ(r,p, t) [see (19)]
associated with the linearized C22 collision integral (L̂22 in (20)), which leads to the linear
integral equations for ψ in (23) and (24). We have omitted any contribution to ψ(r,p, t)
associated with the linearized C12 collision integral.

Our neglect of the latter contribution can be justified by noting that C12 in (4) is pro-
portional to the condensate density nc(r, t). Thus the deviations from local equilibrium
due to the C12 collision integral are relatively unimportant at temperatures close to TBEC.
However at lower temperatures, the deviations from local equilibrium due to C12 collisions
will become increasingly important and one can expect corrections to the values of κ, η and
τµ obtained in the present paper. Such corrections were evaluated in Ref. [9] for a uniform
Bose-condensed gas, although these authors made the further assumption that the conden-
sate and non-condensate were in diffusive equilibrium with each other (i.e., τµ → 0). As
expected, these corrections to the values of κ and η are of order nc/ñ at temperatures close
to TBEC (see Eq. (26) of the second reference in [9]) and hence can be neglected.
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IV. NORMAL MODES FOR A UNIFORM BOSE GAS

In this section, we discuss the normal mode solutions of the linearized hydrodynamic
equations, as given by

∂δnc

∂t
= −∇ · (nc0δvc)− δΓ12,

∂δvc

∂t
= −∇δµc, (35)

and

∂δñ

∂t
+∇ · (ñ0δvn) = δΓ12,

mñ0
∂δvnµ
∂t

= −∂δP̃
∂xµ

− δñ
∂U

∂xµ
− 2gñ0

∂δn

∂xµ
+

∂

∂xν

{

2η
[

Dµν −
1

3
(TrD)δµν

]}

,

∂δP̃

∂t
= −5

3
∇ · (P̃0δvn) +

2

3
δvn ·∇P̃0 + (µc0 − U0)δΓ12 +

2

3
∇ · (κ∇δT ). (36)

As discussed in Refs. [4,6], the source term δΓ12 is conveniently expressed in terms of the
fluctuation of the local chemical potential difference µdiff ≡ µ̃− µc,

δΓ12 = −β0nc0

τ12
δµdiff . (37)

Here we have introduced an equilibrium relaxation time involving collisions between con-
densate and non-condensate atoms,

1

τ12
≡ 4πg2

∫ dp1

(2π)3

∫ dp2

(2π)3

∫

dp3(1 + f̃1)f̃2f̃3

×δ(p1 − p2 − p3)δ(µc + ε̃p1 − ε̃p2 − ε̃p3), (38)

where it is understood that all quantities now pertain to static thermal equilibrium.
One can now eliminate δT and δµdiff from the above linearized equations using the

relations (see (A6) and (A4) of Appendix A)

δµ̃ =
σ10
ñ0
δP̃ +

σ20
β0ñ0

δñ+ 2g(δñ+ δnc),

δT =
T0σ30

P̃0

δP̃ − T0σ40
ñ0

δñ. (39)

The various coefficients appearing are given by

σ10 = −
3
2
ñ2
0 − γ0ñ0(µc0 − U0)

5
2
P̃0γ0 − 3

2
ñ2
0

, σ20 = β0ñ0

5
2
P̃0 − ñ0(µc0 − U0)

5
2
P̃0γ0 − 3

2
ñ2
0

,

σ30 =
P̃0γ0

5
2
P̃0γ0 − 3

2
ñ2
0

, σ40 =
ñ2
0

5
2
P̃0γ0 − 3

2
ñ2
0

, (40)

where µc0 − U0 = −gnc0 in the Thomas-Fermi approximation [1]. Using (39) and (40),
we see that our two-fluid hydrodynamic equations in (35) and (36) reduce to five coupled
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equations (three for the non-condensate and two for the condensate) in the five variables δñ,
δnc, δvn, δvc, and δP̃ . Thus one expects a total of five normal modes from the extended
ZGN′ equations.

We now consider the special case of a uniform gas (Uext = 0) and look for plane-wave
solutions ∼ ei(k·r−ωt). It is convenient to introduce dimensionless variables

n̄c ≡ nc/n, n̄ ≡ ñ/n,
δv̄c ≡ ik̂ · δvc/vcl, δv̄n ≡ ik̂ · δvn/vcl,

P̄ ≡ P̃ /nkBT0, t ≡ T/TBEC, λ ≡ gn/kBTBEC, (41)

where vcl ≡ (5kBTBEC/3m)1/2 is the sound velocity of a classical gas at T = TBEC. We also
introduce dimensionless frequency and wavenumber variables

ω̄ ≡ ωτ0, k̄ ≡ kvclτ0, (42)

where τ−1
0 ≡ σn(16kBTBEC/πm)1/2 is the classical gas collision time [3], evaluated at T =

TBEC (but with the quantum collision cross-section for bosons, σ = 8πa2.) Finally we define
dimensionless transport coefficients and a dimensionless collision time

κ̄ ≡ κ/nv2clτ0kB, η̄ ≡ η/nv2clmτ0, τ̄12 ≡ τ12/τ0. (43)

In terms of the above dimensionless quantities, we obtain the following closed set of equa-
tions

iω̄δn̄c = −λn̄c0

τ̄12t
δn̄c + k̄n̄c0δv̄c −

σ10n̄c0

τ̄12n̄0

δP̄ − σ20n̄c0

τ̄12n̄0

δn̄, (44a)

iω̄δv̄c = −3

5
λk̄(δn̄c + 2δn̄), (44b)

iω̄δn̄ =
λn̄c0

τ̄12t
δn̄c + k̄n̄0δv̄n +

σ10n̄c0

τ̄12n̄0
δP̄ +

σ20n̄c0

τ̄12n̄0
δn̄, (44c)

iω̄δv̄n = −6

5
λk̄(δn̄c + δn̄)− 3t

5n̄0
k̄δP̄ +

4η̄

3n̄0
k̄2δv̄n, (44d)

iω̄δP̄ =
5P̄0

3
k̄δv̄n −

2

3

(

σ20λn̄
2
c0

τ̄12tn̄0
+ k̄2

σ40κ̄

n̄0

)

δn̄− 2λ2n̄2
c0

3τ̄12t2
δn̄c

−2

3

(

σ10λn̄
2
c0

τ̄12tn̄0
− k̄2

σ30κ̄

P̄0

)

δP̄ . (44e)

We emphasize that our hydrodynamic equations are restricted by the assumption of local
equilibrium and thus are only valid if ω̄ ≪ 1, k̄ ≪ 1.

It is straightforward to solve the coupled set of equations in (44). Above TBEC, they
reduce to three equations for three variables, which gives rise to two sound modes (±uk) and
a thermal diffusion mode. Below TBEC, these equations give two first sound modes (±u1k),
two second sound modes (±u2k) and one relaxational mode. If the transport coefficients η
and κ are set to zero, these equations are identical to the ZGN′ equations as discussed in
Refs. [4,6]. Using (44), we can discuss the effect of η and κ on the first and second sound
modes, as well as on the relaxational mode. In Fig. 1 of Ref. [6], a graph is given of the first
and second sound velocities vs. temperature. They are almost identical in both the ZGN
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limit (ωτµ ≫ 1) and the Landau limit (ωτµ ≪ 1). Calculations based on the generalized
ZGN′ equations in (44) show essentially no change in the first and second sound velocities
when the effects of κ and η are included, for k̄ < 0.5. In Figs. 1–3, we illustrate the effect of
these transport coefficients on the damping Γ of the first and second sound modes (where
ωi = uki−iΓi) and on the relaxational mode, all as a function of the dimensionless wavevector
k̄. These specific results are for a temperature of T/TBEC = 0.9 and gn/kBTBEC = 0.2, where
one finds τ0/τµ = 0.91, κ̄ = 2.41 and η̄ = 0.34. We note that in the absence of η and κ, only
second sound is significantly damped through coupling to the relaxational mode. When we
include η and κ, Γ1 is large compared to Γ2.

Figs. 1–3 only show the damping in a case where ωτµ ≪ 1. It is interesting to see how
the relaxational mode depends on the value of ωτµ. In Fig. 1 of Ref. [4], we have plotted
the temperature dependence of τ12, τ0 and τµ for gn = 0.1kBTBEC. In Fig. 4, we plot the
damping of the relaxational mode for k̄ = 0.4, as a function of the temperature. We also
show the corresponding temperature dependence of τµ/τ0. As discussed in Ref. [4], our use
of a particle-like spectrum with a HF mean-field gives rise to a spurious finite value of the
condensate density nc0 at TBEC. As a result, τµ is also finite at TBEC.

In Appendix B, we derive an analytical expression for the width of the mode centered
at zero frequency. Working to first order in κ, η, 1/τ12 and second order in λ = gn/kBTBEC,
we obtain

ΓR ≃ 1

τµ
+

2

5

σ40κ

(P̃0/T0)
k2. (45)

As shown in Fig. 4, this approximate expression is in good agreement with the result of a
direct numerical evaluation of ΓR from (44) at temperatures close to TBEC (it deviates more
and more at lower temperatures because of the non-linear dependence of ΓR on κ and 1/τ12).
The approximate analytic expression in (45) is useful in that it shows clearly that below TBEC,
the relaxational mode is strongly coupled to thermal diffusion which arises from the deviation
from local equilibrium of the non-condensate distribution function. Indeed, one may view
this damped mode as a renormalized version of the well-known thermal diffusion mode found
above TBEC [14]. In the classical high-temperature limit, we have σ40 = 1 and P̃0 = nkBT0,
and (45) reduces in this case to ΓR = κk2/nCP, where the specific heat CP = 5kB/2. This
is the well-known classical gas result for the thermal diffusion mode [10,14].

In the ZGN limit (τµ → ∞), (45) shows that the damping rate of the relaxational
mode is mainly due to the finite thermal conductivity (if we set κ = 0, we obtain the zero
frequency mode discussed in Section V of Ref. [6]). In the opposite Landau limit of the
ZGN′ equations (τµ → 0), the width of this mode is dominated by 1/τ12, associated with
the C12 collisions which bring about diffusive equilibrium between the condensate and non-
condensate components (see Fig. 4). Eq. (45) is in complete agreement with the qualitative
picture sketched at the end of Section V of Ref. [6]. The mode spectrum which the coupled
ZGN′ equations in (44) imply below TBEC is different from the usual Landau two-fluid
hydrodynamics [8,9,3]. In the latter theory, the thermal diffusion mode above TBEC does not
persist as a relaxational mode below TBEC. Rather, the thermal diffusion mode is interpreted
as being replaced by two damped second sound modes (±u2k − iΓ2) below TBEC.

Fig. 4 also shows that the width of the relaxational mode increases sharply (over and
above the spurious jump at TBEC noted above) as the temperature passes from above to
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below TBEC, as a result of the onset of C12 collisions. This increased width of a mode
peaked at ω = 0 will be a useful experimental signature of the new physics implied by the
extended ZGN′ hydrodynamic equations derived in the present paper. Of course, all of the
above analysis says nothing about the relative weight of the first sound, second sound and
relaxational modes below TBEC. This requires the evaluation of a specific response function,
such as the dynamic structure factor [17]. Further calculations along these lines are in
progress.

V. CONCLUSIONS

In this paper, we have extended our recent derivation [4,6] of two-fluid hydrodynamic
equations (referred to as the ZGN′ equations) to include the effects of a small deviation from
local equilibrium of the non-condensate atoms. This brings in the usual kind of hydrody-
namic damping due to the thermal conductivity and shear viscosity of the thermal cloud. In
calculating these transport coefficients we have only taken into account the deviations from
local equilibrium due to the C22 collision integral but have neglected the contribution coming
from the C12 collision integral. This limits the validity of the present calculations to the
vicinity of the transition temperature. The damping due to hydrodynamic dissipation is in
addition to that due to the equilibration of the condensate and non-condensate components
already contained in the original ZGN′ equations, as discussed in Refs. [4,6].

For illustration, we presented some numerical results for a uniform Bose gas. In this
case, we find damped first and second sound modes (±u1k − iΓ1,±u2k − iΓ2) and a purely
relaxational mode ω = −iΓR. The latter mode is not exhibited by the usual two-fluid
hydrodynamic equations which assume that the condensate and non-condensate are in local
thermodynamic equilibrium. The overall effect of η and κ on the ZGN′ predictions in Ref. [6]
is to introduce additional damping of all three modes. Above TBEC, the relaxational and
second sound modes (±u2k) merge into a single thermal diffusive mode. The relaxational
mode below TBEC may therefore be viewed as the superfluid analogue of the normal thermal
diffusion mode.

In another paper [16], we shall use these ZGN′ equations with transport coefficients to
discuss the damping of hydrodynamic modes in a trapped Bose gas. In general this is a more
complex situation, since one must contend with the fact that the local equilibrium solution
becomes invalid as a starting point in the low density tail of the thermal cloud [11,18].
However, one can derive general expressions for the damping and renormalization of the
hydrodynamic modes as given by the ZGN equations. In particular, we shall show that
the damping of the out-of-phase dipole oscillation of the condensate and non-condensate
components in a trapped Bose-condensed gas is only weakly affected by the non-condensate
transport coefficients. As a result, the damping of this mode is entirely due to the collisions
between the condensate and non-condensate atoms which are responsible for bringing these
two components into diffusive equilibrium. Further experimental studies [12] of this analogue
of second sound in superfluid 4He [8] would be of great interest.
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APPENDIX A:

We briefly sketch the derivation of the kinetic equation in (21). Using (14) in the left
hand side of (1), one has

[

∂

∂t
+

p

m
·∇−∇U(r, t) ·∇p

]

f̃(r,p, t)

=

[

1

z

(

∂

∂t
+

p

m
·∇

)

z +
mu2

2kBT 2

(

∂

∂t
+

p

m
·∇

)

T

+
mu

kBT
·
(

∂

∂t
+

p

m
·∇

)

v +
∇U(r, t)

kBT
· u
]

f̃(1 + f̃). (A1)

Using the expressions for the density ñ given by (16) and the pressure P̃ in (17), one finds

dñ =
3ñ

2T
dT +

γkBT

z
dz ,

dP̃ =
5P̃

2T
dT +

ñkBT

z
dz , (A2)

where γ is the variable introduced after (22). One may combine to these equations to obtain

dT

T
=
σ3

P̃
dP̃ − σ4

ñ
dñ,

dz

z
=

1

kBT

(

5σ3
2γ

dñ− 3σ4
2ñ

dP̃

)

, (A3)

where the thermodynamic functions σ3 and σ4 are defined by

σ3(r, t) =
P̃ γ

5
2
P̃ γ − 3

2
ñ2
, σ4(r, t) =

ñ2

5
2
P̃ γ − 3

2
ñ2
. (A4)

Using the lowest-order hydrodynamic equations given in (18), one finds that the equations
in (A3) reduce to

∂T

∂t
= −2

3
T (∇ · vn)− vn ·∇T +

2T

3ñ
σ1Γ12[f̃ ],

∂z

∂t
= −vn ·∇z + σ2z

Γ12[f̃ ]

ñ
, (A5)
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where the local equilibrium thermodynamic functions σ1 and σ2 are defined in (22). The
analogous equation for ∂vn/∂t is given directly by (18). Using these results in (A1), one
finds that it reduces to

(

∂

∂t
+

p

m
·∇−∇U ·∇p

)

f̃

=

{

1

T
u ·∇T

(

mu2

2kBT
− 5P̃

2ñkBT

)

+
m

kBT

[

u · (u ·∇)v − u2

3
∇ · v

]

+

(

σ2 +
mu2

3kBT
σ1 +

m

kBT
u ·w

)

Γ12[f̃ ]

ñ

}

f̃(1 + f̃), (A6)

where we recall u ≡ p/m − vn. This can be rewritten in the form shown on the left hand
side of (21).

Using dz/z = β[−(µ̃− U)dT/T + dµ̃− 2gdn], one obtains from (A3)

dµ̃ =
σ′
1

ñ
dP̃ +

σ′
2

βñ
dñ+ 2g(dñ+ dnc). (A7)

Here σ′
1 and σ

′
2 are obtained from σ1 and σ2 in (22) with the replacement of 1

2
m(vn−vc)

2+µc

by µ̃. The relations (A2)-(A4) and (A7) are used in Sec. IV to eliminate δµdiff and δT from
the linearized hydrodynamic equations in (35) and (36).

APPENDIX B:

In this Appendix, we sketch the derivation of the approximate expression for the relax-
ation rate ΓR given in (45). It is convenient to introduce the five-component vector

yT = (δn̄, δP̄ , δv̄n, δn̄c, δv̄c). (B1)

The linearized hydrodynamic equations in (44) can then be written in the matrix form

iω̄y = Ky, (B2)

where the 5× 5 matrix K is given by

K =



















σ20n̄c0

τ̄12n̄0

σ10n̄c0

τ̄12n̄0
n̄0k̄

λn̄c0

τ̄12t
0

−2
3

(

σ20λn̄2
c0

τ̄12tn̄0
+ σ40κ̄k̄2

n̄0

)

−2
3

(

σ10λn̄2
c0

τ̄12tn̄0
− σ30κ̄k̄2

P̄0

)

5
3
P̄0k̄ −2λ2n̄2

c0

3τ̄12t2
0

−6
5
λk̄ − 3t

5n̄0
k̄ 4η̄

3n̄0
k̄2 −6

5
λk̄ 0

−σ20n̄c0

τ̄12n̄0
−σ10n̄c0

τ̄12n̄0
0 −λn̄c0

τ̄12t
n̄c0k̄

−6
5
λk̄ 0 0 −3

5
λk̄ 0



















. (B3)

Although it is difficult to obtain general analytical solutions of the matrix equation (B2),
we can obtain approximate analytical expression for ΓR by making use of the expression for
the determinant of this matrix at zero frequency:

detK = τ 50 (Ω
2
1 + Γ2

1)(Ω
2
2 + Γ2

2)ΓR. (B4)
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Working to first order in κ̄, η̄, 1/τ̄12 and second order in λ, a direct evaluation of the
determinant of the matrix in (B3) gives

detK =
3

5
λn̄c0

tP̄0

n̄0

k̄4
{

2σ40κ̄k̄
2

5P̄0

(

1− 2λn̄2
0σ30

tP̄0σ40

)

n̄c0

τ̄12n̄0

[

σ20 +
λn̄0

tP̄0

(

2

5
n̄c0σ20 + 2P̄0σ10 − 2P̄0)

]

}

. (B5)

If we set κ, η = 0, the first (Ω1) and second (Ω2) sound mode frequencies for small wavevec-
tors are given by the solution of Eq. (93) of Ref. [6]. To second order in λ, this gives

τ 40Ω
2
1Ω

2
2 = k̄4

3

5
λn̄c0

tP̄0

n̄0

(

1− 2λn̄2
0

tP̄0σ40
− 6λn̄2

0

5tP̄0

)

. (B6)

Using (B6) and (B5) in (B4), we obtain

ΓRτ0 ≈
detK

Ω2
1Ω

2
2τ

4
0

=
τ0
τµ

+
2κ̄k̄2

5P̄0

[

σ40 +
λn̄2

0

tP̄0

(

6

5
σ40 +

2

5
− 2σ30

)

]

, (B7)

where τµ is given by

τ12
τµ

=
nc0

kBT0

[

5
2
P̃0 + 2gñ0nc0 +

2
3
g2γ0n

2
c0

5
2
P̃0γ0 − 3

2
ñ2
0

− g

]

≃ n̄c0

n̄0

[

5P̄0

2n̄0

+
λ

t
(2n̄c0σ40 − n̄0)

]

+O(λ2). (B8)

Neglecting the second small term in the square bracket of (B7), we obtain for ΓR the simple
expression

ΓRτ0 =
τ0
τµ

+
2σ40κ̄

5P̄0
k̄2. (B9)

Numerical calculations show that (B7) is very well approximated by (B9). Using the defi-
nitions of the various dimensionless quantities in (41)-(43), (B9) can be written in the form
given in (45).
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FIGURE CAPTIONS

FIG.1: Damping of first sound in a uniform gas for T/TBEC = 0.9 and gn = 0.2kBTBEC, as a
function of the dimensionless wavevector defined in (42). The ZGN′ results including
only κ and only η are also shown.

FIG.2: Damping of second sound in a uniform gas for the same parameters as in Fig. 1.

FIG.3: Damping of the relaxational mode vs. wavevector (see Fig. 1). The damping due to
the thermal conductivity is shown for both the ZGN (τµ → ∞) and ZGN′ theories.
The effect of the shear viscosity is negligible.

FIG.4: Damping of the relaxational mode vs. temperature, for gn = 0.1kBTBEC and k̄ = 0.4.
The ZGN′ relaxation time τµ is also shown. All results are normalized to the classical
gas collision time τ0 defined below (42). The approximate analytical expression for ΓR

in (45) is compared with a direct numerical solution of the linearized equations in (44).
The discontinuity at TBEC is spurious, being a result of the mean-field approximation
used for the thermal excitations [4].
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Eq.(45)

  T / TBEC

  τ 0/τ µ

  Γ
R

τ 0


