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Determinants of the Perception of Rotational Motion: Orientation of the
Motion to the Object and to the Environment

John R. Pani, Colin T. William, and Gordon T. Shippey
Emory University

The resuits of two experiments suggest that strong constraints on the ability to imagine
rotations extend to the perception of rotations. Participants viewed stereographic perspective
views of rotating squares, regular poiyhedra, and a variety of polyhedral generalized cones,
and attempted to indicate the orientation of the axis and planes of rotation in terms of one of
the 13 canonical directions in 3D space. When the axis and planes of a rotation were aligned
with principal directions of the environment, participants could indicate the orientation of the
motion well. When a rotation was oblique to the environment, the orientation of the object to
the motion made a very large difference to performance. Participants were fast and accurate
when the object was a generalized cone about the axis of rotation or was elongated along the
axis. Variation of the amount of rotation and reflection symmetry of the object about the axis

of rotation was not powerful.

The study of motion and spatial transformation has long
been central in mathematics and the physical sciences, and
recently it has become the focus of much work in the study
of perception and spatial cognition. Rotation, for example,
is a fundamental form of motion (e.g., Gibson, 1957; Shep-
ard, 1984), and the study of mental imagery has benefited
greatly from the investigation of mental imagery of rotation
(see Shepard & Cooper, 1982). Across the study of spatial
cognition, it has become clear that some forms of spatio-
temporal structure are cognitively simple for the typical
person, whereas other forms are quite complex and difficult.
This distinction is familiar from work on the spatial orga-
nization of elementary forms (e.g., Garner, 1974; Palmer,
1977; Wertheimer, 1950), but it applies also to a great
variety of familiar or three-dimensional (3D) structures and
events (e.g., Hinton, 1979; McCloskey, 1983; Pani, 1993;
Pani, Zhou, & Friend, 1995; Proffitt, Kaiser, & Whelan,
1990; Tversky, 1981).

Consider simple rotational motion, the topic of this arti-
cle. In simple rotation, all of the points on a rotating object
move, with common angular velocity, in circles about an
axis fixed in space. The planes of these circles are parallel
to each other and normal to the axis (e.g., Todd, 1982). In
contrast, if the axis and planes of rotation change orientation
during the motion, the rotation is no longer physically
simple. Fundamental parameters of simple rotation include
the orientation of the axis and planes of rotation to the
environment and the orientation of the rotating object to the
axis and planes of rotation (see Pani, 1989, 1993; Pani &
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Dupree, 1994; Shiffrar & Shepard, 1991). In Figure 1, for
example, the rods are axes of rotation with fixed directions
in space; when the rods spin, the squares rotate about the
rods. In the system in Figure 1A, the rod is aligned with the
environmental vertical and the square is aligned with the
rod. If participants are asked to indicate what the orientation
of the square would be after a rotation of the rod, say 180°,
they succeed easily. In Figure 1B, the rod is aligned with the
environment, but the square is oblique to the rod. In Figure
1C, the rod is oblique to the environment, but the square is
aligned with the rod. In both of these mixed cases, partici-
pants can imagine the rotations rather well. The system in
Figure 1D is double oblique and is impossible for the typical
participant to imagine, even when the mean response time is
over 2 min (Pani, 1993; Pani & Dupree, 1994; see also Just
& Carpenter, 1985; Massironi & Luccio, 1989; Parsons,
1987; Shiffrar & Shepard, 1991). As most readers are un-
able to predict the outcome of the rotation suggested in
Figure 1D, three orientations from a 180° rotation of this
system are illustrated in Figure 2.

A more succinct summary of these findings is that people
are able to predict the outcome of a rotation only if the axis
and planes of rotational motion are aligned with a salient
spatial reference system, generally the principal directions
of the environment or the intrinsic reference system of the
object (Massironi & Luccio, 1989; Pani, 1993; Pani &
Dupree, 1994; Shiffrar & Shepard, 1991). In the rotation of
Figure 1D, the axis and planes of rotation are aligned with
neither of these reference systems, and performance is
markedly poor. Why should alignment of a rotational mo-
tion with a salient reference system be so important to
imagination of the motion?

We suggest that for the typical person, organization of
rotational motion includes two components. Most generally,
the person must be able to organize the circular motions that
are contained within the planes of rotation (Pani, 1993; Pani
& Dupree, 1994; Todd, 1982). If an object has no definite
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Figure 1. 1If the rods are axes of rotation with a fixed direction,
these four assemblies illustrate basic types of rotational motion.

orientation (e.g., if it can be seen as an isotropic cloud of
dots), then there is little difficulty in imagining these circu-
lar motions of the object about an arbitrary axis in space.
However, if an object has a definite orientation, as a square
does, then there is an additional component in the organi-
zation of rotation: The person must be able to see the object
as having invariant slant to the axis of rotation. Only then
can the individual imagine the circular motion of the object
about the axis. For example, to correctly imagine the rota-
tion in Figure 1D, the individual must be able to perceptu-
ally organize the physical assembly in terms of the invariant
45° angle of the square to the rod. Then this square-at-45°
can be imagined to spin around the rod.

Axes of rotation are weak reference axes for the typical
person, and to maintain the axis-relative description of the
slant of the square, the individual requires reinforcement of
the axis from another reference system. Thus, if the rod and
square assembly is placed so that the rod is aligned with the
vertical, as in Figure 1B, the invariant 45° slant of the
square to the axis of rotation is easily understood; the square
has the same angle to the vertical, and the vertical is a strong
reference axis. Alternatively, if the square is made perpen-
dicular to the rod, as in Figure 1C, the invariant slant of the
square to the axis again is obvious. The axis of rotation is
aligned with a direction that is recognized to be part of an
object-relative reference system (in this instance, a surface
normal).

Figure 2. Three orientations of the square in a double-oblique
rotation.
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Note that this view stresses the importance of alignment,
the presence of orientations that are parallel or perpendic-
ular to a relevant spatial reference system. The canonical
nature of aligned orientations has been demonstrated in a
variety of tasks. For example, people are more sensitive to
deviation from parallelism than from arbitrary angles (Gold-
meier, 1972; Rock, 1983). An oblique line “pops out” more
readily in a field of vertical lines than does a vertical line in
a field of obliques (Treisman & Gormican, 1988). People
are most sensitive to bilateral symmetry about a vertical axis
and least sensitive to symmetry about an oblique axis
(Palmer & Hemenway, 1978). (Pani, Jeffres, Shippey, &
Schwartz, in press, provide a more extensive discussion of
alignment; see also Appelle, 1972; Howard, 1982; Olson,
1970; Shiffrar & Shepard, 1991.)

A primary goal of this project was to learn whether
constraints on the imagination of rotational motion also are
strong in the perception of rotation (see also Kaiser, Proffitt,
& Anderson, 1985; Proffitt & Gilden, 1989). That is, if a
simple rotation is particularly difficult for people to imag-
ine, and a person has an opportunity to view and study such
a rotation, will it be especially difficult for the person to see
that the displayed motion is a simple rotation? Given the
findings concerning the imagination of rotation, predictions
for the perception of rotation would seem to be fairly
straightforward. First, if the axis of a simple rotation is
aligned with the environment, particularly the vertical, the
person will readily perceive the motion to be a simple
rotation, independent of the orientation of the rotating ob-
ject to the axis of rotation. Second, oblique-axis rotations
only will be perceived to be simple rotations if the rotating
objects are aligned with the axes of rotation. The question
arises, however, as to what properties of objects are critical
in this context. There is common ground here for theories of
motion perception and theories of form perception and
object recognition.

Object recognition implies, among other things, perceived
invariance of the structural properties of an object across
changes of position and orientation. Theorists account for
this invariance by positing an object-relative reference sys-
tem to which cardinal directions (e.g., top and bottom) and
spatial descriptors (e.g., flat or pointed) can be related
(Biederman & Gerhardstein, 1993; Hinton, 1979; Marr &
Nishihara, 1978; Palmer, 1975, 1989; Rock, 1983). The
well-known demonstrations of change of form perception
with reorientation of an object are instances in which there
is not a singular object-relative reference system that pro-
vides such invariance (Koffka, 1935; Mach, 1906/1959;
Rock, 1973; see Palmer, 1989). It is sensible to suppose,
then, that if a rotational motion is oblique to the environ-
ment, the rotation will appear simple when the object-
relative reference system of the rotating object is aligned
with the motion. Clear candidates for object structures that
would determine at least the major axis of an object-relative
reference system are the generalized cone (Biederman,
1987, 1990; Binford, 1971; Marr & Nishihara, 1978); elon-
gation of the object (Humphreys, 1983; Marr & Nishihara,
1978; Palmer, 1989); and rotation and reflection symmetry
(Garner, 1974; Palmer, 1985, 1989; Palmer & Hemenway,
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1978; Pomerantz & Kubovy, 1986; Shiffrar & Shepard,
1991). A generalized cone is any shape that could be “swept
out” by moving a cross-section of constant shape along a
line, where the cross-section could change in size (Binford,
1971).

The present experiments were designed to investigate the
effects of the orientations of rotational motions to the en-
vironment, and the orientations of the rotating objects to the
motions, on the perception of the rotations. If the environ-
ment is considered to contain a Cartesian reference system
(e.g., the 6 surfaces of a standard room and the edges
formed by their intersection), the axis of rotation either was
aligned with a principal axis of the environment (i.e., ver-
tical or frontal-horizontal), partially oblique to the environ-
ment (i.e., contained within the horizontal plane but at 45°
to the axes in that plane), or fully obligue to the environment
(i.e., oblique to all principal axes and planes). Object struc-
tures that could be aligned with the rotation included the
generalized cone, elongation, and rotation and reflection
symmetry. The objects used in these experiments were
primarily the square and the three simplest Platonic solids,
as illustrated in Figure 3. The Platonic solids are the five
regular polyhedra, including the tetrahedron, cube, octahe-
dron, dodecahedron, and icosahedron. They are treated as
fundamental forms in every intellectual discipline that de-
scribes spatial structure (e.g., Gasson, 1983; Hilbert &
Cohn-Vossen, 1952; Holden, 1971; Kappraff, 1991). Of
particular relevance here is that the tetrahedron, cube, and
octahedron, as well as the square, are relatively simple; they
are generalized cones (Pani & Zhou, 1993; Pani, Zhou, &
Friend, 1995); and they have different amounts of symmetry
when placed in various orientations to an axis (e.g., Holden,
1971; Kappraff, 1991). As with any object, it also is possi-
ble to elongate them along a given axis.

The displays in these experiments were computer simu-
lations of opaque rotating objects. Displays were stereo-
graphic and rendered in perspective. With the added benefit
to depth perception of apparent rotation in depth (Lappin,
Doner, & Kottas, 1980; Todd, 1982; Ullman, 1979; Wallach
& O’Connell, 1953), there was vivid perception of rigid
objects rotating in 3D space. In selecting an experimental
task, considerations of the kinematics of rotation suggested
that accuracy and response time in indicating the orientation
of the axis and planes of rotation would be relatively direct
measures of whether the participant perceived a simple
rotational motion. Participants used a rod and attached disc
for this purpose. There was little demand for precision; the
orientations of the rotations and the response alternatives
were limited to the canonical orientations that occur in
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Figure 3. The objects shown rotating in Experiment 1.
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35-45° intervals. It was intended that with these large
intervals, failures to correctly indicate the orientations of
particular rotations, especially if accompanied by long re-
sponse times, would imply an inability to perceive these
motions as simple rotations.

Two studies of the perception of rotation are particularly
relevant to the present experiments. First, Hecht and Proffitt
(1991) found that participants generally were able to per-
ceive double-oblique rotations correctly in apparent motion
displays. An important difference between their experi-
ments and our own is that the axis of rotation in the Hecht
and Proffitt study was not through the object. In that case,
the motion can be perceived as a curved path within a plane,
much like runners moving about a track. It may be possible
for people to see this curved path as defining a plane of
motion, with the object having a constant oblique angle with
respect to that plane. The slanted blades of propellers prob-
ably are conceptualized in this way. We think this difference
in results points to a distinction between two psychologi-
cally different types of motion (see also Cutting & Proffitt,
1982).

Shiffrar and Shepard (1991) examined the recognition of
rotations of a cube in which the axis of rotation went
through one-, three-, or fourfold symmetry axes of the cube
and was at different orientations with respect to the envi-
ronment. Recognition was better at higher symmetries and
when the rotation was aligned with the environment and
viewer. The present experiments differ from their study in
two important ways. First, the present experiments dis-
played the complete set of rotational symmetries for four
objects rather than one. The comparison across objects
permits disentangling a number of variables that covary
with symmetry within a single object. When the cube is
maximally aligned with an axis of rotation—for example, it
has a very high degree of symmetry about the axis—it is a
generalized cone about the axis, and all its edges and
surfaces are aligned with the axis. Second, the tasks are
quite different. Shiffrar and Shepard used a same-different
recognition task, whereas the task in the present experi-
ments was to describe single rotations. It was expected that
the descriptive task would replicate the extreme range of
performance found in studies of the imagination of rotation
(Pani, 1993; Pani & Dupree, 1994).

Experiment 1

In Experiment 1, participants viewed rotations of the
square and the three simpler Platonic solids. The Platonic
solids are described in standard geometric treatments in
terms of their rotation and reflection symmetries relative to
axes of the objects (e.g., Hilbert & Cohn-Vossen, 1952;
Holden, 1971; Kappraff, 1991). In particular, the cube and
octahedron have axes of fourfold, threefold, and twofold
symmetry, and the tetrahedron has axes of threefold and
twofold symmetry, as illustrated in Figure 4. For example,
a line running through the middle of opposite faces of the
cube is an axis of fourfold rotational symmetry. If the cube
is rotated about this axis, it occupies exactly the same space
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Figure 4. Canonical orientations of the objects in Experiment 1, relative to the vertical. The
orientations with asterisks indicate that the object is a generalized cone at this orientation to the

vertical.

four times during one revolution. For each of the Platonic
solids, there are sets of planes of reflection symmetry that
correspond to the axes of rotational symmetry. For example,
the cube has four planes of reflection symmetry coincident
with its axis of fourfold rotational symmetry. The square
also has different levels of symmetry as it is oriented
through canonical angles relative to an axis. Most impor-
tant, the square has fourfold symmetry when it is normal to
the axis and twofold symmetry when it is parallel to the
axis. The square has one additional canonical orientation:
oblique to an axis at 45°. The orientations that result from
aligning the symmetry axes of these four objects to a ref-
erence axis, and the oblique orientation of the square, will
be referred to as the canonical orientations of the objects. In
this experiment, each object was placed in all its canonical
orientations to the axis of rotation. If the amount of sym-
metry of an object aligned with the axis and planes of
rotation was of fundamental importance to the perception of
rotation, it should have been easier to detect simple rota-
tional motion with higher levels of symmetry across the four
objects.

The square and the three simpler Platonic solids also are
generalized cones (Pani & Zhou, 1993; Pani, Zhou, &
Friend, 1995). As noted earlier, a generalized cone is any
shape that could be formed by moving a cross-section of
constant shape along a line where the cross-section could
change in size (Binford, 1971). Prominent theories of object
recognition have suggested that the generalized cone is a
volumetric primitive in the representation of the form of
objects (Biederman, 1987, 1990; Brooks, 1981; Marr, 1982;

Marr & Nishihara, 1978). The cube and octahedron are
generalized cones about their fourfold axes of symmetry,
the tetrahedron is a generalized cone about its threefold axis
of symmetry, and the square is a generalized cone about its
twofold axis of symmetry. The square also is a minimal
generalized cone, a single cross-section, about its fourfold
axis. Note that these objects are generalized cones of a
particular type. They have straight axes and cross-sections
that are normal to the axes. If the structure of this rather
“standard” generalized cone is salient in the perception of
rotations, rotation about the conic axes should always ap-
pear simple even though the objects are generalized cones at
different levels of symmetry.

It is important for the investigation of global properties of
these objects that the cube and octahedron are geometric
duals of each other (Hilbert & Cohn-Vossen, 1952; Holden,
1971). That is, these two objects both are generalized cones
and have the same symmetries, but everywhere that one
object has a corner, the other object has a surface, and vice
versa. Thus, the global properties of these objects can be
studied independently of local properties such as the orien-
tation of individual edges and surfaces.

Method

Participants. Participants were 18 Emory University under-
graduates (10 women and 8 men) in an introductory course in
psychology who received course credit for their involvement in the
study.

Materials. Rotating cubes, octahedra, tetrahedra, and squares
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were displayed stereographically as central projections of opaque
objects. The displays were presented on a computer monitor of 896
by 672 pixels at a resolution of 72 dpi. The stereographic aspect of
the displays consisted of the presentation of two views of an
object, one for each eye, approximately centered within the lateral
halves of the monitor (i.e., with a distance of 15 cm between the
centers of the two views). Participants viewed the displays through
a set of four front-surface mirrors, as illustrated in Figure 5. The
images were accurate in size, linear perspective, and stereo dis-
parity for objects of given sizes located 20 cm behind the screen
and viewed from a distance of 1 m. The sizes of the virtual objects
were an average of 4.9 cm on an edge. The objects were displayed
with black edges that were 3 pixels wide and were on white
surfaces. An edge of average length would subtend 2.8° of visual
angle when in the plane of the screen.

The rotating objects were shown within a white circular field
surrounded by a black outer region, as illustrated in Figure 6. The
circular fields were 11.3 cm in diameter and were set at a stereo
disparity such that the black outer region appeared in the frontal
plane at the location of the screen and the objects appeared to be
viewed through a round aperture, like a porthole. The white
circular field appeared as the visible portion of an open illuminated
area behind the porthole. The room was darkened, and no other
context was visible.

The mirrors were held securely by a stand 58 cm from the
monitor, at the height of the display images. There was a small
screen between the viewer and the mirrors with a 2.9-cm square
aperture in front of each inner mirror. Participants sat in a chair and
looked into the inner mirrors as if through a pair of binoculars
fixed in space. The only view was of the portion of the monitor that
held the display images. The outer mirrors were at 45° to the
monitor and separated by the same distance as the two display
images (15 cm). The inner mirrors were at 44.2° to the cyclopean
line of sight of the participant. This slight deviation from 45°
meant that a person with an interocular distance of 5.7 cm sta-
tioned 15.2 cm from the mirrors would fuse the images with ocular
convergence appropriate for looking at a point on the monitor. In
addition, people with different interocular distances could move
slightly forward or backward to have comfortable convergence and
fusion. Thus, it was not necessary to change the distance between
the mirrors for each participant. As noted earlier, the images on the
screen implied the presence of objects that were 20 cm behind the
screen, for an apparent viewing distance of 1 m.

Each object was displayed in every canonical orientation to the
axis of rotation (see Figure 4). There were three categories of
orientation of the axis of rotation to the environment: aligned,
partially oblique, and fully oblique. There were two instances of
each of these categories, as illustrated in Figure 7. Each of these
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Figure 5. Diagram of the viewing apparatus used in Experi-
ments 1 and 2.
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Figure 6. Example of one frame (reduced in size) from an
experimental display.

six orientations of the axis of rotation could have a rotation in
either direction about the axis, making 12 axis—direction combi-
nations in all. The complete display set included rotations of each
of the four objects, in each canonical orientation to the axis of
rotation, for each of the axis—direction combinations. The rotations
were shown at 120 frames per revolution (with a 3° change of
orientation between each frame), at a speed of one revolution per
6s.

A set of precise models of each orientation of each object to the
axis of rotation was used in the instructions. The models averaged
5.6 cm on an edge, were made of heavy white cardboard, and had
clearly delineated edges (i.e., the surfaces were joined at the inside
edges so that the thickness of the adjoining surfaces formed a gray
channel between the surfaces). Each model had a dowel running
through the center of the object, coincident with one of the object
axes. The dowels were 1 cm in diameter, 60 cm in length, and were
painted flat white. In addition, there was a model of each object
without a dowel.

The participant’s task was to indicate the orientation of the axis
and planes of an ongoing rotation. The response apparatus is
illustrated in Figure 8. The participant used a thin dowel, 0.5 cm in
diameter and 25 cm in length, that was perpendicular through the
center of a white foamboard disc 12.5 cm in diameter. The disc had
a semicircular double-headed arrow on one side to indicate that the
disc represented the circular motion of the rotation. To indicate the
orientation of a rotation, the participant first held the disc and
dowel in the desired orientation and then inserted the dowel into a
white polyhedron, 6.5 cm across, that had holes through it in all 13
principal directions of 3D space, in 35-45° intervals. The surfaces
of the polyhedron faced in the same directions as the holes. Once
the dowel was put through a hole, the disc rested against the
polyhedron, and the dowel and disc were held at a given orienta-
tion. The polyhedron was mounted on a gray stand at the height of

Fully Oblique Aligned

Partially Oblique

Figure 7. The directions of the axes of rotation used in Exper-
iment 1.
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Figure 8. The response apparatus in Experiments 1 and 2.

the rotating shapes, and was positioned in front of the participant
and off to the left side, just out of the line of sight to the display
monitor. The polyhedron was attached to the stand by a pipe that
extended horizontally out the back of the polyhedron.

Procedure. The first step of the procedure was a demonstration
of the stereo viewing apparatus. The participant next read a set of
well-illustrated written instructions. The instructions explained
that (a) rotations produce circular paths of the points on an object
in parallel planes of rotation; (b) there is a line, called the axis of
rotation, that runs through the middle of the planes of rotation; (c)
the axis and planes of rotation can be oriented in any direction in
space; (d) an object need not be aligned with the axis and planes
of rotation in any particular way; and (e) the participant’s task
would be to view a rotating object and to identify the orientation
of the axis and planes of rotation.

After the written instructions, the experimenter reviewed these
main points using squares attached to rods. Each rod was held
frontal-horizontal relative to the participant, and rotations were
demonstrated—first with the square normal to the rod, then par-
allel to the rod, and finally oblique to the rod. It was emphasized
that so long as the rod was in one orientation, the axis and planes
of motion were the same in the three cases and that the same
answer should be given for them.

The next phase of instruction was to demonstrate the response
apparatus. The participant was told that the disc represented the
planes of rotation, whereas the stick represented the axis. There
were then at least six practice trials in which the participant
reproduced a systematic variety of orientations of a second disc
and stick held by the experimenter in front of the computer
monitor. Practice in indicating orientations continued until the
participant could accurately reproduce each orientation on the first
attempt. Participants appeared to find the response system intui-
tive. During the experiment, it was common for participants to
insert the stick into the polyhedron and then to spin the assembly
in the correct direction to fully represent the rotation. The next
phase of instruction was two practice trials with the procedure to
be used in the experimental trials. The practice trials displayed an
object that was not seen later in the experiment (an antiprism with
a square top and bottom; Holden, 1971) rotating about an oblique
axis of rotation. One trial showed the object aligned with the axis
of rotation, and one trial showed the object oblique to the axis. The
participant was informed that viewing time would be recorded but
that being as accurate as possible was the important consideration.

Trials were blocked by object, with the participant taking a rest
between blocks. Before each block, the cardboard model of the
abject was given to the participant to explore visually and manu-
ally. At the same time, the experimenter took each model of the
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object that corresponded to a separate canonical orientation. The
experimenter held up the model, pointed out how the rod ran
through the object (e.g., through opposite corners of the object or
through opposite faces), and then suggested that the object might
rotate about such an axis. He then showed the rod at five different
orientations in 3D space. At the end of the demonstration for that
object, the participant was reminded that the task was to demon-
strate the orientation of the axis and planes of rotation.

Individual trials proceeded according to the following sequence.
At the beginning of the trial, the circular surround showed a
fixation dot at the center. The participant pressed the spacebar on
the computer keyboard to initiate the display and then attempted to
decide the orientation of the rotation without handling the orien-
tation indicator (i.e., the stick and disc). When the participant knew
the answer, or when he or she thought that no further progress
could be made, the participant picked up the orientation indicator.
At that time, the participant was free to use the indicator to help
decide on a response. When the participant had his or her answer,
the stick was placed in the polyhedron in the appropriate hole. The
experimenter pressed the mouse key once when the response disc
was picked up and a second time when the participant placed the
indicator in the polyhedron and stated that he or she was finished
(typically by saying “OK”). The display remained on the screen
and the participant was permitted to view it until he or she was
finished (i.e., the second mouse click). The duration of viewing
was recorded by the computer at both mouse clicks. The orienta-
tion of the indicator was recorded by the experimenter with a
simple analog coding system.

Every participant saw all four objects in all combinations of the
two basic variables: the three categories of orientation of the axis
of rotation and the canonical orientations of the objects to the axis
of rotation. Thus, each participant had nine trials with the cube,
nine with the octahedron, six with the tetrahedron, and nine with
the square. There were four separate lists of rotations for each
object. In each list, the rotations were sampled from the larger set
of available rotations (described earlier). There also were eight
different trial orders. In each, the order of rotations was random
with the constraint that a particular orientation of the axis of
rotation and a particular orientation of the object to the axis were
not repeated on successive trials. The order of objects and the
association of objects with lists and trial orders were counterbal-
anced across participants according to Latin squares.

Results

Accuracy. The percentage of responses that were cor-
rect, as a function of object, orientation of the axis of
rotation to the environment, and orientation of the object to
the axis of rotation, is presented in Figure 9. For each of the
objects, the orientation of the axis of rotation had a large
effect on performance: cube, F(2, 32) = 9.34, p < .001;
octahedron, F(2, 32) = 20.07, p < .001; tetrahedron, F(2,
32) = 7.65, p < .01; square, F(2, 32) = 10.38, p < .001.
Planned comparisons between pairs of orientations revealed
statistically reliable differences between the aligned orien-
tations and both the partially and fully oblique orientations,
respectively: cube, F(1, 16) = 8.49, p < .01; F(1, 16) =
14.40, p < .01; octahedron, F(1, 16) = 30.65, p < .001;
F(1, 16) = 26.27, p < .001; tetrahedron: F(1, 16) = 22.88,
p < .001; F(l, 16) = 9.33, p < .0l; square, F(1, 16) =
19.32, p < .001, F(1, 16) = 15.81, p = .001. Differences
between the two oblique orientations were not statistically
reliable.
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Figure 9. Percentage correct in Experiment 1 as a function of object, orientation of the axis of
rotation, and orientation of the object to the axis of rotation.

For each of the objects, the orientation of the object to the
axis of rotation had a large effect on performance: cube,
F(2,32) = 547, p < .01; octahedron, F(2, 32) = 9.81,p <
.001; tetrahedron, F(1, 16) = 11.83, p < .01; square, F(2,
32) = 21.14, p < .001. For the cube, planned comparisons
revealed that participants were more accurate when the
fourfold symmetry axis was aligned with the axis of rotation
than when the twofold symmetry axis was so aligned, F(1,
16) = 10.73, p < .01. Performance for the threefold sym-
metry axis was in between the fourfold and twofold axes
and was not statistically different from either one, p > .1.
For the octahedron, the fourfold symmetry axis led to su-
perior performance over both the threefold and the twofold
axes, F(1, 16) = 14.22, p < .01, and F(1, 16) = 9.35, p <
.01, respectively. Percentage correct for the threefold and
twofold axes did not differ, p > .1. For the square, the

fourfold and twofold symmetry axes were not different from
each other, F < 1.0. Both the fourfold and twofold axes
were superior to the oblique orientation, F(1, 16) = 26.98,
p < .001, and F(1, 16) = 26.68, p < .001, respectively.

Across the objects, performance always was high if the
object was a generalized cone about the axis of rotation. The
differences among the objects at these orientations were not
statistically reliable, F < 1.0, even though these orientations
have three different amounts of symmetry about the axis of
rotation. For the octahedron and tetrahedron, there was an
interaction between orientation of the axis of rotation and
orientation of the object to the axis: octahedron, F(4, 64) =
4.04, p < .01; tetrahedron, F(2, 32) = 3.70, p < .05. In
particular, performance was good either when the axis of
rotation was aligned to the environment or the object was a
generalized cone about the axis of rotation.
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There were no statistically reliable differences between
the cube and octahedron, the two objects dual to each other.
When these objects were considered together, there was an
interaction between the orientation of the axis of rotation to
the environment and the orientation of the object to the axis
(a comparison that had not been statistically reliable for the
cube considered alone), F(4, 64) = 3.35, p = .01.

The range of accuracy in this experiment was quite large.
The participants were correct 95% of the time when the
rotations were aligned with the environment and the objects
were generalized cones about the axis of rotation. Perfor-
mance dropped to 36% correct when the rotations were fully
oblique to the environment and the objects rotated about
their lowest symmetry axes (at which they are not general-
ized cones).

Response time. Mean response time, as a function of
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object, orientation of the axis of rotation to the environment,
and orientation of the object to the axis of rotation, is
presented in Figure 10. These means are for the total times
per trial, from the initiation of the display to the completion
of the report procedure (the second mouse click). The total
time is used because participants were permitted to look
back and forth from the display to the response apparatus,
and often they did that. If the initial viewing times are
examined separately, the same trends emerge.

The pattern of mean response time mirrored the pattern of
percentage correct, r = —.93, #(31) = 13.67, p < .001.
Therefore, statistical comparisons are not reported sepa-
rately. It is noteworthy, however, that the range of response
times in this experiment was quite large. Mean response
time was 8.9 s when the axis of rotation was aligned with
the environment and the objects were generalized cones
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Figure 10. Response time in Experiment 1 as a function of object, orientation of the axis of
rotation, and orientation of the object to the axis of rotation.
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about the axis. This time included reaching for the orienta-
tion indicator, manipulating it, and placing it in the polyhe-
dron. Mean response time rose to 43.5 s when the axis of
rotation was fully oblique to the environment and the ob-
jects were in their least effective orientations to the axis.

Discussion

The ability to indicate the orientation of the axis and
planes of a simple rotational motion ranged from relatively
fast and accurate response to slow and inaccurate response.
This was true even though the orientations and the response
alternatives were limited to the 13 canonical directions in
35-45° intervals. So long as the axis of rotation was aligned
to.the environment, the motions generally were perceived to
be simple rotational motions. If the axis of rotation was
oblique to the environment, the orientation of the object to
the axis made a large difference. The results very clearly
extended findings from the imagination of rotation to the
perception of rotation.

Given the findings for this set of four objects, if one were
to make a single suggestion of how to make rotations appear
simple when the axes of rotation are oblique to the envi-
ronment, that suggestion would be to orient the objects as
generalized cones about the axes of rotation. The cube and
octahedron rotating about their fourfold symmetry axes, the
tetrahedron rotating about its threefold symmetry axis, and
the square rotating about its twofold symmetry axis were
readily perceived to be rotating about axes fixed in space.
Below the level of symmetry at which the object was a
generalized cone, participants had much more difficulty
identifying the orientations of the motions. In addition, the
same level of symmetry could lead to very different out-
comes across different objects. This is demonstrated by
perception of the rotation of two of the Platonic solids, the
octahedron and tetrahedron, about their threefold symmetry
axes. The tetrahedron is a generalized cone about this axis,
and participants typically could identify the axis of rotation.
The octahedron is not a generalized cone about this axis,
and participants typically could not identify the axis. Note
also that by conventional standards, the twofold symmetries
of the Platonic solids yield symmetric objects. However,
perception of rotations about these symmetry axes was not
impressive (38% correct after a response time of 42 s). It
should be noted, however, that performance was well above
chance for these rotations, and the symmetry of the objects
may have contributed to this.

The one object for which performance did not drop sub-
stantially when the object was not a generalized cone about
the axis of rotation was the cube. When the threefold
symmetry axis of the cube was aligned with the axis of
rotation, performance still was relatively good. Note, how-
ever, that the cube at this orientation is a generalized cone
in the top and bottom thirds of the object. Moreover, in the
oblique orientations of the axis of rotation, one end of the
cube was turned toward the participant so that the majority
of what could be seen was a generalized cone.
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Experiment 2

The results of Experiment 1 imply that alignment of the
axis of a generalized cone with the axis of a simple rotation
makes the rotation perceptually simple, even if the axis of
rotation is oblique in the environment. However, it is im-
portant to consider the unique properties of the set of objects
in that experiment. Of particular interest, the three simpler
Platonic solids are generalized cones with regular polygons
as cross-sections. The cross-section of the square is a
straight line. Perhaps it is generalized cones with symmetric
cross-sections that lead to the perception of simple rota-
tional motions. Experiment 2 was designed to test percep-
tion of the rotation of generalized cones with a variety of
irregular cross-sections. These generalized cones again had
straight axes and cross-sections normal to the axes.

A second basic property of the objects used in Experiment
1 is that they all are relatively compact. The tetrahedron is
the best 4-point approximation to a sphere, the octahedron is
the best 6-point approximation to a sphere, and the cube is
the best 8-point approximation to a sphere. In contrast, a
number of authors have suggested that elongation of an
object is a common source of information about the major
axis of an object-relative reference system (Humphreys,
1983; Marr & Nishihara, 1978; Palmer, 1989). In Experi-
ment 2, the cube, octahedron, and tetrahedron were elon-
gated in a 2:1 ratio along their twofold symmetry axes, the
axes that led to some of the worst performances in Exper-
iment 1. The question was whether this elongation when
aligned with the axis of rotation would make the rotations
appear simpler.

One possible reason that rotations of the Platonic solids
about their lower symmetry axes did not appear simple in
Experiment 1 is that the objects contained higher symme-
tries. Perhaps there was a tendency to perceive the objects in
terms of the higher symmetries, and this perception inter-
fered with seeing the lower symmetries aligned with the
rotation. In Experiment 2, the three simpler Platonic solids
also were compressed in a 2:1 ratio along the axis of
twofold symmetry. Both the elongation and the compres-
sion preserved the twofold rotation and reflection symmetry
of the objects but eliminated all competing symmetries.
Alignment of the twofold symmetry axes of the compressed
objects with the axis of rotation was intended to give an
indication of the effectiveness of symmetry on the percep-
tion of simple rotation in the absence of competing symme-
try and where there was no elongation along the axis of
rotation.

Method

Participants. Participants were 16 Emory University under-
graduates (9 women and 7 men). They participated for course
credit in an introductory course in psychology.

Materials. The display apparatus, viewing conditions, and type
of display were the same as in Experiment 1. There were five basic
types of display, as illustrated in Figure 11. First, the cube, octa-
hedron, and tetrahedron were oriented as generalized cones to the
axis of rotation. Second, the twofold symmetry axes of these
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objects were aligned with the axis of rotation. These two types
were intended to provide baseline performance. The third type of
display was composed of generalized cones with irregular cross-
sections. Eight objects were created by factorially combining three
variables. The objects could have quadrilateral or trilateral cross-
sections, there were two versions of each of these, and the objects
could be prismatic or could come to a point. The objects with
quadrilateral cross-sections came to a point at both ends, forming
irregular octahedra, the objects with trilateral cross-sections came
to a single point, forming irregular tetrahedra. In every case, the
cross-sections were made to be as irregular as possible. In partic-
ular, the angles of the quadrilaterals were in the ratio 1.5:1. The
angles of the trilaterals were in the ratios 1.5:1 and 2.5:1. The
surface areas and volumes of the prismatic shapes were the same
as those of the cube. The surface areas and volumes of the pointed
shapes were the same as those of the octahedron or the tetrahedron.
The fourth set of objects was formed from elongating the Platonic
solids along the twofold symmetry axes in a 2:1 ratio. The fifth
type was formed from compressing the Platonic solids along the
twofold axes, in a 1:2 ratio of height to width. The surface areas
and volumes of the compressed and elongated shapes were the
same as those of the corresponding Platonic solids. Across all five
types of display, there were 20 oriented objects.

The axis of rotation always was oblique to the environment.
There were four partially oblique orientations of the axis of rota-
tion; the axis was in either the horizontal or the sagittal plane and
was at 45° to the principal axes of those planes. There also were
four fully oblique orientations of the axis (these can be seen in
Figure 8). Rotations could be in either direction about the axis of
rotation. Thus, the complete set of displays included 16 different
rotations. Each participant saw every one of the 20 oriented objects
rotating with its critical object axis aligned with a partially oblique
and a fully oblique axis of rotation, making 40 trials for each
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participant. The various tetrahedral objects (including the irregular
ones) were oriented to the axis of rotation with the base surface
facing front one half of the time and with the opposing vertex
facing front one half of the time.

Procedure. The procedure was the same as in Experiment 1
until the experimental trials. In Experiment 2, there was only one
block of trials. The participant was asked to take a break after
every 10 trials. In addition, there were no cardboard models of the
objects shown to participants ahead of time. There were four
separate lists of trials. The particular partially oblique or fully
oblique axis used and the direction of rotation were varied within
participant and counterbalanced across objects and participants.
There were eight separate random orders of trials.

Results

Accuracy. The primary analysis was an analysis of vari-
ance with two repeated measures: type of object structure
aligned with the axis of rotation and orientation of the axis
of rotation. Type of object structure had five levels: Platonic
generalized cone, irregular generalized cone, elongated ob-
jects, compressed objects, and twofold Platonic solids. Ori-
entation of the axis of rotation had two levels: partially
oblique and fully oblique. In preparation for the analysis,
each participant’s data from each of the 10 cells of this
design were averaged.

The percentage of correct responses for each type of
object structure at both types of orientation of the axis of
rotation is presented in Figure 12. As expected, there was a
large effect of the type of object structure aligned with the
axis of rotation, F(4, 56) = 23.79, p < .001. The Platonic
solids led to the highest and the lowest accuracy, depending
on whether they were oriented as generalized cones or as
twofold symmetries to the axis of rotation, F(1, 14) =
39.91, p < .001. The irregular generalized cones led to
accuracy much the same as the Platonic generalized cones,
F(1, 14) = 3.72, p = .07. The elongated objects led to an
intermediate but relatively high level of accuracy (compared
with the irregular generalized cones, F(1, 14) = 10.84, p <
.01). The compressed objects also led to intermediate levels
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Figure 12. Percentage correct in Experiment 2 as a function of
the orientation of the axis of rotation and the object structure
aligned with the axis of rotation. (Gen = generalized).



PERCEPTION OF ROTATION

of accuracy but levels substantially lower than those of the
elongated objects: compared with the elongated objects,
F(1, 14) = 8.77, p = .01, compared with the twofold Pla-
tonic solids, F(1, 14) = 7.28, p < .05.

There were no general effects on accuracy produced by
the variety of irregular generalized cones. One interaction
approached statistical significance, F(1, 14) = 3.75, p <
.07. In particular, although the objects with trilateral cross-
sections led to equivalent performance, objects with quad-
rilateral cross-sections led to better performance if they
were dipyramidal rather than prismatic (for the simple effect
at the quadrilaterals, F(1, 14) = 4.73, p < .05). There was
not a statistically reliable difference between partially and
fully oblique orientations of the axis of rotation nor an
interaction involving this variable.

Response time. Mean response time for each type of
object structure at each orientation of the axis of rotation is
presented in Figure 13. As in Experiment 1, the pattern of
mean response times closely mirrored the pattern of per-
centage correct, r = —.98, #8) = 15.62, p < .001. Statis-
tical comparisons therefore are not reported separately for
response time.

Discussion

The ability to indicate the orientation of the axis and
planes of a rotational motion again ranged from relatively
fast and accurate response to slow and inaccurate response.
As expected, the Platonic solids oriented as generalized
cones and as twofold symmetries to the axis of rotation
provided the easiest and most difficult rotations, respec-
tively. Generalized cones with irregular cross-sections led
to performance nearly equivalent to the Platonic generalized
cones, although there was a slight superiority of the more
regular objects. The elongated objects led to intermediate
but relatively high levels of performance. This is especially
interesting given that these objects were elongations of the
twofold symmetries of the Platonic solids, object structures
that led to poor performance. The compressed versions of
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Figure 13. Response time in Experiment 2 as a function of the
orientation of the axis of rotation and the object structure aligned
with the axis of rotation. (Gen = generalized).
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these twofold symmetries also led to intermediate levels of
performance, but these levels were toward the low end of
the range (i.e., 53% correct after 33 s). Thus, eliminating
higher symmetries in the Platonic solids improved percep-
tion of rotations about the twofold symmetry axes. How-
ever, the twofold symmetries, in the absence of elongation
of the objects, still were not powerful in leading to percep-
tion of simple rotations (although, again, performance was
above chance).

General Discussion

Rotation is a common and fundamental form of motion
(Gibson, 1957; Shepard, 1984). Nevertheless, most people
are not able to imagine every physically simple form of
rotation. Even though a rotation involves only the circular
motion of a square about a rod fixed in space, if the rotation
is double oblique, the typical person will be unable to
imagine it (e.g., Pani, 1993; Pani & Dupree, 1994; see also
Just & Carpenter, 1985; Massironi & Luccio, 1989; Par-
sons, 1987). Given such findings, the question arises as to
whether the constraints on the imagination of rotation exist
also in perception (see also Kaiser, Proffitt, & Anderson,
1985; Proffitt & Gilden, 1989). The present experiments
were designed to investigate the perception of rotations of a
set of basic shapes, including the square, the simpler regular
polyhedra, and a variety of shapes derived from the regular
polyhedra. It was demonstrated that double-oblique rota-
tions of objects do not appear to be simple rotational mo-
tions. The rotations appear to be continuous motion of rigid
objects (Green, 1961), but they do not appear to be simple
rotations. It can be concluded that perceived rotation has a
spatial organization that is separable from its properties as
continuous motion (see also Carleton & Shepard, 1990a,
1990b; Cutting & Proffitt, 1982; Gilden, 1991; Pani, 1993,
1994). This organization is seen readily in certain circum-
stances but not in others (see also Shiffrar & Shepard,
1991).

Alignment With the Environment

When a rotational motion is aligned with the principal
axes and planes of the environment, the rotation is perceived
to be simple, independent of the orientation of the object to
the axis of rotation. It is important to note that in this
circumstance the person need not be able to fully organize
the global structure of the object relative to the motion. This
is demonstrated for rotation about the vertical when the
cube is oriented with opposite corners vertical, when the
octahedron is oriented with opposite surfaces vertical, or the
tetrahedron is oriented with opposite edges vertical (i.e.,
when the cube and octahedron have threefold symmetry
axes vertical and the tetrahedron has a twofold axis vertical;
see Figure 4). If a typical participant were to perceive a
rotation about the vertical of one of these oriented objects
and indicate the orientation of the motion and then were to
attempt to indicate the shape of the object when it has that
orientation to the vertical (e.g., by pointing to imaginary
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corners of the object), he or she would fail to do so accu-
rately. Thus, Hinton (1979) found that people generally
were unable to imagine the cube with opposite corners
vertical. Pani, Zhou, and Friend (1995) had individuals view
the cube rotating about the vertical for as long as they
wished before stopping the display and indicating how the
comers of a static cube are arranged. These participants left
the displays on for an average of 35 s, nearly three times
longer than participants needed in the present Experiment 1
to indicate the axis and planes of the rotation. The imagi-
nation of the tipped cube, even after these long viewing
times, was still quite inaccurate, and much more inaccurate
than imagination of the other orientations of the cube.

A rotational motion forms a circularly symmetric space
stretched along the axis of rotation. This kinematic space is
a solid of revolution and a highly regular variant of the
generalized cone (Pani, 1993, 1994; Pani & Dupree, 1994).
As a rotation progresses, it is only with respect to the axis
of this kinematic space, the axis of rotation, that the features
of the object maintain a constant slant. Alignment of the
axis of rotation with a salient axis of the environment
determines that the orientations of features of the object are
the same relative to a principal axis of the environment and
to the axis of rotation. Thus, perception of the orientation of
the features of the object relative to the two axes is mutually
reinforcing. It is then possible to see the constant slant of the
features of the object to the axis of rotation and the circular
motion of the features about the axis. A somewhat similar
phenomenon occurs when static symmetries are made more
salient by alignment with a principal axis of the environ-
ment (Goldmeier, 1972; Palmer, 1980; Palmer & Hemen-
way, 1978; Pani, Zhou, & Friend, 1995; Rock, 1983; Rock
& Leaman, 1963).

Alignment With the Object

Global properties of objects that make rotations appear
simple. When objects have definite directions in space
related primarily to the structures of the objects, it is rea-
sonable to speak of object-relative reference systems (e.g.,
Biederman & Gerhardstein, 1993; Corballis, 1988; Hinton,
1979; Marr & Nishihara, 1978; McMullen & Jolicoeur,
1992; Palmer, 1975, 1989; Rock, 1983). The question is,
What properties of objects provide object-relative reference
systems such that a rotational motion aligned with such a
reference system is seen to be simple?

It has been suggested that the generalized cone is a
volumetric primitive in the representation of object shape
(Biederman, 1987, 1990; Binford, 1971; Brooks, 1981;
Marr & Nishihara, 1978). One basis for this suggestion is
that the generalized cone has a definite axial structure (Marr
& Nishihara, 1978). It should be clear how to assign the
major axis of an object-relative reference system to a gen-
eralized cone. Interestingly, if rotations are organized in
terms of the kinematic spaces associated with axes and
planes of rotation, then the geometric similarity between
rotations and generalized cones is quite striking. If the
generalized cone has psychological importance, rotations
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should appear simple when they are aligned with the axis of
a generalized cone. In separate experiments, this was the
case. The square, the three simpler Platonics solids, and a
set of generalized cones with irregular cross-sections led to
perception of simple rotational motions when the axes of the
generalized cones were aligned with the axes of rotation.
The Platonic solids led to slightly superior performance; the
regularity of the cross-section does provide some additional
benefit in the perception of the motions.

Elongation is another form of information that people
could use to determine the major axis of an object-relative
reference system (Humphreys, 1983; Marr & Nishihara,
1978; Palmer, 1989). If this potential information actually is
used, then rotations should appear simple when the axis and
planes of motion are aligned with an axis of elongation. In
Experiment 2, object structures that previously were not
useful in the perception of rotation led to relatively success-
ful perception when they were elongated in a 2:1 ratio and
aligned with the axis of rotation. Overall, two global prop-
erties of objects that have been suggested to be useful in
fixing the major axes of object-relative reference systems
were effective in making a rotational motion salient when
these global properties were aligned with the motion.

Rotation—reflection symmetry is a property of objects that
often makes them appear well structured (e.g., Garner,
1974; Palmer, 1985, 1989; Palmer & Hemenway, 1978;
Pomerantz & Kubovy, 1986). However, rotation and reflec-
tion symmetry did not play a strong role in the perception of
rotational motion in these experiments (in contrast to the
conclusions of Shiffrar & Shepard, 1991). Most important,
a single amount of symmetry could lead to very different
outcomes. For example, the octahedron rotating about its
threefold symmetry axis did not lead to perception of simple
rotations, whereas the tetrahedron rotating about its three-
fold symmetry axis did. (Other relevant findings are noted
in the discussions of the individual experiments.) On the
other hand, performance in both experiments always was
above chance, and it is quite possible that rotation—
reflection symmetry contributed to this. It also is true that
different forms of spatial regularity can be used in combi-
nation. Thus, the Platonic generalized cones, with rotation—
reflection symmetry about the conic axis, were more readily
seen to be simple rotations than the irregular generalized
cones in Experiment 2.

Breakdown of the perception of simple rotation. We
have been discussing the effects of the orientations of ob-
jects to the axes and planes of rotation on the perception of
the motions, but this relationship also can influence the
perceptual organization of the objects. For example, an
octahedron is a generalized cone, but it is a generalized cone
in three orthogonal directions. If the octahedron did not
move, a given conic axis oblique in the environment would
likely not be salient (Goldmeier, 1972; Palmer, 1980;
Palmer & Hemenway, 1978; Rock, 1983; Rock & Leaman,
1963). As the octahedron rotates about a conic axis, how-
ever, only that axis has a fixed direction in space. An object
axis that can be used to organize the object is made uniquely
salient by its invariance across a change of orientation
produced by the rotational motion. Overall, perception of
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the rotation must be a cooperative process. A rotational
motion influences spatial organization of the object and is
seen to be a simple rotation by its alignment with the
organized structure.

An isotropic object, such as a homogeneously textured
sphere, can be arbitrarily oriented to an axis of rotation, and
a rotation of the sphere appears simple (see Johansson,
1950; Lappin, Doner, & Kottas, 1980; Restle, 1979). It is
not the case, then, that oblique-axis rotations must be
aligned with objects that have unambiguous orientations for
the rotations to be perceived as simple. Rather, a rotating
object presents a succession of orientations, and the person
must be able to relate these orientations to each other in
terms of the structure of a simple rotation: an axis fixed in
space, invariant slant of the features of the object to the axis,
and circular motion of the features, with constant angular
velocity, in parallel planes aligned along the axis. A homo-
geneously textured sphere has no intrinsic orientation, and
the changing orientations of the sphere are easily seen as
sets of elements that, either individually or in concentric
rings, form circular motions in planes of rotation.

In other cases, the successive orientations of an object
produced by a rotation cannot be perceptually organized in
terms of the structure of a simple rotation. For example,
consider the motion that most obviously leads to a break-
down in the perception of simple rotation, the double-
oblique rotation of the square (see Figures 9 and 10). The
most obvious property of this motion, either perceptually or
analytically, is that as the square spins it is sometimes
aligned with the environment in one direction (e.g., in the
frontal plane), sometimes fully oblique to the environment,
and sometimes aligned with the environment in a second
direction (e.g., horizontal; see Figure 2). The orientations of
the object sampled across time constitute a variety of ca-
nonical orientations, and there is no higher organization of
the object with a stable relationship to the axis and planes of
rotation. In this case, the motion is perceived to be contin-
uous but unstable change of orientation.

Radical change of the orientations of surfaces of objects
also is salient in the rotation of the simpler Platonic solids
about their twofold symmetry axes. And, as with double-
oblique rotations of the square, there are not salient higher
organizations of the objects aligned with the axis of rotation
that include the surfaces in structures with stable orienta-
tions. Note that for every one of the object structures that
did not lead to perception of simple rotations, there is some
feature of the object that actually is aligned with the axis of
rotation. If the participant were to selectively attend to these
features, performance would be much improved. For exam-
ple, the threefold octahedron has a triangular surface cen-
tered on and aligned with the axis of rotation. It is the
tendency to see the object as having connected surfaces and
an overall organization that makes it so difficult to selec-
tively attend to what would be useful features of the objects
for identifying the nature of the motion. No doubt partici-
pants could be trained to find these isolated features, but this
would say little about the nature of normal perception.

Individual properties of objects that make rotations ap-
pear simple. To explain more fully the importance of
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generalized cones to the perception of rotation, it would be
possible to build on theories of object recognition in which
generalized cones have a unique role in the representation of
objects (Biederman, 1987, 1990; Marr, 1982; Marr & Nishi-
hara, 1978). Perceivers may be particularly sensitive to
generalized cones (see Biederman, 1987, 1990). In the con-
text of the perception of rotation, however, there is much
support for considering the generalized cone to contain a
type of geometric regularity and for the importance of
generalized cones to be due to the importance of geometric
regularity in perception (e.g., Attneave, 1954, 1981, 1982;
Garner, 1974; Leeuwenberg, 1971; Leyton, 1992; Palmer,
1982, 1983; Pani, 1994; Pani, Zhou, & Friend, 1995; Po-
merantz & Kubovy, 1986; Wertheimer, 1950).

Consider that when a square is aligned with the axis and
planes of a rotational motion, the motion is perceived to be
simple. It is possible to define the square in these orienta-
tions to be a generalized cone, but it is a rather minimal one.
When the square is normal to the axis of rotation, it is a
single cross-section and not one that has been translated
along an axis. When the square is paralle] to the axis of
rotation, the cross-section i1s a line rather than the two-
dimensional contour generally supposed to be a constituent
of the generalized cone. For rotations of the square that are
perceived to be simple, it is most reasonable to appeal to the
concept of alignment. The square is aligned with the axis
and planes of rotation, and the axis and planes of rotation
have a fixed orientation in space. Throughout the motion,
orientations that are salient with respect to the square are
stable with respect to the environment. The axis and the
planes of motion can be related to these stable orientations
of the square (also see Pani, Jeffres, et al., in press).

When the class of generalized cones is confined to those
with straight axes and cross-sections normal to the axes,
generalized conic polyhedra have a number of basic geo-
metric regularities related to the conic axis (Pani, 1994;
Pani, Zhou, & Friend, 1995). First, a shape will have at least
one well-defined cross-section, and such cross-sections are
aligned with the axis of the cone (by definition). For pris-
matic solids, all edges, surfaces, and cross-sections are
aligned with the axis. Where a generalized cone is not
prismatic, it tends to converge to the axis (i.e., to be pyra-
midal, or conic in the specific sense). Related to these
properties, there are strong limits on the degree to which
edges and surfaces of a generalized cone can vary in orien-
tation relative to the conic axis. First of all, the slants of
edges and surfaces relative to the axis are highly con-
strained. The more equilateral the cross-section of the ob-
ject, the more uniform the slants of edges and surfaces. In
addition, the radial positions of edges and surfaces about the
conic axis are the same up and down the generalized cone
(i.., one phase structure describes the positions of these
features at any point along the axis). These constraints on
the orientations of object features about an object axis
contrast with the large shifts in orientation of object features
about the axes of the Platonic solids that lead to poor
perception of simple rotation (see Figures 4 and 11; Pani,
1994; Pani, Zhou, & Friend, 1995).

Opverall, the basic property of objects that makes rotations
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appear simple when that property is aligned with the axis
and planes of rotation is a salient spatial organization with
a clear direction. The prototypic example of such an object
1s a generalized cone with an equilateral cross-section elon-
gated along the conic axis (e.g., a rocket). Such objects
contain a number of specific properties, however, that most
likely contribute to the perception of simple rotation. These
properties include the alignment of edges and surfaces with
an axis, convergence of edges and surfaces to an axis,
homogeneity of surface orientations about an axis, align-
ment of cross-sections to an axis, and elongation along an
axis.

Geometric Regularity in the Structure of Objects
and Motions

We have described rotation in terms of an organized
space associated with the axis of rotation. This type of
symmetric space is familiar from the study of 3D form (e.g.,
Hilbert & Cohn-Vossen, 1952). We have suggested that
alignment of reference axes is critical to perceiving rota-
tions, just as it is critical to perceiving static arrangements
(see also Pani, Jeffres, et al., in press). Finally, we have
suggested that object structures supposed to be critical to the
perception of objects are critical to the perception of the
rotation of objects. In all, certain forms of spatial organiza-
tion are fundamental both for the perception of motion and
for the perception of form (Pani & Dupree, 1994). We wish
to extend the discussion of similarities between the percep-
tion of rotation and the perception of objects. Many theorists
have suggested that the concept of geometric regularity is
fundamental to the explanation of the spatial organization of
form (e.g., Attneave, 1954, 1981, 1982; Garner, 1974;
Leeuwenberg, 1971; Leyton, 1992; Palmer, 1982, 1983;
Pani, 1994; Pani, Zhou, & Friend, 1995; Pomerantz &
Kubovy, 1986; Wertheimer, 1950). In the remaining para-
graphs, we briefly point out the relevance of the concept of
geometric regularity to a general conceptualization of the
perception of rotational motion.

The term symmetry has many meanings (Weyl, 1952).
Typically, it refers to reflection symmetry (e.g., Koffka,
1935) and often to rotation and reflection symmetry (e.g.,
Garner, 1974; Palmer & Hemenway, 1978). But increas-
ingly the technical usage of the term covers all types of
repetition across spatial transformation (Bum, 1985;
Palmer, 1983; Pani, 1994; Smart, 1988; Stewart & Golu-
bitsky, 1992). Some symmetries are combinations of more
elementary types. For example, spiral symmetry, often
called screw symmetry, is repetition across a combination of
translation and rotation (Hargittai & Pickover, 1992). In this
broader usage, the generalized cone embodies a type of
symmetry, either simple translational symmetry, or symme-
try produced by a combination of translation and dilation
(Pani, 1994). It is noteworthy in this regard that illustrations
of generalized cones typically provide examples that have
rotation and reflection symmetry, and that illustrations of
rotation and reflection symmetry typically show generalized
cones (unlike, say, the threefold octahedron).
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Alignment to a reference system also is an instance of
symmetry in the general sense (Pani, Jeffres, et al., in press).
For example, two parallel lines or surfaces can be made
congruent by a simple translation of one entity into the
other. Similarly, a line normal to a reference plane forms a
reflection symmetry everywhere about the line. If the ref-
erence plane is part of an orthogonal reference system (e.g.,
the ground plane and the vertical direction of gravity), the
line normal to the plane forms an angle that is identical to
the right angles already existing in the reference system.
The angle formed by the line can be made congruent to an
angle in the reference system by a simple translation of the
line.

If one equates physical simplicity with symmetry, then
the straight line and the circle are the two simplest curves
(Hilbert & Cohn-Vossen, 1952), and aligned orientations
are the two simplest orientations. Given that simple rota-
tional motion includes circular motion in parallel planes
aligned along an axis, human spatial organization of rota-
tion in terms of the axis and planes of rotation preserves the
status of rotation as one of the simplest physical structures
in nature. Human perceivers succeed in organizing a given
rotation in this way, however, only when the rotation is
geometrically simple in its relationship to other spatial
reference systems related to the motion. The rotation is
perceived to be physically simple only when it can be seen
to be aligned with the object or the environment. When the
rotation cannot be seen in this way, it appears only as
continuous motion in which the orientation of the object
changes. The present study, then, contributes to the evolu-
tion of the concept of pragnanz toward a description of the
human sensitivity to regularity in the perceptual world.
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