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Analyzing the Empirical Course of Forgetting

John T. Wixted
University of California, San Diego

An analysis of the temporal properties of forgetting can be performed whenever memory is
assessed at more than one retention interval. With regard to the singular property of forgetting
rate, however, any theoretical interpretation is complicated by the possibility of a nonlinear scale
relating a given performance measure (e.g., number of items recalled) to an underlying process.
Because that scaling relationship is generally unknown, many conclusions about the rate of
forgetting based on a performance measure cannot be assumed to reflect the memory process of
interest. In an effort to deal with that problem, several methods of analysis have been proposed
that generally yield opposing conclusions about whether a higher degree of learning results in a
slower rate of forgetting. The present article describes four properties of empirical forgetting
functions that may, at different times, be taken to represent the rate of forgetting and illustrates
the potentially confusing practice of assigning the same verbal label to each. The difference
between performance-based and psychological views of forgetting and the role of that distinction
in determining one's approach to the analysis of empirical forgetting functions are also considered.

A subject of long-standing interest in the field of learning
and memory is the temporal course of forgetting. Recent
studies concerned with this issue have examined the form of
forgetting functions spanning as few as 15 s to as many as 50
years (Bahrick, 1984; Modigliani, 1976; Rundquist, 1983,
1986;Slamecka&Katsaiti, 1988;Slamecka&McElree, 1983;
Squire, 1989; Underwood, 1964; Wickelgren, 1972, 1974).
Although they are relatively easy to produce, the proper
interpretation of experimental forgetting functions has proven
to be a surprisingly complex undertaking. Several years ago,
Slamecka (1985) and Loftus (1985a, 1985b) exchanged views
on how to decide whether the rate of forgetting in one con-
dition differs from that in another. Unfortunately, more often
than not, the methods they proposed lead to opposing conclu-
sions. After reviewing the same literature, for example, Sla-
mecka (1985) concluded that variations in the degree of
learning generally have no effect on forgetting rate, whereas
Loftus (1985a) reached the incompatible conclusion that a
higher degree of learning virtually always results in a slower
rate of forgetting.

Bogartz (1990) found fault with both methods of analysis
and proposed yet another approach based on Anderson's
(1982) functional measurement theory. For entirely different
reasons, Bogartz arrived at the same conclusion as Slamecka
regarding the effects of learning on forgetting. Without some
agreement on the proper approach to describing and inter-
preting the phenomenon of forgetting, a thorough analysis of
the factors that alter its temporal course may be difficult to
come by. In what follows, I attempt to work toward a reso-
lution of the ambiguities surrounding the analysis of forget-
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ting, beginning with a brief overview of the contrasting meth-
ods of analysis.

Vertical Versus Horizontal Parallelism

Consider a simple experiment in which one group of sub-
jects (high) is provided with a greater number of learning
trials than another (low). Figure 1 (top panel) shows a hypo-
thetical forgetting function for each group; the low-learning
group clearly exhibits a reduced level of recall at all delay
intervals. Of particular interest here is whether or not forget-
ting is also faster in the low condition. To answer this ques-
tion, Slamecka and his colleagues (Slamecka, 1985; Slamecka
& Katsaiti, 1988; Slamecka & McElree, 1983) prefer the
traditional method of performing an analysis of variance to
evaluate the possibility of an interaction between the degree
of learning and the retention interval. If the interaction is
significant, then the two conditions are said to exhibit different
rates of forgetting. If not, then they are said to exhibit the
same rates of forgetting. This method of analysis essentially
tests whether or not the vertical distance between the two
forgetting curves remains constant as a function of time (i.e.,
whether or not the two curves are vertically parallel). Because
the vertical distance between the two functions shown in the
top panel of Figure 1 remains constant as the retention
interval increases, the rate of forgetting in the high condition
is judged to be the same as that in the low condition.

Loftus (1978, 1985a, 1985b) argued that this approach
entails an inherent scaling problem that can give rise to the
conclusion of equal forgetting rates when, in fact, different
rates prevail (and vice versa). Specifically, in the absence of
any information regarding the way in which the underlying
memory process maps onto the dependent measure in use,
many statistical interactions (or lack thereof) are not defini-
tive. Consider, for example, the venerable theory of memory
which states that performance is a function of the strength of
the underlying memory trace. For purposes of illustration, let
us assume more specifically that the probability of recall is
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Figure 1. The top panel shows hypothetical forgetting functions
produced by subjects exposed to high and low degrees of learning.
The dashed lines illustrate the constant vertical separation between
the two functions. The bottom panel shows forgetting functions
yielded by squaring the data in the upper panel to provide a hypo-
thetical measure of trace strength. The dashed lines illustrate the
continuously decreasing vertical separation between the two func-
tions.

equal to the square root of the item's trace strength measured,
say, in hypothetical units of neural activity. In that case, a
truer measure of memory would be provided by first squaring
the obtained free-recall data. Applying that transformation to
the data depicted in the top panel of Figure 1 yields the
functions shown in the lower panel. The transformed func-
tions are obviously nonparallel in the vertical direction, sug-
gesting different rates of forgetting after all.

In practice, the exact form of the underlying mapping
relation is always unknown and therein lies the problem.
Regardless of whether the two forgetting functions are verti-
cally parallel, they may or may not reflect equal rates of
forgetting depending on the specific form of the unknown
scaling function (Krantz & Tversky, 1971; Loftus, 1978). To
solve this problem, Loftus (1985a, 1985b) proposed a new
way to decide whether forgetting in one condition is faster or
slower than forgetting in another.

Consider a hypothetical exponential forgetting function,
ae~br, where T is the size of the retention interval, a is the y
intercept and b is the decay constant. Figure 2 depicts two

exponential forgetting curves associated with different values
of a (reflecting different degrees of original learning), but the
same decay constant, b. Exponential functions with identical
decay constants have equivalent half-lives (i.e., they require
the same amount of time to fall halfway through their full
range of performance). Nevertheless, these two functions are
obviously nonparallel in the vertical direction.

Loftus observed that the two curves shown in Figure 2 are
parallel in the horizontal direction. That is, the horizontal
distance between them remains constant as a function of
time, reflecting the fact that both curves have the same half-
life. By contrast, if a higher level of original learning had also
slowed the half-life of forgetting (i.e., decreased b), the differ-
ence between the two curves would be reflected by an ever
increasing horizontal discrepancy. Thus, a new way to gauge
whether or not two functions exhibit the same rate of forget-
ting is to test them for parallelism in the horizontal direction.
The advantage of the horizontal method is that it is immune
to the scaling problems that plague the usual test of vertical
parallelism. Its special immunity derives from the fact that
any transformation of the dependent measure (e.g., squaring
the data) adjusts the curves in the y (i.e., vertical) direction
only and leaves differences in the x (i.e., horizontal) direction
intact.

Depending upon which method of analysis is used, the
same data comparing the forgetting functions of two condi-
tions can be construed as supporting the hypothesis of differ-
ent forgetting rates and identical forgetting rates! The curves
depicted in Figure 2 graphically illustrate the apparent contra-
diction. The traditional approach clearly suggests different
rates of forgetting because the vertical difference between the
two functions changes continuously. The new horizontal ap-
proach, on the other hand, suggests that they are the same.

Forgetting Function Properties

Loftus and Slamecka acknowledged that their disagreement
rests fundamentally on different definitions of forgetting rate.
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Figure 2. Idealized exponential forgetting curves representing dif-
ferent degrees of learning but equal decay constants. (The dashed
lines illustrate the constant horizontal separation between the two
curves.)



OBSERVATIONS 929

According to one definition, the degree of learning is inde-
pendent of the rate of forgetting, whereas according to the
other, the degree of learning and rate of forgetting are related
(Loftus, 1985b, p. 402). However, a more precise statement
may be that they disagreed about the significance of scaling
considerations, and for that reason chose to focus on different
properties of empirical forgetting functions. It is, to some
extent, misleading to assign the same verbal label to each of
these properties (viz., rate of forgetting) and to then suggest
that they disagree about that. At least four properties of
empirical forgetting functions have served at one time or
another as the basis for claims about forgetting rate. Two of
these involve a measure of change in performance (absolute
or relative) with respect to a fixed amount of time. The other
two involve a measure of the time required to fall through a
fixed (absolute or relative) range of performance.

Performance Over Time

The most widely used measure of the first kind, and the
one evaluated by Slamecka when testing for parallelism in the
vertical direction, is simply the number of items forgotten per
unit time, ml, which is given by

ml =
AY,

T2 - r,'
(i)

where Ay, represents the change in an absolute measure of
performance (i.e., number of items recalled) in condition /
over the interval of time ranging from 7", to T2. If the number
of items retained as a function of time could be described by
a straight line, then Equation 1 would simply represent the
slope of that line. For curvilinear forgetting functions, how-
ever, the value of ml changes on a momentary basis and is
given by the function's first derivative. In the case of expo-
nential functions, Y = ae~bT, for example, the first derivative
(dY/dT) is described by the following equation:

dY/dT = -bae-"T. (2)

This equation describes the ever-changing slope of the forget-
ting function. When T is small, the derivative has a relatively
large negative value reflecting a steep downward slope. When
T is large, the value of the derivative is small, indicating a
relatively flat function that is approaching its asymptote. If
one forgetting function has a more negative first derivative
than another for all T, then it always reflects a greater number
of items forgotten per unit time and may therefore be said to
exhibit a faster rate of forgetting. If the first derivatives are
equal, then the two functions may be said to exhibit the same
rate of forgetting.

It should be clear that if two curvilinear forgetting functions
do happen to be equal with respect to ml for all T, then they
must arrive at different asymptotes. Except in the case of
overlapping functions, equality with respect to ml implies
that one function is vertically offset from the other (i.e., they
are vertically parallel). Therefore, if one function can be
represented by 7, = ae~bl (which declines to an asymptote of

zero), the other, vertically parallel function must be repre-
sented by Y2 = ae'*" + c, where c represents an asymptote
greater than zero. However, it is possible that, based on data
from relatively short retention intervals, a function's predicted
asymptote would fall below zero. Because a performance
measure obviously cannot be negative, in that case vertical
parallelism would not exist for all T, but only up to the
moment at which the lower function declined to zero.

The second property of forgetting in which time appears in
the denominator might be referred to as the proportional
change in performance with respect to time, m2, and is given
by

Tt-T,'
(3)

where Y\ represents the proportion of the to-be-forgotten
items in condition / that are still retained. For example,
consider the forgetting function described by the equation
Y = 2(te~"*r + 10. According to this function, performance
declines from an initial level of 30 items recalled (at 7 = 0 )
to an eventual asymptotic level of 10 items recalled. One way
to represent the course of forgetting in a situation such as this
is to plot the proportion of the 20 to-be-forgotten items that
are still retained at a given point in time. Initially, all 20 of
these forgettable items will be recalled, and at that point Y' is
equal to 1.0. At some later time, only 10 of these items will
be retained (i.e., Y' = 0.50), and still later none of them will
be retained (i.e., Y' = 0). At that point, performance will be
at its asymptote of 10 items recalled.

For a function of the form Y = ae~bT + c, where Y represents
the absolute number of items retained, the proportion of to-
be-forgotten items still retained, Y', is (Y-c)/a. Therefore,
the relationship between Y' and time is described by the
equation, Y' = e'bT. As with ml, the value of m2 for this
function changes continuously and is given by the function's
first derivative (dY'/dT),

dY'/dT = -be'bT. (4)

Clearly, if two exponential functions have the same decay
constants, they will exhibit the same rate of forgetting accord-
ing to this measure (even if the two functions differ with
respect a or c).

In the previous example, absolute performance ranged from
30 items initially recalled to an asymptotic level of 10 items
recalled. In general, however, the theoretical range of perform-
ance will not be known unless a very long retention interval
is used. On the other hand, if we assume that absolute
performance usually declines to an asymptote of zero, then
the number of to-be-forgotten items and the number of items
initially retained are one and the same. In that case, m2
represents the slope of a forgetting function in which Y' is the
number of items retained relative to the number originally
retained (i.e., Y' = Y/a). Occasionally, memory researchers
have preferred to examine their forgetting functions in this
way (Underwood & Keppel, 1963). Incidentally if forgetting
functions do always decline to an asymptote of zero, then
they could not be vertically parallel for all T.



930 OBSERVATIONS

Time Over Performance

Two additional properties of empirical forgetting functions
involve the amount of time required to fall through a range
of performance measured either on an absolute or on a relative
basis. That is, unlike the two measures considered thus far,
time appears in the numerator and the dependent measure of
interest in the denominator. Loftus's test for horizontal par-
allelism evaluates forgetting functions on the basis of one such
measure. More specifically, two functions are parallel in the
horizontal direction if they require the same amount of time
to fall through any arbitrarily selected absolute range of per-
formance. For example, the forgetting functions shown in
Figure 2 require exactly the same amount of time to decrease,
say, from four items recalled to two items recalled. This
measure of forgetting, m3, is given by

m3 =
A7",

(5)

where A7", represents the amount of time required in condi-
tion / to fall through a particular range of absolute perform-
ance bounded by the values 7, and Y2. According to this new
measure of forgetting, if one function requires more time to
fall through a particular range of performance than another,
then that function may be said to represent a slower rate of
forgetting. If two functions require the same amount of time
to fall through a particular range of performance, then they
may be said to represent the same rate of forgetting. Further-
more, these conclusions will survive any monotonic transfor-
mation of the dependent measure because the same quantity,
Y2- Yx, appears in the denominator of m3 of both functions
being compared. Hence, regardless of how Y is transformed,
the effect on m3 will be the same in both cases.

If the equation describing performance as a function of
time can be written Y = ae~bT + c, then time as a function of
performance is T = -(\/b)\o%\{Y-c)/a)\, which is the same
equation solved for T instead of Y. The value of m3 for this
function depends on the level of performance (Y) and once
again is given by the function's first derivative,

dT/dY = -l/{b(Y-c)). (6)

This function reveals that if two exponential functions have
the same decay constant (b) and arrive at the same asymptote
(c), then they will be horizontally parallel (regardless of the
value of a). However, if two functions have the same decay
constant (b) but arrive at different asymptotes (cl and c2),
then they will not be parallel in the horizontal direction (i.e.,
they will not be equal with respect to m3). In general, a
function associated with a more negative value of dT/dY
requires more time to fall through a particular range of
performance and may therefore be said to exhibit a slower
rate of forgetting.

The fourth and final property of empirical forgetting func-
tions to be considered is the amount of time required to fall
through a proportional range of performance, m4, which is
given by

(7)

If two functions require the same amount of time to fall
through the range of performance bounded by Y[ and Y{,
then they may be said to exhibit the same rate of forgetting.
If one function requires more time to fall through a particular
proportion of its range, then that function may be said to
exhibit a slower rate of forgetting.

As indicated earlier, an exponential forgetting function
expressed in proportional terms is given by Y' = e~bT. Solving
this equation for T instead of Y yields the equation T = -(1 /
b)log(Y'). The value of m4 for this function depends on Y'
and is described by the function's first derivative,

dT/dY' = -\/{bY'). (8)

Yi-Yi'

From this equation it is clear that if two exponential functions
have the same decay constant (b), they will be equal with
respect to m4 (even if they differ with respect to a and c). In
that sense, m4 and m2 are alike.

Of special interest is the amount of time required to fall
through the proportional range of 1.0 to 0.5, because that
value represents the half-life of forgetting. In the example
considered earlier, in which performance decreased from 30
items recalled initially to an asymptotic level of 10 items
recalled, the half-life would be the amount of time required
to forget 10 of the 20 to-be-forgotten items. For forgetting
functions that decline to an asymptote of zero, the half-life is
simply the time required to fall to one half of initial perform-
ance. In either case, the half-life of exponential functions is
provided by integrating Equation 8 over the range of 1.0 to
0.5 and is equal to -log(0.5)/6 (or simply 0.693/6). Indeed,
for exponential functions, the amount of time required to fall
from any Y', to 0.5F, is always equal to 0.693/6.

The Rate of Forgetting

At various times, different investigators have chosen one of
these four properties on which to base their conclusions about
the rate of forgetting. Those concerned with the absolute
change in performance per unit time (ml) test for parallelism
in the vertical direction. Those concerned with the amount
of time required to fall through a given range of performance
(mi) test for parallelism in the horizontal direction. Those
concerned with the proportional decay per unit time (m2), or
the half-life of forgetting (m4), typically fit mathematical
functions to evaluate changes in the decay constant (Wickel-
gren, 1972). Because any of these properties might be used to
support conclusions about the rate of forgetting, an example
of how they can seem to disagree may be worth considering.

Figure 3 depicts two hypothetical forgetting functions. The
upper curve, which we may assume is associated with the
higher degree of learning, is described by the equation Y =
6e-°-5T + 4 and the lower curve by Y = 4<rO5r + 1. As
described by Equation 2, the first derivative of the upper
function is — 3e~°5T, whereas the first derivative of the lower
function is -2e~°5r In other words, for all T, the first function
exhibits a steeper downward slope than the second. Therefore,
if we base our conclusions about the rate of forgetting on ml,
then a higher degree of learning results in a faster rate of
forgetting. On the other hand, according to Equation 6, the
value of m3 for the upper function is -2/(7-4), whereas the
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Figure 3. Idealized exponential forgetting functions.

corresponding value for the lower function is -2/( Y— 1). Thus,
if we instead refer to this property as rate of forgetting, we
will reach the opposite conclusion that a higher degree of
learning results in a slower rate of forgetting. However, the
decay constants associated with each function are identical
(viz., 0.5), which means that they are equal with respect to
both m2 and m4. As described by Equation 4, the value of
m2 for both functions is -0.5^~°5r, and, as described by
Equation 8, the value of m4 for both functions is - 2 / 1 " .
Therefore, if we choose to emphasize either of these proper-
ties, we will reach the conclusion that the degree of learning
is independent of the rate of forgetting.

Obviously, I have chosen an example that, when coupled
with vague phrasing about the rate of forgetting, appears to
yield a confused and conflicting picture indeed. In fact, I have
simply considered four different properties of empirical for-
getting functions: (a) absolute change in performance with
respect to time, (b) proportional change in performance with
respect to time, (c) elapsed time with respect to absolute
change in performance, and (d) elapsed time with respect to
proportional change in performance. The question is whether
a state of disagreement exists when conclusions based on ml
differ from those based on m2, m3, or m4. The answer seems
to be no. If those properties change in different ways when
the degree of learning is manipulated, they cannot be said to
be in conflict. Similarly, we would not be especially convinced
of our conclusions if all four methods agreed that a higher
degree of learning results in a slower rate of forgetting. They
address different empirical properties and so neither reinforce
nor contradict each other.

From this point of view, Loftus and Slamecka have no
disagreement about whether the degree of learning influences
the rate of forgetting. On the other hand, they clearly disagree
about the less important matter of which property ought to
be called rate of forgetting and the much more important
matter of the extent to which we should concern ourselves
with the issue of scale. As argued later, the latter issue depends
on whether one's objective is to test a psychological model of
memory or to establish an empirical principle of forgetting.
Before addressing that issue, however, a new perspective on
the analysis of forgetting functions recently offered by Bogartz

(1990) is considered. His approach, which is based on Ander-
son's (1982) functional measurement theory, attempts to de-
scribe psychological forgetting functions in contrast to the
empirical forgetting functions considered to this point. These
psychological functions can still be evaluated with respect to
any of the four properties considered thus far to decide
whether a higher degree of learning results in a slower rate of
forgetting.

Psychological Time

As indicated earlier, the essence of the scaling problem is
that our performance measure is presumably only monoton-
ically related to an underlying psychological variable. Bogartz
(1990) argued that, in addition, our measures of both degree
of learning and time are related to their psychological coun-
terparts in the same way. To illustrate this idea, consider the
simple model r = oe~'. This model consists of psychological
variables only and states that information retained (r) is equal
to the degree of learning (o) multiplied by an exponential
function of what we might call "psychological time" (t). All
three of these psychological constructs (r, o, and t) are assumed
to be monotonically related to physical measurements such
as number of items recalled (R), number of learning trials
(O), and elapsed time (T).

Bogartz (1990) evaluated the psychological model presented
above using data from Hellyer (1962). In this experiment,
subjects were exposed to multiple learning trials (ranging from
1 to 8) followed by a retention interval ranging from 3 to 27
s. The strategy for testing this model involves searching for
monotonic transformations of O and T, which, when substi-
tuted into the psychological model as o and t, yield values of
r that are monotonically related to the obtained recall scores
(R). For example, Bogartz found that if the actual O values
(1, 2, 4, or 8 learning trials) were monotonically rewritten as
2.7, 3.3, 4.4, and 5.8 learning trials and the actual retention
intervals (3, 9, 18, and 27 s) were monotonically rewritten as
1, 1.8, 2.0, and 2.1 s, then when the transformed values were
plugged back into the model they yielded values of r that were
indeed monotonically related to the observed data, R. Thus,
Bogartz concluded that the data supported the proposed psy-
chological model.

The model under consideration, r = oe~', might be regarded
as a psychological forgetting function as opposed to the em-
pirical forgetting functions considered thus far. To evaluate
the relationship between the degree of learning and the rate
of forgetting, the psychological function can be examined
with respect to any of the four properties considered earlier.
The first derivative of this function (ml) represents the abso-
lute rate of change in information retained (r) with respect to
psychological time (t). As noted by Bogartz, his psychological
model predicts that a higher degree of learning will result in
a faster rate of forgetting according to this measure because
the model's first derivative is equal to —oe~'. Thus, the higher
the degree of learning, the more rapid the rate of change in r.
On the other hand, the half-life of this function and its
proportional rate of change with respect to time are inde-
pendent of o. The half-life is .69/1, or 0.69 units of psycho-
logical time (regardless of the value of o), and the proportional
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rate of change is given by -e~', which again is independent of
o. According to these measures, therefore, the rate of forgetting
is not influenced by the degree of learning.

Bogartz (1990) chose to base his conclusions about the rate
of forgetting on the latter measures and therefore suggested
that his model "supports Slamecka's conclusion that rate of
forgetting does not depend on original learning" (p. 144).
However, it might be more accurate to state that they neither
agree nor disagree about that because they are not talking
about the same property. Even if we ignore the differences
between empirical and psychological forgetting functions, Bo-
gartz based his conclusion on a measure of proportional
change, whereas Slamecka based his on a measure of absolute
change. As such, their conclusions do not agree and certainly
do not reinforce or support each other.

Bogartz arrived at his conclusions about the effects of
learning on forgetting after evaluating a single psychological
model, oe~'y and remarked that "the perfect fit of the model
to Hellyer's data increases credence in the scale transforma-
tions as revealing how the measured variables relate to the
underlying variables" (p. 141). However, it should be added
that Hellyer's data also support several additional psycholog-
ical models that convey different conclusions about the effects
of learning on the rate of forgetting. For example, the models
e~"°, oe~"°, and e~' + o are all capable of yielding data that
satisfy the criteria used to support the model, oe~'. In each
case, monotonic transformations of O and T can be found,
which, when substituted into one of these models, yield
numbers monotonically related to Hellyer's empirical data,
R. Hellyer's data were presented by Bogartz (1990), and the
appropriate transformations of T and O for each of the new
models proposed here are shown in Table 1. These transfor-
mations were determined by a computer program that gen-
erated two sets of four random numbers (representing tenta-
tive values for t and o), which were then used to produce a
table of predicted r values. For each model, this procedure
was repeated until the ordinal pattern of the predicted values
was the same as the ordinal pattern of observed R values.

The model tested by Bogartz implies that a higher degree
of learning results in a faster rate of forgetting according to
ml, but has no effect on the rate of forgetting according to
m2, m3, or m.4. Each of the new models presented in Table
1 suggests a different interpretation. For example, the model
oe~"° implies that a higher degree of learning increases the
rate of forgetting according to ml, has a variable effect on
m2, and decreases the rate of forgetting according to m3 and
m4. Thus, although Hellyer's data are useful for illustrating
the application of functional measurement theory to the
question of forgetting, it may be premature to suggest that
those data can support any conclusions about the effects of
learning on forgetting. On the other hand, a more elaborate
experimental design involving a greater number of retention
intervals and degrees of learning might be able to differentiate
more effectively between competing alternatives.

Unlike the strategies considered earlier, Bogartz's approach
does not concern itself with analyzing specific properties of
empirical forgetting functions. Instead, both the independent
and dependent variables are transformed until it is determined
that they can (or cannot) conform to the proposed model.
The approach highlights the essential issue in the debate over

Table 1
Monotonic Transformations of Time and Original Learning
for Three Psychological Models of Forgetting

e

t

0.08
0.36
0.61
0.74

0

0.22
0.31
0.56
0.99

t
0.22
0.68
0.82
0.93

oe-""

0

1.94
2.03
2.20
2.32

e-1

t

0.28
1.09
1.76
1.99

+ 0

0

0.29
0.35
0.53
0.71

Note. The values of t represent monotonic transformations of T (3,
9, 18, and 27 s), and the values of o represent monotonic transfor-
mations of O (1, 2, 4, and 8 trials).

how to analyze the course of forgetting: Loftus and Bogartz
are concerned (to different degrees) with psychological con-
structs or variables; Slamecka is not.

Psychological Models Versus Empirical Principles

Loftus and Bogartz are both of the opinion that Slamecka's
empirical view of forgetting entails an implicit psychological
model that he chooses not to articulate, and for that reason
the scaling problem simply cannot be avoided. One reason
for their position is that Slamecka accepted the existence of
floor and ceiling effects in forgetting functions and therefore
tacitly acknowledged a theoretical construct that is imperfectly
gauged by the dependent measure in use. Slamecka, on the
other hand, chose to think of forgetting functions in empirical
terms, without necessarily adopting any theoretical stance
about forgetting, unarticulated or otherwise.

The semantic debate over the proper use and interpretation
of terms such as forgetting has a long history in the field of
philosophy (e.g., Ryle, 1959; Wittgenstein, 1953; Wood &
Pitcher, 1970), and I do not try to resolve it here. Nevertheless,
it might be useful to contrast two reasonable interpretations
of the term and to consider how those interpretations help
guide the analysis of forgetting functions. That the term
forgetting can be used to refer to changes in a psychological
variable with respect to time seems to be a relatively uncon-
troversial position. Thus, for example, one might say that
forgetting has occurred when the strength of a memory trace
(or the amount of information retained) has declined over
time. From another point of view, however, the term forget-
ting may refer to changes in the ability to evidence the effects
of past experience. Thus, for example, we might say that I
have forgotten the "Star Spangled Banner" if my ability to
recite its lines is no longer as accurate as it once was. To
construe the term in this way, however, is not to deny that
memory performance is subserved by dynamic processes oc-
curring on another level.

Although they might differ about its true meaning, advo-
cates of either of these interpretations will often use the term
forgetting under the same set of conditions. For example,
when a measure such as the number of words recalled is
changing with respect to time, most observers would probably
agree that some forgetting has occurred. With regard to the
interpretation of floor and ceiling effects, however, the appli-
cability of the term forgetting is less certain.
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Floor and Ceiling Effects

Consider a situation in which recognition of faces is per-
fectly accurate even after a long retention interval. From a
psychological standpoint, one could assume that some forget-
ting has nevertheless occurred. That is, perhaps the memory
strengths of the individual faces has weakened but not enough
to be reflected by the chosen dependent measure. From a
performance perspective, by contrast, the term forgetting
would not apply because the faces can be identified as readily
as ever (although it may indeed be true that their memory
traces have weakened in strength). When the measure does
eventually begin to exhibit change, then at that point forget-
ting is said to have occurred.

Advocates of either interpretation of forgetting would prob-
ably agree that, unless a performance measure changes with
respect to time, the data are of little use in helping to establish
theories or principles of forgetting. However, from a psycho-
logical standpoint, a model based on such a measure is not
conceptually confined to the period of time during which the
performance measures undergo change. For example, the
forgetting function from the low degree of learning condition
might be on the floor while the corresponding function from
the high degree of learning condition is still decreasing. That
result would not necessarily damage a psychological model
that implies equal forgetting rates, because the underlying
memory traces in both conditions might still be weakening at
the same rate. Unlike a psychological model, however, an
empirical principle of forgetting always presupposes behav-
ioral transition. From this point of view, to compare one
function that declines over time with another that is static
with respect to time is to compare forgetting with the absence
of forgetting. Indeed, by definition, an empirical principle of
forgetting applies only when the measures under considera-
tion are simultaneously in a state of transition. When one or
both measures are on the ceiling or floor, the principle no
longer applies.

Although an empirical analysis must avoid floor and ceiling
effects, it might be argued that Slamecka and McElree's (1983)
decision to avoid analyzing data that appeared to be approach-
ing the floor may be unwarranted. If, after taking measure-
ment error into consideration, two functions are still decreas-
ing with respect to time, then forgetting is still occurring and
the data should not be excluded (Loftus, 1985b). In some
cases (e.g., Krueger, 1929), the inclusion of data reflecting low
levels of recall would suggest that forgetting functions are not
vertically parallel after all. However, because the necessary
statistical analyses were not performed in the older studies
reviewed by Slamecka and McElree (1983), identifying the
onset of a floor effect is necessarily somewhat arbitrary.

Research Objectives

Depending on how the term forgetting is initially inter-
preted, research on the course of forgetting will probably be
concerned with identifying either a psychological model or an
empirical principle. The appropriate analysis of forgetting
functions depends, in part, on which of these objectives one
has in mind. Obviously (thanks to Loftus), if one sets out to

characterize the temporal properties of a psychological modd
of memory, (ben the question of how the chosen dependent
measure maps onto the process of interest must be confronted.
In that case, testing functions for parallelism in the horizontal
direction or evaluating the viability of psychological models
such as oe~' may be the appropriate strategies. In either case,
the use of a single dependent measure (e.g., number of items
recalled) may be sufficient. However, if one's objective is to
identify the limits of empirical reliability, then a different
strategy is in order. Essentially, that strategy involves testing
whether conclusions based on one measure of memory in one
situation are consistent with those based on other measures
of memory in other situations. To the extent that empirical
reliability is observed, broad-based laws of memory perform-
ance may be established.

The possibility that different empirical measures of memory
will behave in inconsistent ways obviously cannot be ruled
out. Indeed, some degree of inconsistency among the various
measures seems almost certain. Nevertheless, even if a mon-
olithic principle of memory performance is unlikely ever to
be identified, it might be possible to discover principles that
hold within certain identifiable domains. Thus, for example,
the degree of learning may be unrelated to the rate of forget-
ting when meaningful material is used, and may reliably affect
the rate of forgetting when nonsense syllables are used. Under
a more pessimistic scenario, however, no empirical reliability
whatsoever will be found. In that case, perhaps the only level
at which order will be established is at the level of the
psychological model (although, as illustrated earlier, even this
is by no means guaranteed).

On the other hand, one notable feature of most empirical
forgetting functions is their apparent similarity. Klatzky
(1980, p. 276), for example, commented on the similarity in
the form of forgetting functions as diverse as those based on
savings measured over a period of weeks and those based on
free recall measured over a period of seconds. More to the
point, Slamecka and McElree (1983) found that a higher
degree of learning did not alter the rate of forgetting (ml)
based on free recall of categorized words, cued recall of high-
imagery words, gist recall for sentences, and semantic recog-
nition for those same sentences. If the same result were
consistently found for other to-be-remembered materials and
other measures of memory, we might be reasonably confident
that a general empirical principle of forgetting had been
identified. In addition, if that principle were also supported
by experiments using more ecologically valid procedures, we
might even be bold enough to claim that the principle holds
for extralaboratory memory performance as well. As indicated
earlier, however, such a principle would only apply to per-
formance measures in a state of transition and not to under-
lying psychological variables.

The Mathematics of Forgetting

The empirical analysis of forgetting functions may not be
especially well served by the three analytical strategies consid-
ered to this point. These strategies entail testing for vertical
parallelism, testing for horizontal parallelism, and monoton-
ically transforming the independent and dependent measures
to test a psychological model. A fourth strategy that has not
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been extensively pursued in recent years involves attempting
to identify the mathematical form of empirical forgetting
curves. Of these strategies, the latter may be able to provide
the most complete description of the empirical course of
forgetting. Indeed, questions about the rate of forgetting are
inherently mathematical, and closer attention to the mathe-
matics of empirical forgetting functions may be able to pro-
vide the clearest possible answers (White, in press).

Wickelgren (1972, 1974) was the last to investigate system-
atically the mathematical form of forgetting functions in
humans. In a series of experiments, Wickelgren (1972) tested
recognition memory for word pairs over a variety of retention
intervals and then converted the raw data into d' scores
(Green & Swets, 1966). An equation of the form d' =
ae~bVT described his data more accurately than several rea-
sonable alternatives, including linear, simple exponential,
power, and logarithmic decay functions. In these experiments,
d' was used as a dependent measure because, given the
assumptions of signal detection theory, that value provides a
linear scale upon which to measure a psychological variable
such as trace strength. Nevertheless, as illustrated later, the
same mathematical strategy can be used to quantify the effects
of learning on the rate of forgetting based on a variety of
empirical measures. Although these measures may not be
assumed to provide a linear scale of an underlying memory
trace, they may be found to vary in consistent ways according
to the various definitions of Jbrgetting rate considered earlier.

When the function ae~h^T was fitted to the forgetting data
of individual subjects, Wickelgren found that the decay pa-
rameter, b, reliably decreased and that initial performance, a,
reliably increased with higher degrees of learning. To the
extent that this exponential power function accurately de-
scribes the course of forgetting, this information is sufficient
to reveal the effects of original learning on ml, m2, m3, and
m4. By contrast, if we found that two forgetting functions
were nonparallel in the horizontal direction, we would be in
a position to rule out equality with respect to m3 only and
could draw no conclusions based on ml, m2, or m4. Similarly,
if we found that two forgetting functions were nonparallel in
the vertical direction, we would be in a position to rule out
equality with respect to ml only and would be unable to draw
any conclusions about m2, m3, or m4. Moreover, although a
test for vertical parallelism may be an effective way to reject
the hypothesis of identical slopes, it may not be the best way
to support the hypothesis that two forgetting functions have
equivalent slopes (an approach that requires acceptance of
the null hypothesis). The principal advantage of a mathemat-
ical analysis is that the parameters of forgetting can be directly
quantified. As such, systematic changes in the magnitude of
those parameters, such as the decay constant, are more clearly
revealed.

As an example, consider some data recently reported by
Slamecka and Katsaiti (1988). In a control condition of their
Experiment 1, subjects were exposed to one of three degrees
of learning followed, in each case, by three retention tests.
Their results (estimated from their Figure 1) are reproduced
in Figure 4. Because only three retention intervals were used,
the actual mathematical form of these functions obviously
cannot be determined. Nevertheless, it is instructive to fit

Wickelgren's exponential power function to these data and to
examine the effects of learning on its two parameters. The
exponential power function was fitted to the data using a
nonlinear regression algorithm. As shown in Figure 4, the
trends in the fitted functions are the same as those observed
by Wickelgren in his analysis of d' recognition scores. That
is, the decay parameter, b, systematically decreases, whereas
the value of a increases with higher degrees of learning. The
same trends were found when the equation was modified to
allow for the possibility of different asymptotes (a requirement
of vertically parallel functions). Thus, to the extent that this
function describes the course of forgetting, these trends en-
courage a cautious attitude toward the acceptance of a null
hypothesis stating that the slopes of these functions are unaf-
fected by the degree of learning.

Attention to the mathematics of forgetting may provide the
most straightforward way to isolate the effects of learning on
ml, m2, m3, and m4, but the approach also imposes certain
procedural requirements. First, and most important, a rela-
tively large number of data points must be collected to reveal
the mathematical form of a forgetting function (and, perhaps,
to reveal the point at which the data leave the ceiling). Given
the curvilinear nature of most forgetting functions, the use of
three or even four different retention intervals is probably
insufficient. By contrast, tests for parallelism in either direc-
tion can be performed when as few as two retention intervals
are used.

Second, a mathematical strategy is most efficiently applied
at the individual level, which means that each subject must
be run for multiple sessions to achieve smooth forgetting
curves. In that way, the consistency with which, say, the decay
parameter changes with increases in the degree of learning
can be readily determined (cf. Wickelgren, 1972). In spite of
difficulties such as these, however, the mathematical analysis
of empirical forgetting functions represents an important

A 3 TRIALS, SJ .

• 2 TRIALS. 7.4*-°-***

O 1 TRIAL. 5.5.- ° - 8 5 V T

2 ••

RETENTION INTERVAL (DAYS)

Figure 4. Number of words recalled as a function of the retention
interval for three degrees of learning. (The solid curves represent the
least squares fit of the function ae~k^.The data were taken from
"Normal Forgetting of Verbal Lists as a Function of Prior Testing"
by N. J. Slamecka and L. T. Katsaiti, 1988, Journal of Experimental
Psychology: Learning, Memory, and Cognition, 14, p. 720. Copyright
1988 by the American Psychological Association. Adapted by per-
mission.)
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alternative to the methods based on parallelism or data trans-
formations.

Conclusion

To adopt an empirical position on the issues reviewed in
this article is not to deny that the observed behavioral process
of forgetting is a reflection of some underlying biological or
psychological process that may also be referred to as forget-
ting. However, the essential question concerns which process
we propose to take hold of. If we attempt to identify the
temporal properties of a model of memory, then the way in
which the chosen dependent measure maps onto that process
must be considered. If we instead attempt to identify empirical
principles of forgetting, then the ways in which various de-
pendent measures change as a function of the degree of
learning must be determined.

Each of these approaches has some important limitations
from the perspective of the other. For example, even if a
psychological model can be identified, that achievement will
not facilitate any predictions about the rate of forgetting based
on a performance measure such as ml. Thus, if we find that
our forgetting curves can be monotonically transformed to
accord with a model such as oe~', we cannot then use this
information to conclude that, in terms of actual performance,
the absolute rate of change with respect to time will, in general,
be influenced by the degree of learning. We simply do not
know because the dependent measure we choose to use may
or may not be linearly related to the relevant psychological
variable.

Similarly, no matter how reliable the various empirical
measures of memory happen to be, we cannot use an estab-
lished principle of performance to draw any conclusions about
the temporal characteristics of an underlying psychological
model or construct. The reason, again, is that the function
relating a dependent measure to a psychological variable is
usually unknown. Indeed, it is this very fact that prompted
Loftus to challenge Slamecka and McElree's (1983) original
conclusions about the rate of forgetting. Based on considera-
tions such as these, it seems clear that the proper approach to
analyzing the course of forgetting is largely determined by the
objectives one has in mind.
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