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The analysis of nested structures in sets of species assemblages across different sites or in networks of interspecific
interactions has become common practice in ecological studies. Although new analyses and metrics have been
proposed, few studies have scrutinized the concepts that subtend nestedness analysis. We note two important
conceptual problems that can lead to terminological inconsistencies and flawed interpretations. First, the
thermodynamic analogy that underlies the most common metric of nestedness, matrix temperature, is flawed
and has led some authors to incorrect interpretations. Second, the term “anti-nestedness” is a potential source of
confusion and inconsistencies. We review four concepts for anti-nestedness and examine how distinct they are.
“Anti-nested” matrices, i.e. less nested than expected by chance, may result from different ecological processes
and show distinct structural patterns. Thus, there is no single unequivocal opposite of nestedness to be
represented as “anti-nestedness”. A more profitable approach is to designate and test each distinct non-nested
pattern according to its specific assumptions and mechanistic hypotheses.

In community ecology and biogeography, ecological
systems usually are described as presence—absence
matrices, often called incidence matrices (Diamond
1975, Gotelli 2000), or as networks (Pimm 1982,
Pascual and Dunne 2005). By tradition, incidence
matrices are used to investigate distributional patterns
of species composition among different habitats or
islands (Diamond 1975), whereas a network represen-
tation has been adopted in studies of species interac-
tions (Pimm 1982, Jordano 1987). However, incidence
matrices and bipartite networks are interchangeable
representations for identical structures (Harary 1969,
Lewinsohn et al. 2006) and measurements associated
with one representation can be directly applied to the
other. In this context, the analysis of nestedness, widely
used to characterize matrices of species distributions,
was recently applied to characterize ecological networks
(Bascompte et al. 2003, Dupont et al. 2003, Ollerton
et al. 2003, Guimaraes et al. 2006, Lewinsohn et al.
20006).

The ecological concept of nestedness stems from
Darlington (1957), but only after its development by
Patterson and Atmar (1986) and Patterson (1987), was
it formally defined and popularized among ecologists.
According to Patterson and Atmar (1986), species
assemblages are nested if the species present in
species-poor sites are a proper subset of those present
in species-rich sites. Perfect nestedness occurs when all
species-poor sites are proper subsets of the assemblages
found in species-rich sites (Fig. la—b), whereas a
maximally nested matrix is a special case of a perfectly
nested matrix with 50% fill in which presences occupy
an upper-left triangle (Fig. 1a). Similarly, bipartite
networks are nested if those species with fewer interac-
tions are preferentally associated with a subset of
species that interact with the most connected ones
(Bascompte et al. 2003). The concept of nestedness has
thus been used to indicate both distributional and
interactive descriptions of community structure in
ecological studies. Here, we use “presence” to designate
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Fig. 1. Three examples of nested matrices. Matrices A and B illustrate the extreme models of perfect nestedness, a maximally
informative matrix and a minimally informative matrix, respectively. Matrix C illustrates unexpected absences and presences in

relation to the boundary line.

species records in sites (e.g. islands, fragments, patches,
hosts) or species interactions (e.g. mutualistic or
antagonistic interactions). We also use “incidence
matrix” to refer both to tabular and to network
representations as bipartite networks (Harary 1969).

Distributional nestedness has been documented for a
variety of taxonomical groups on several spatial scales in
a range of distinct biogeographical regions and habitats
(Patterson 1990, Wright and Reeves 1992, Wright et al.
1998, Gaston and Blackburn 2000). Interactive nested-
ness seems to be a common property of mutualistic
interactions, such as the interactions of plants with seed
dispersers, pollinators or protective ants (Bascompte
et al. 2003, Dupont et al. 2003, Ollerton et al. 2003,
Guimaraes et al. 2006). Nestedness also has been
recorded for parasite species among conspecific host
individuals (Worthen and Rohde 1996, Rohde et al.
1998). This last system represents both an interactive
and a distributional matrix.

Nested structures in ecological systems can give
indications of the ecological and evolutionary processes
shaping interspecific interactions (Thompson 2005,
Lewinsohn et al. 2006) and distribution of species
among sites (Lomolino 1996). Additionally, nestedness
can be a useful tool for species preservation and to
establish priorities for conservation in fragmented land-
scapes (Patterson 1987, Boecklen 1997, Martinez-
Morales 2005). Indeed, recent studies suggest that nested
plant—animal networks are more robust to environ-
mental perturbation (Fortuna and Bascompte 2006).

In this paper, we address two conceptual incon-
sistencies related to nestedness. First, we show that the
thermodynamic analogy related to matrix temperature,
a metric widely used to quantify the degree of
nestedness, is not valid, and we propose a new concept
for matrix temperature based on its calculation. Second,
we demonstrate that “anti-nestedness”, a term increas-

ingly used for matrix patterns that depart from
nestedness, actually describes several distinct biological
patterns. Thus, anti-nestedness should be avoided in
favor of more meaningful concepts that describe
distinct departures from nestedness. Here we will not
review the measurement of nestedness and the use of
appropriate metrics or null models (for these issues, see
Wright and Reeves 1992, Cook and Quinn 1998,
Brualdi and Sanderson 1999, Jonsson 2001, Rodriguez-
Gironéz and Santamarfa 2006, Greve and Chown
2006). We will concentrate on conceptual questions
and their possible consequences for data interpretation.

Matrix temperature: an inadequate
analogy

The degree of nestedness of a given matrix can be
assessed through different metrics (Cutler 1994, 1998,
Wright et al. 1998, Brualdi and Sanderson 1999).
However, several metrics are sensitive to matrix size,
form and/or fill (Wright et al. 1998). This hinders
comparison of nestedness among different assemblages.
Wright et al. (1998) assert that these problems are less
severe for matrix temperature, T, a metric developed by
Atmar and Patterson (1993) (but see Rodriguez-
Gironéz and Santamarfa 2006, Greve and Chown
2006). The T metric has become established as the
standard measure of the degree of nestedness in studies
of species distribution among sites (Fischer and
Lindenmayer 2002) and of ecological interaction net-
works (Bascompte et al. 2003). Although we concur
that T is a useful metric to describe nestedness, we take
exception to its conceptual foundations.

Matrix temperature measures how much the
incidence matrix departs from perfect nestedness.
The calculation of this metric involves computational



procedures to reorganize the incidence matrix into a
state of “maximum packing”, which means that the
rows and columns are reordered so that nestedness is
maximized, using different algorithms (Atmar and
Patterson 1993, Rodriguez-Gironés and Santamaria
2006). The “packed” matrix conventionally shows
rows with more presences at the top of the matrix
and columns with more presences at the left side
(Fig. 1). Then a boundary line is calculated to depict
the expected distribution of presences if the matrix
were perfectly nested (Atmar and Patterson 1993).
Absences to the top and left of the line are defined as
unexpected in a perfectly nested arrangement, and so
are presences below and to the right (Fig. 1c). The
matrix temperature is calculated as the sum of
squared deviations from the boundary line of un-
expected presences and absences divided by the
maximum value possible for the matrix, multiplied
by 100. Thus, T is a standardized (i.e. non-dimen-
sional) index of how much the matrix departs from
the perfectly nested state, combining the number and
distance of unexpected presences and absences from
the boundary line. In fact, T is a percentage measure
(Rodriguez-Gironéz and Santamaria 2006).

Atmar and Patterson (1993) coined the term matrix
temperature in analogy to Ludwig Boltzmann’s propo-
sition that heat is equivalent to disorder and, addition-
ally, to Shannon’s (1948) definition of entropy as an
informational measure of unexpectedness. Indeed,
although T is a standardized index, Atmar and Patterson
(1993) define an unnecessary unit for T, degrees, to
reinforce the analogy. We contend that the incorpora-
tion of these terms from physics and information theory
into the analysis of incidence matrices causes conceptual
problems for the understanding of matrix structure. The
thermodynamic analogy is applied for instance in the
statement “At 100°, no discernible extinction order
remains; the presence—absence matrix has become a
free-gas” (Atmar and Patterson 1993). However, dif-
ferently from what many authors state (Ferndndez-
Juricic 2002, Fischer and Lindenmayer 2002, Heino
and Soininen 2005 Martinez-Morales 2005), matrix
temperature does not measure presences as expected by
the thermodynamical analogy of Atmar and Patterson
(1993). According to their calculus of T, matrix
temperature increases with the proportion of unex-
pected absences and presences in the matrix with respect
to perfect nestedness. Therefore, T = 100 stands for the
maximum proportion of unexpected presences and
absences regardless of rearranging rows and columns.
It is important to notice that randomly allocated
presences will produce a matrix in which T <100
(Rodriguez-Gironéz and Santamaria 20006). Since a
matrix with temperature close to 100 cannot be
randomly filled, the concept of maximally disordered
matrix of Atmar and Patterson (1993) becomes in-

applicable. Consequently, the analogy with some fea-
tures of thermodynamical or information systems, such
as heat and entropy, is inappropriate and unnecessary.

We propose that a more precise definition of matrix
temperature according to what is actually calculated
should be “a measure of the symmetry in the distribu-
tion of unexpected absences and presences, respectively,
on both sides of the perfect nestedness boundary line”.
When T =0, there is no symmetry, while T =100
means the highest symmetry of unexpected absences
and presences at both sides of the boundary line.

Anti-nestedness: a non-concept

Anti-nestedness was first used by Wright et al. (1998) to
designate “species communities that were more hetero-
geneous than expected by chance”, but the same term
designates a number of distinct structures in the
literature (Table 1, Fig. 2). Since a perfectly nested
matrix results in T =0, we can expect a value of T very
close or equal to 100 in a perfect anti-nested matrix.
Thus, the assertion of Atmar and Patterson (1993) that
at T=100 a matrix has maximally disordered pre-
sences, can be interpreted as a non-explicit concept of
anti-nestedness. We will call this the random model of
anti-nestedness.

The first explicit and unambiguous concept of anti-
nestedness appears in Poulin and Guégan (2000), for
whom anti-nestedness is a departure from nestedness in
which species are always absent from sites (in their case,
host individuals) richer than the most depauperate one
in which they occur. The second explicit usage of anti-
nestedness corresponds to a perfect checkerboard (sensu
Diamond 1975), a pattern in which the distribution of
presences is exactly complementary between adjacent
rows and columns. Jonsson (2001; see also Dupont et al.
2003, Lazaro et al. 2005) stated thatat T =100, a matrix
has a checkerboard pattern. Yet another concept of anti-
nestedness, called high-turnover, was proposed by
Leibold and Mikkelson (2002). According to them, an
anti-nested pattern occurs when there are more replace-
ments of presences than would be expected by chance.
Note that a pure checkerboard pattern can be rearranged
into a matrix with two compartments (Gotelli 2000,
Lewinsohn et al. 2006), and thus it may be reduced to a
particular instance either of a compartmented matrix, or
of the high-turnover model. However, if the sequence of
rows and columns has any spatial or biological sig-
nificance, then the checkerboard arrangement will also
be meaningful as a distinct pattern; for this reason, and
since it is well established in the literature, we retain it as
a distinct definition, to be evaluated with the others.

Although other variants are found in the literature,
the concepts above illustrate the gamut of concepts that
are called anti-nested.
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General properties and relationships of four models of anti-nestedness based on distinct concepts.

Table 1.

Relationship between  No. of components

Overlap

Equality

Fill

References

Anti-nested model

size and fill

Variable

Constant
Inverse

Variable
0%

Variable
0%

Variable

Atmar and Patterson 1993
Poulin and Guégan 2000

Maximum randomness
Non-inclusive sets of

no. of columns

<50%

or rows**

unequal sizes
Checkerboard presences

High turnover

Constant
Variable*

~50%
Variable

~100%
100%

~50%
Variable

Jonsson 2001

—

Leibold and Mikkelson 2002

*constant when no. of columns =no. of rows, inverse when no. of columns >no. of rows and positive when no. of columns <no. of rows

**the number of components is equal the number of the smallest side (columns or rows)

Properties of different anti-nested
concepts

We examined some structural properties of these distinct
anti-nested representations to assess more formally the
difference among the definitions of anti-nestedness and
thus to evaluate the applicability of this concept. To
facilitate comparisons of the distinct concepts of anti-
nestedness, we illustrate both matrix and network
representations of these concepts using the same dimen-
sion of 15 rows by 5 columns (Fig. 2). We did not
attempt to depict the first usage of the term anti-nested
by Wright et al. (1998) because their concept is vague
and does not permit an unequivocal representation.

We initially compared the other four anti-nested
models by contrasting some general properties
and relationships derived from these four concepts
(Table 1). To evaluate further the differences among the
anti-nestedness models, we assessed two additional
properties: equality and overlap. We defined equality
as the percentage of pairs of columns (or rows) with
identical number of presences. Overlap was defined as
the percentage of presences recorded in less filled
columns (or rows), that are also present in more filled
columns, for all paired combinations of columns.

To evaluate whether a matrix is significanty less
nested than expected by chance, we used four null
models and performed the analysis in the C* ¥
program ANINHADO (Guimaries and Guimaries
2006) based on the original code of the NTC program
of Atmar and Patterson (1995). The four null models
used were randomized according to the following rules:
(1) the probability of a presence in a given cell is
constant and estimated from data as the overall
proportion of occupied cells (this null model is
practically identical to that of NTC); (2) the number
of presences in a given row is estimated from data as the
proportion of occupied cells within the row; (3) the
number of presences in a given column is estimated
from data as the proportion of occupied cells within the
column, and (4) the probability of a given cell being
occupied is the average of the probabilities of occupancy
of its row and column (Bascompte et al. 2003).

Since the calculus of nestedness degree by the T
metric of Atmar and Patterson (1993) seems to be less
affected by fill than by matrix dimensions (Wright et al.
1998, Greve and Chown 2006), we standardized all
comparisons among the models using matrices with the
same dimensions. Poulin and Guégan’s (2000) model of
non-inclusiveness with unequal sizes requires at least 55
rows for 10 columns, the dimension chosen to compare
the value and significance of nestedness degree, and the
mean number of presences in rows and columns.

To compare the ant-nested models as bipartite
networks (Jordano et al. 2003, Lewinsohn et al.
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Fig. 2. Matrix and network representations of perfectly nested and four anti-nested models based on distinct concepts. All
models have the same dimensions (5 columns and 15 rows), although fills differ.

2006), we used three properties best visualized as
networks: (1) number of components, i.e. the number
of non-connected sub-networks or discrete compart-
ments; (2) the size of the largest component, i.e. the
number of nodes (columns and rows) that constitute
the component with the largest number of nodes, (3)
average degree (and standard deviation), i.e. the average
number of links (presences) per node. As we are dealing
here with bipartite networks of two exclusive sets, we
compare average degree separately for columns and
rows. To visualize both matrix and network properties,
we depicted an idealized representation for each anti-
nested model (Fig. 2). An initial comparison of the
figures of each model showed us clearly that they
present distinct properties, such as the number of
components and connectance.

The four anti-nested models showed marked differ-
ences in their level of nestedness (T-100) (Table 2). The
difference between the highest (the non-inclusive
model) and the lowest nestedness degree (the checker-
board model) was approximately 60 (Table 2). Only
checkerboard and the sparse high-turnover models were
significantly less nested than expected by any null
model (Table 2). The remaining models did not show
higher levels of nestedness degrees than expected by any

null model, hence are not distinguishable from ran-
domly filled matrices of similar dimensions.

These models also varied markedly in other proper-
ties such as number of components and average degree
(Table 3). These properties have important conse-
quences for the dynamics of the studied system (see
Albert and Barabasi 2002 for a review in the context of
complex networks). For example, the effects of environ-
mental disturbance may not propagate through distinct
components in an interactive network, since there is no
connection between their species groups. Moreover,
differences in degree lead to the idea that different
species or sites may be more important than others to the
overall stability of the system (Jordano et al. 2003,
Fortuna and Bascompte 2006). Note that, since T is a
single metric, it cannot capture all aspects of matrix
properties. However, the highly different matrices that
are now called anti-nested do not have any feature in
common, at least from the measures examined here.

Since distinct kinds of structured incidence matrices
are less nested than expected by chance, a matrix that
fits this condition (Wright et al. 1998, Poulin and
Guégan 2000) cannot be unambiguously assigned to a
specific anti-nested concept. Therefore, we suggest that
future studies on distributional and interactive species
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Table 2. Some matrix and network properties of four models of anti-nestedness based on distinct concepts. CRO =completely
random with constant cell occupancy probability; FRT =fixed row totals; FCT =fixed column totals; APO =average probability of
occupancy. The P-values correspond to the probability of a matrix having a nestedness degree less than expected by chance
according to each null model. All matrices have 55 rows by 10 columns. The nestedness degree for the maximum random model is
the mean value (£SD) for 1000 randomly generated matrices. The nestedness degree varies from 0 (no nestedness) to 100

(maximum nestedness).

Anti-nested model Fill (%) Nestedness P-values for each null model
degree (100 — T)

CRO FRT FCT APO
Maximum randomness 50 36.034+3.9 0.546 0.760 0.934 0.148
Non-inclusive sets of unequal sizes 10 62.95 0.958 0.998 0.630 0.830
Checkerboard presences 50 3.19 <0.001 <0.001 <0.001 <0.001
Highly filled high turnover* 83.60 48.69 0.548 0.966 1.000 0.192
Poorly filled high turnover* 18.18 15.69 <0.001 <0.001 <0.001 <0.001

* in order to test the effect of fill, we used two alternative models of high turnover

Table 3. Some network properties of five idealized models of anti-nestedness based on distinct concepts. All matrices have 55 rows

by 10 columns. See Table 2 for further details.

Anti-nested model No. of Size of the largest Average number of Average number of
components component presences per columns presences per rows

Maximum randomness 1 65 25 5

Non-inclusive sets 10 10 5.5 1

Checkerboard presences 2 28 27.5 5

Highly filled high turnover 1 65 46 8.36

Poorly filled high turnover 1 65 10 1.82

patterns forgo the use of “anti-nestedness” in favour of
more specific concepts based on testable and compar-
able patterns.

Conclusion

Since the metric of matrix temperature proposed by
Atmar and Patterson (1993) is in wide use in studies on
distributional and interactive nestedness, we propose a
concept to revise the underpinnings of this metric.
More specifically, we argue that (1) there is no reason to
maintain the analogy between matrix temperature and
thermodynamic systems, and (2) authors should not
state that when T =100 a matrix represents a random
distribution of presences, since this is only fulfilled by
matrices with symmetric (i.e. non-random) distribution
of unexpected absences and presences at both sides of
the boundary line.

Why has the term “anti-nested” been employed to
describe so strikingly dissimilar patterns? We believe
that this can be ascribed to two major motivations: (1)
nestedness seems to be a widespread ecological pattern,
and (2) to measure and test nestedness is easier than to
measure and test the majority of other structured
patterns on species distribution and species interaction,
due to computational ease (several free available
programs). These motivations have promoted nested-
ness to the status of “pattern to be tested a priori”, even
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if several others structured species distributions or
interactions also are potentially detectable in a data
set (Leibold and Mikkelson 2002, Lewinsohn et al.
2000). Since matrices that are less nested than expected
by chance may result from different ecological processes
and show distinct structural patterns, there is no sound
basis for designating “anti-nestedness” as the opposite
of nestedness. By this logic, one would need anti-
concepts for each structured model (e.g. anti-turnover,
anti-checkerboard). It makes more sense to test each
distinct non-random pattern according to its assump-
tions and mechanistic hypotheses.
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